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Abstract: State of charge (SOC) is the most important parameter in battery management systems
(BMSs), but since the SOC is not a directly measurable state quantity, it is particularly important to
use advanced strategies for accurate SOC estimation. In this paper, we first propose a bidirectional
long short-term memory (BiLSTM) neural network, which enhances the comprehensiveness of
information by acquiring both forward and reverse battery information compared to the general
one-way recurrent neural network (RNN). Then, the parameters of this network are optimized by
introducing a Bayesian optimization algorithm to match the data characteristics of lithium batteries
with the network topology. Finally, two sets of lithium battery public data sets are used to carry
out experiments under different constant temperature and variable temperature environments. The
experimental results show that the proposed model can effectively fit the actual measurement curve.
Compared with traditional long short-term memory network (LSTM) and BiLSTM models, the
prediction accuracy of the Bayes-BiLSTM model is the best, with a root mean square error (RMSE)
within 1%, achieving a better ability for capturing long-term dependencies. Overall, the model
exhibits high accuracy, adaptability, and generalization for the SOC estimation of batteries with
different chemical compositions.

Keywords: lithium battery; state of charge; Bayesian optimization algorithm; bidirectional long
short-term memory neural network

1. Introduction

With the increasing severity of the global energy crisis and the environmental pollution
caused by transportation energy consumption, the world’s demand for efficient and clean
energy is also increasing year by year. As a type of reusable, rechargeable battery, lithium
batteries greatly reduce carbon emissions and chemical fuel consumption. In addition, due
to the advantages of high energy density, low self-discharge rate, and long service life,
lithium batteries are widely used in electric vehicles [1,2]. As one of the most important state
quantities of lithium batteries, the SOC is not only an important parameter for measuring
the remaining power of batteries but also an important index for ensuring the safety and
service life of batteries [3]. Therefore, accurate lithium battery SOC estimation is currently
a key problem to be solved.

The SOC is defined as the ratio of the remaining capacity to the nominal capacity of a
battery [4], which is usually calculated by Equation (1). It should be noted that SOC is a
state quantity that cannot be measured directly, and there are highly nonlinear relationships
between the SOC and observable variables, such as voltage, current, temperature, and
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other measured data. Using these observable variables, the SOC value can be obtained
indirectly. However, these variables also change with battery aging, ambient temperature,
and driving conditions, which makes accurate SOC estimation a challenge [5].

SOC =
Qc

Qi
× 100% (1)

where Qc is the current remaining capacity of the battery and Qi is the nominal capacity
of the battery. The SOC value range is between [0,1]. When the SOC is 0, the battery is
completely discharged. When the SOC is 1, the battery is fully charged.

At present, there are four main types of SOC estimation methods proposed by scholars:
the ampere-hour integration method, the open-circuit voltage method, the model-based
estimation method, and the data-driven method [6]. The ampere-hour integration method
mainly involves calculating the amount of electricity released by the battery over a period of
time by measuring the discharge current of the battery and integrating the current over time,
thus achieving battery SOC estimation [7]. The open-circuit voltage method is mainly used
to find the relationship between the open-circuit voltage (OCV) and the battery SOC, and a
corresponding OCV–SOC table is established by using discharge experiments to further
estimate the SOC according to the mapping relationship between them. The model-based
method characterizes the internal characteristics of the battery by establishing a battery
model to establish a time-domain space state equation to estimate the SOC [8–10]. However,
due to high computational complexity, the model’s requirement for prior knowledge, and
the variations of a large number of parameters in the model with operating conditions,
it is difficult to accurately estimate the SOC of the battery throughout its life cycle using
the model-based method. In recent years, the data-driven approach has received much
attention from scholars because it does not require a specific battery model and an accurate
formula. The data-driven approach treats the battery as a black box and only requires
the lithium battery measurement signal to achieve the estimation of SOC [11]. Many
scholars have used many traditional machine learning methods to simulate the nonlinear
characteristics of batteries, which have suitable data integrity, and the relationships between
the battery SOC and the observable variables (voltage, charge/discharge current, resistance,
etc.) can be learned autonomously from the data. Common learning algorithms include
support vector machines, semi-supervised learning, artificial neural networks, etc. [12,13].
Reference [14] uses a multi-hidden layer backpropagation (BP) neural network to learn the
nonlinear relationship between battery SOC and Li-ion battery measurable variables (i.e.,
current, voltage, and temperature). Using a genetic algorithm to denoise the prediction
error, this method successfully captures the long-term dependence between the observable
variables and the battery SOC. Reference [15] uses the least-squares support vector machine
(LS–SVM) model to train the dynamic characteristics of lithium-ion batteries with a small
sample and realize the online application of the modeling method. However, these shallow
learning architectures lack comprehensiveness when considering the redundancy of feature
information, which ultimately leads to low accuracy.

In particular, with the booming development of artificial neural networks, deep learn-
ing is also widely used for battery SOC estimation. Deep learning, as an important branch
of machine learning, can easily capture the relationships between the measured signals
and the SOC by building multilayer deep neural networks with nonlinear transformations
to extract feature information from input samples. RNN is a deep learning method based
on neural networks, which has been favored by many scholars in recent years in regard
to the prediction problem of sequence data. Reference [16] proposed an SOC estimation
method based on RNN by using the time-series memory capability of RNN. Through
the data obtained from the lithium battery performance test experiment, a battery SOC
estimation simulation experiment was carried out under high-power discharge conditions.
Reference [17] proposed an SOC estimation model combining RNN with the Coulomb
counting method. The model takes voltage, current, and temperature as inputs and consid-
ers the effect of battery degradation during charging and discharging to estimate battery
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SOC under three different operating conditions. However, the structure of RNN is rela-
tively shallow, and a typical RNN is unable to learn the intrinsic features of the measured
data layer by layer upon encountering the extended sequence problem. To improve the
capability of RNNs in handling sequential data, an LSTM, gated recurrent unit (GRU)
structure can be added to RNN to solve the vanishing gradient phenomenon problem. Ref-
erence [18] proposed a method to accurately estimate lithium battery SOC by using LSTM
and formed a single network that correctly estimated the SOC under different ambient
temperature conditions by encoding the time-dependent term. Reference [19] estimated
lithium-ion battery SOC based on a gated recurrent neural network (GRU-RNN) and estab-
lished mapping relationships between the battery observable variables and SOC to achieve
battery SOC estimation at different temperatures. In the literature [2], a gated recurrent
neural network model with an activation functional layer (GRU-ATL) was proposed to
estimate the battery charge state, and a stable and accurate SOC estimation performance
was achieved by estimating the battery SOC online under different operating conditions
without relying on the battery model. Reference [1] proposed a method combining a
denoising auto-encoder (DAE) with a GRU to estimate lithium battery SOC. By reducing
noise and increasing the dimension of battery measurement data to obtain useful data
information and then using GRU-RNN for training, experimental results were obtained
that showed that the proposed DAE-GRU had suitable robustness. All of these studies
achieved suitable results for battery SOC estimation, but most of these studies only focus
on the correlation of forward series data, while the correlation study of reverse series data
acquisition is lacking. Reference [20] proposed an SOC estimation method combining
multichannel convolution and bidirectional recurrent neural network (MCNN-BRNN) to
sequentially estimate SOC by extracting multi-scale local robust features and using the
BRNN to capture effective time-varying signals. This reduced the accumulation of errors
and improved the overall estimation accuracy. Reference [21] proposed a stacked bidirec-
tional long short-term memory (SBLSTM) model for estimating lithium battery SOC. This
method captured the forward and reverse battery information through the bidirectional
structure and improved the depth of the model by stacking the bidirectional structure,
which further improved the estimation performance of the model. It is worth mentioning
that the network setting of the model in this document is highly random. Artificially setting
the super parameters of the network will not only increase the training cost of the model
but also affect the prediction effect of the model. Therefore, the parameter adjustment
of the model needs to be further resolved. In this paper, a Bayesian optimization-based
bidirectional long short-term memory (Bayes-BiLSTM) neural network model is proposed
for lithium battery SOC estimation. Compared with the unidirectional LSTM network,
this model uses a bidirectional structure to summarize the temporal dependence of past
and future contexts by capturing the forward and reverse battery information. In addition,
compared with other methods, the proposed model also introduces a Bayesian optimization
algorithm. The introduction of this optimization algorithm assists in finding the optimal
network parameters to improve the network performance and compensates for the defect
of manually setting the network parameters. In particular, this paper adopts the Bayesian
optimization algorithm to optimize the parameters of the BiLSTM model. The optimiza-
tion parameters include the number of hidden layer neurons Is, the maximum number of
iterations MaxEpochs, the initial learning rate Ir and the learning decline rate factor Ird f .
Finally, this paper evaluates the effectiveness and applicability of the proposed method
by conducting multiple sets of comparative experiments using two public lithium battery
data sets, and the experimental results show that under different constant temperature and
variable temperature environments, the proposed method has better accuracy, adaptability,
and generalizability for the SOC estimation of different types of lithium batteries.

The rest of the paper is organized as follows: the second part details the LSTM,
BiLSTM, and Bayes-BiLSTM models. The third part introduces the lithium battery data
set and experimental procedure. The fourth part analyzes and discusses the experimental
results. The fifth part comprises the conclusion of this paper.



Energies 2022, 15, 4670 4 of 18

2. SOC Estimation Methods
2.1. LSTM Network

The models of traditional neural networks will only focus on the processing of informa-
tion in the current moment and will not infer whether the processing of information in the
previous moment will help in the next moment, and the problems of local minima, gradient
disappearance, and gradient explosion are prevalent when performing model training. For
example, the gradient disappearance generated by RNN during backpropagation can lead
to the inability to capture long-term dependence [17]. LSTM networks effectively solve this
problem. LSTM is a special implementation of RNN, which improves the implicit layer
and introduces the concept of temporal order on top of RNN neural networks so that the
output of one moment can have a direct impact on the input of the next moment.

The structure of the LSTM hidden unit is shown in Figure 1, which includes a forgetting
gate ft, an input gate it, an output gate ot, and a memory cell Ct. The sigmoid layer
determines which values need to be updated, and the tanh layer determines what new
values to add. The transfer and control of information is achieved through three gates. The
forgetting gate ft in the cell state transfer determines what information should be discarded.
The input gate it controls the decision of what new information to add to the “cell state”.
The output gate ot controls the storing of the information of the cell at the moment t to the
hidden state of ht [21,22]; that is, the output is obtained. Equations (2)–(5) demonstrate the
execution process of updating the internal unit by LSTM.

ft = σ
(

w f xxt + w f hht−1 + b f

)
(2)

it = σ(wixxt + wihht−1 + bi) (3)

ot = σ(woxxt + wohht−1 + bo) (4)

st = tanh(wcxxt + wchht−1 + bc) (5)

where w and b with subscripts represent the weight matrices and deviation vectors of
the three gates; σ(· · · ) is a sigmoid activation function with a function value of a vector
between (0,1) that acts as a gate, with 0 representing discard and 1 representing retention;
tanh(· · · ) normalizes the values to between (−1,1) and is used to update the internal cells
and cell outputs, and st is a vector of candidate values created after the tanh layer.

In the whole information flow, the process of cell state from Ct−1 to Ct is similar to a
conveyor belt, and the cell update rule from Ct−1 to Ct is as follows:

(a) Select the part of old cell information forgotten through the “forgetting gate”, multiply
the old state with ft, and discard the information determined to be discarded.

(b) Add the candidate cell information st through the “input gate” and then add it × st to
obtain the cell state Ct as in Equation (6).

Ct = ftCt−1 + itst (6)

The output of the LSTM cell is calculated by Equation (7):

ht = ottanh(Ct) (7)
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2.2. Bidirectional LSTM Network

LSTM improves the gradient disappearance or explosion problem that occurs in
traditional RNNs due to its complex gated memory mechanism and outperforms other
recurrent architectures in dealing with sequential tasks with long-term dependencies.
However, it is worth noting that the LSTM structure can only use positive dependencies,
and some useful information will be filtered in the long-term gated memory chain. To
solve this problem, this paper adopts a bidirectional LSTM, which consists of two LSTM
layers in different directions, two independent LSTM layers, one for inputting the forward
sequence and the other for inputting the reverse sequence. The structure of the BiLSTM
is shown in Figure 2. This structure makes up for the lack of information in LSTM, can
better capture contextual long-term dependencies in sequence tasks, and can facilitate more
accurate predictions.

The input data of this model are selected as two parameters, voltage and current, and
the input sequence xt = {vt, It} consists of voltage and current with t as the time step, and

the output sequence is SOCt. In Equation (8),
→
h t−1,

→
h t, and

→
h t+1 denote the hidden layer

neuron nodes for the forward propagation of the model, and in Equation (9),
←
h t−1,

←
h t,

and
←
h t+1 denote the hidden layer neuron nodes for the reverse propagation of the model.

Then, the forward and reverse implied state outputs of the BiLSTM are connected and fed
into the same fully connected layer, and the output implied layer state is considered as
input using the fully connected layer. Its dimensionality reduction is calculated with the
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activation function of the sigmoid function, and the final output is the predicted charge
state. The SOC estimation of the model output is shown in Equation (10).

→
h t = LSTM

(
xt,
→
h t−1

)
(8)

←
h t = LSTM

(
xt,
←
h t+1

)
(9)

SOCt = w0h f + b0 (10)

where h f denotes the output of the fully connected layer, w0 denotes the weight matrix,
and b0 denotes the deviation of the output regression layer.
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2.3. SOC Estimation Based on Bayes-BiLSTM

Some hyperparameters of the BiLSTM model control the generalization of the network
structure. If the number of neurons in the hidden layer is too small, the information
acquisition required by the sample training process cannot be satisfied; if the number is
too large, overfitting will occur, resulting in a decrease in the generalization ability of the
network. The number of iterations is the number of times that the data in the training
set is trained in the network, and the setting of the maximum number of iterations is
the termination condition of the optimization algorithm; there is also an optimal value
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for the setting of the initial learning rate. If this value is too large, the model will not
converge, or the model will not converge. The convergence rate is too slow. The learning
decline rate factor is that after the model performs multiple iterations, the model will
multiply the initial learning rate by this factor according to the current situation to reduce
the learning rate to obtain the best convergence effect of the model [23,24]. To match
the network model structure with the data, improve the network training speed, and
improve the network performance, it has become a new challenge to determine the optimal
parameters of BiLSTM. Bayesian optimization can combine past evaluation results to obtain
better results with fewer iterations. In parameter combination optimization problems, this
optimization method is widely used because it can quickly and accurately find the optimal
solution of hyperparameters [25]. This paper adopts the idea of Bayesian optimization
and realizes the overall optimization of hyperparameters based on the BiLSTM network to
further improve the efficiency of lithium battery SOC estimation. The model structure is
shown in Figure 3.
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As a global optimization algorithm, the Bayesian optimization algorithm estimates the
posterior distribution of the objective function by using Bayes’ theorem and then selects
the next combination of hyperparameters to be sampled based on this distribution. The
method uses the sampling results of the previous sampling points to continuously refine
the objective function until the globally optimal hyperparameters are found. That is, the
next evaluation is performed only after the completion of one evaluation, which is able
to find the near-optimal solution with less evaluation cost [25]. The proposed model is
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set to χ = x1, x2, · · · xn as a set of hyperparameter combinations, and Equation (11) is the
hyperparameter combination selection representation of the model.

x∗ = argmin
x∈χ

f (x) (11)

where x∗ denotes the optimized hyperparameter combination and f (x) is the minimization
objective function with respect to the hyperparameter x. The Bayes’ theorem used in the
Bayesian optimization process is shown in Equation (12).

P( f |D) =
P(D| f )P( f )

P(D)
(12)

where f denotes the unknown objective function; D denotes the set of observations,
D = {(x1, y1), (x2, y2) · · · (xn, yn)}; P( f |D) denotes the posterior probability of f ; P(f )
denotes the prior probability of f ; P(D| f ) denotes the likelihood distribution of y; and P(D)
denotes the marginal likelihood distribution of the marginalized f. In Bayesian optimization,
this marginal likelihood is mainly used to optimize the hyperparameters.

3. Data and Experiments
3.1. Battery Data Set

To verify the effectiveness of the proposed model, two public data sets of lithium
batteries are used for evaluation, and the main specifications of the two batteries are shown
in Table 1. The first data set is the INR 18650-20R data set, which was constructed by
the Center for Advanced Life Cycle Engineering (CALCE) at Columbia University [26].
Each battery data contains parameters such as time, current, voltage, temperature, and
capacity. In this experiment, the battery INR 18650-20R was tested at three different
ambient temperatures (0 ◦C, 25 ◦C, 45 ◦C) by performing four dynamic driving cycles
under different operating conditions, including the dynamic stress test (DST), Federal
Urban Driving Program (FUDS), US06, and the Beijing dynamic stress test (BJDST). Figure 4
reflects the current and voltage distributions recorded in the FUDS test at 45 ◦C, which
includes the charging, discharging, and suspending phases of the battery, where positive
currents indicate the state of charge and negative currents indicate the state of discharge.
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Table 1. Main specifications of different batteries.

Battery Type INR 18650-20R 18650 NCA

Nominal capacity 2000 mAh 3000 mAh
Nominal voltage 3.6 V 3.6 V

Charge cut-off voltage 4.2 V 4.2 V
Discharge cut-off voltage 2.5 V 2.5 V

The second data set is the path-dependent battery degradation data set provided by
the Information Office of the Battery Laboratory of Oxford University [27]. The experiment
was conducted on lithium-ion 18650 NCA batteries, and the experimental temperature was
set at 24 ◦C. The data set contains four sets of long-term degradation data, each containing
three 18650 NCA cells, electrochemical impedance spectroscopy EIS data, and half-cell data.
The half-cell data were obtained by constructing half-cells from the electrode materials
collected from the original 18650 NCA batteries and tested at C/24.

3.2. Experimental Process

The experimental process of this study is shown in Figure 5.
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(1) Data pre-processing: Data pre-processing is the basis for building the network
model. Since the obtained battery data indicators of voltage, current, and SOC have
different magnitudes and magnitude units, the existing numerical differences will affect
the training speed and training effect of the model. Therefore, to eliminate the influence
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of scale between the indicators, it is necessary to normalize the data samples to ensure
the accuracy and generalization ability of the model. Moreover, the normalized data set
is divided. Specifically, the discharge stage data of the three working conditions of FUDS,
US06, and BJDST in the first data set are used as the training set, and the DST discharge
stage data are used as the test set. The mapminmax function maps the measured values to
the [0,1] interval, as shown in Equation (13):

x∗ =
x− xmin

xmax − xmin
(13)

where x∗ is the normalized data; x is the actual measurement data, and xmin and xmax are
the minimum and maximum values in the actual measurement data.

(2) Model building: The BiLSTM model consists of an input layer, a dual LSTM layer,
a dropout layer, a fully connected layer, and an output layer. To explore the impacts of
different parameter settings on the model estimation performance, this paper constructs
different parameter settings for SOC estimation and specifically discusses the impacts of
different hidden layer neuron numbers on the model in Section 4.1. In the Bayes-BiLSTM
model, for optimizing the parameter range settings, the parameter setting in reference [28]
is used and combined with the training test, and the value range is continuously narrowed
according to the accuracy. The parameter ranges include the number of neurons in the
hidden layer IS ∈ [64, 128], the maximum number of iterations MaxEpochs ∈ [20, 200], the
initial learning rate Ir ∈ [0.0001, 0.1], and the learning decline rate factor Ird f ∈ [0.1, 1].

(3) Model training: In model training, Adam is used as the model optimization
algorithm, and the mean absolute error is used as the loss function, as shown in Equation
(14). Finally, the hyperparameters obtained from Bayes optimization are used to complete
the training of the model.

LOSS =
1
n ∑n

t=1|ŷt − yt| (14)

(4) Performance evaluation: On the one hand, to evaluate the generalization of the
model, a second data set is used for validation testing in Section 4.5; on the other hand, to
evaluate the accuracy of the model for estimating the effect of lithium battery SOC, three
metrics are used to evaluate the performance of the model, including the mean absolute
percentage error (MAPE), root mean square error (RMSE), and mean absolute error (MAE).

MAPE =
100%

n ∑n
t=1

∣∣∣∣ ŷt − yt

yt

∣∣∣∣ (15)

RMSE =

√
1
n ∑n

t=1(ŷt − yt)
2 (16)

MAE =
1
n ∑n

t=1|ŷt − yt| (17)

where n is the measurement data time-series length and ŷt and yt are the estimated and
actual measured values of the battery SOC at moment t, respectively.

Experiment description: All experiments are carried out in the CPU simulation envi-
ronment of MATLAB 2019. The computer processor is an Intel i5-4590 3.30 GHz, and the
memory is 8.0 GB DDR3.

4. Analysis and Discussion of Experimental Results
4.1. SOC Estimation under Different Hidden Layer Units

In a bidirectional LSTM, the number of hidden layer neurons determines the width
of the model; if this number is too small, the amount of information acquisition required
for the sample training process cannot be met; if this number is too large, overfitting will
occur, leading to a decrease in the generalization ability of the network. In this section,
different BiLSTM models are constructed to evaluate the effect of the number of hidden
layer neurons on the estimation accuracy of the model. The setting regarding the number
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of hidden layer units in recurrent neural networks is usually performed using multiple
consecutive powers of 2 [21]. In this section, five BiLSTM models with 16, 32, 64, 128, and
256 implied layers are constructed, and the maximum number of iterations is set to 2000.
Table 2 summarizes the comparison results of the five different structural models. As seen
from the table, with the increase in the number of hidden layer neurons, the estimation
accuracy is the highest when the number of hidden layer neurons is 64 compared with the
other models; when the number of hidden layer neurons is 128, the estimation accuracy
starts to decrease.

Table 2. Comparison of results for different numbers of hidden layer units.

Number of Hidden
Layer Units

Evaluation
Indicators

Temperature

45 ◦C 25 ◦C 0 ◦C

16
MAE (%) 1.18 2.08 1.27

MAPE (%) 24.39 28.60 35.75
RMSE (%) 1.56 2.40 1.74

32
MAE (%) 0.97 2.01 1.11

MAPE (%) 30.22 25.13 42.47
RMSE (%) 1.43 2.19 1.85

64
MAE (%) 0.83 1.97 1.01

MAPE (%) 28.05 20.70 33.11
RMSE (%) 1.30 2.09 1.57

128
MAE (%) 0.82 2.11 1.53

MAPE (%) 32.66 41.82 44.76
RMSE (%) 1.36 2.57 2.53

256
MAE (%) 0.90 1.99 1.44

MAPE (%) 24.16 39.20 50.16
RMSE (%) 1.48 2.52 2.69

Figure 6 shows the one-time estimation results and errors of the models with different
structures at three different constant temperatures. Where (a), (c), and (e) are the estimated
results of the model based on the number of units of different hidden layers at 45 ◦C, 25 ◦C,
and 0 ◦C, respectively. (b), (d), and (f) represent the corresponding errors. Moreover, it can
be seen from the figure that the curve of the estimation results is relatively smooth at room
temperature; but the degree of fitting with the actual measurement curve is relatively poor,
and the estimation accuracy is low; when the temperature is too high or too low, especially
at the end of the discharge, the curve of the model estimation result is relatively steep, but
the overall fitting degree with the actual measurement curve is suitable. This instability is
due to the strong nonlinear polarization of the lithium battery at the end of discharge and
the fact that the dynamic characteristics inside the battery also become more complex at
lower temperatures, with a lag in the battery response, which in turn leads to an increase
in the error. Therefore, to obtain a higher estimation accuracy, we can tentatively determine
that the optimal number of implied layer neurons should be between [64,128].
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4.2. SOC Estimation of Improved Circulation Blocks at Different Temperatures

The Bayesian optimization algorithm is used to improve the circulation block and
to verify the effectiveness of the proposed strategy. This section estimates the optimized
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model by subjecting it to three different constant temperatures in a one-time estimation.
Table 3 shows all of the MAE, MAPE, and RMSE after improving the circulation block, and
the results show that the average absolute error of the estimation accuracy is within 1.2%.
The estimation results and errors of the model at 45 ◦C are shown in Figure 7. The RMSE
and MAPE of the circulation block are 0.89% and 6.56%, respectively, which are 0.41%
and 21.49% higher than those of the BiLSTM model with 64 implied layer cell counts in
Section 4.1, respectively. Figures 8 and 9 represent the estimation results and errors at 25 ◦C
and 0 ◦C, respectively. As shown in the figures, the model estimates slightly deviate from
the true SOC value and fluctuate around it because the polarization of the cell becomes
progressively more severe as the temperature decreases. However, overall, compared with
those of the model before optimization, the RMSE and MAPE of the model at 25 ◦C are
increased by 0.8% and 14.31%, respectively, and the RMSE and MAPE of the model at 0 ◦C
are increased by 0.5% and 24.08%, respectively. The loop block exhibits high accuracy and
stability at different constant temperatures.

Table 3. Comparison of the model estimation results after improving the recurrent block.

Improved Model 45 ◦C 25 ◦C 0 ◦C

MAE (%) 0.6 1.16 0.85
MAPE (%) 6.56 6.39 9.03
RMSE (%) 0.89 1.29 1.07
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4.3. SOC Estimation in a Variable Temperature Environment

The experimental results in the previous section show that the proposed Bayes-BiLSTM
can achieve accurate battery SOC estimation at different constant temperatures. In fact,
the lithium-ion battery’s internal temperature is continuously changing during the whole
operation, and the temperature has a very important influence on the battery, especially
in the battery SOC estimation, which is a key factor that cannot be ignored regardless
of the model adopted. Therefore, it is necessary to evaluate the estimation performance
of the proposed method under a variable temperature environment. We selected some
data corresponding to three different temperatures of 45 ◦C, 25 ◦C, and 0 ◦C under each
working discharge in the first data set to form a new variable temperature environment
data set; the data of the three DST, US06, and FUDS working conditions were used for
model training, and the data of BJDST working conditions were used for model testing.
Table 4 shows the results based on the variable temperature environment, and it can be
seen that, through training, the estimation error of the model is small even in a variable
temperature environment, and the MAE is controlled within 1%. Figure 10 shows the
estimation results of the model based on the new data set, and it is obvious that the
estimation curve of the proposed strategy can better fit the actual measurement curve,
showing suitable fitting ability.
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Table 4. Model evaluation index in a variable temperature environment.

Test Conditions MAE (%) MAPE (%) RMSE (%)

BJDST 0.93 10.05 1.24

4.4. Comparison of Different Methods

To verify the superiority of the proposed method, different methods are used for one-
time battery SOC estimation, including a comparison of three strategies, LSTM, BiLSTM,
and Bayes-BiLSTM. To ensure the fairness of the comparison experiments, both the first
data set and the same training and test sets are used for evaluation, where the LSTM model
and BiLSTM model have the same implied layer structure, and the number of implied layer
neurons is set to 64; Adam is the model optimization algorithm, and the mean absolute
error is used as the loss function. Figure 11 shows the accuracy comparison of the one-time
estimation results of different methods at 45 ◦C, and each method shows a suitable fitting
ability. Table 5 shows the results of hyperparameters after Bayesian Optimization of the
BiLSTMnetwork. Figure 12 shows the error of battery SOC estimation under different
methods. In the whole estimation period, the error of the proposed method is relatively
stable; that is, the error is the smallest. As seen in Table 6, compared with LSTM and
BiLSTM, the Bayes-BiLSTM model has the best prediction accuracy and achieves a better
ability to capture long-term dependencies.
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Table 5. Hyperparameter optimization results.

Method IS MaxEpochs Ir Ird f

Bayes-BiLSTM 82 94 0.000396 0.18722

Table 6. Comparison of the estimation results of different methods.

Methods MAE (%) MAPE (%) RMSE (%)

LSTM 1.26 14.52 1.46
BiLSTM 0.83 28.05 1.30

Bayes-BiLSTM 0.60 6.56 0.89

4.5. Experiments on the Generalizability of the Models

To evaluate the generalization of the model, a second lithium battery data set was
used for SOC estimation. In this experiment, we chose to study the discharge phase of
the half-cell in the second data set. In the experiment with a total discharge time of up to
25 h, a total of 92,422 sets of battery data were recorded every 1 s; for the model, a greater
amount of data is not necessarily better. Too much data will not only increase the training
time but also sometimes cause the deterioration of the model. Therefore, we obtain a set of
battery data every 50 s, including three parameters of half-cell voltage, current, and SOC;
after completing the data screening, 90% of the data set is used for model training, and
10% is used for model testing. After training, it can be seen from Figure 13 that the model
achieves a satisfactory effect on the half-cell SOC estimation. Specifically, the MAE is 0.65%,
the RMSE is 0.79%, and the overall error is controlled within 1%. This experiment further
verifies that the model shows high accuracy and adaptability for the SOC estimation of
batteries with different chemical compositions.
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5. Conclusions

In this paper, we propose a method for lithium battery state-of-charge estimation
based on Bayesian optimized bidirectional long- and short-term memory neural networks.
The proposed method breaks the mold of traditional RNN studies that have been using
only forward dependencies and further summarizes the temporal dependencies in the
context of lithium battery sequence data by adding reverse dependencies. This study uses
two publicly available lithium battery data sets, the CALCE data set, and the Oxford path-
dependent battery degradation data set, and establishes mapping relationships between the
observable voltage, current, and temperature variables of the battery and the battery SOC
through the data provided by the data sets. The training results of different network models
and a combination of previous experiences are used to determine the parameter intervals of
the network, and then a Bayesian optimization algorithm is introduced to obtain the optimal
parameters of the network. Through a large number of comparative experiments, including
battery SOC estimation under different constant temperatures, a variable temperature
environment, and different methods, the experimental results show that the proposed
Bayes-BiLSTM model has a suitable fitting ability, and the SOC of batteries with different
chemical compositions is estimated with higher accuracy and adaptability.

Future work will focus on verifying the applicability of the model for battery SOC
estimation based on the collected data by adding a battery testing experimental platform;
furthermore, the structure of the proposed model will be further improved to enhance its
battery SOC estimation accuracy in low-temperature environments.
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Abbreviations

SOC State of charge
LSTM Long short-term memory
BiLSTM Bidirectional long short-term memory
Bayes-BiLSTM Bayesian optimization-based bidirectional long short-term memory
BMS Battery management system
RNN Recurrent neural network
LS–SVM Least-squares support vector machine
GRU Gated recurrent unit
GRU-ATL Gated recurrent neural network model with an activation functional layer
DAE Denoising auto-encoder
MCNN-BRNN Multichannel convolution and bidirectional recurrent neural network
SBLSTM Stacked bidirectional long short-term memory
OCV Open-circuit voltage
RMSE Root mean square error
MAPE Mean absolute percentage error
MAE Mean absolute error
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