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Abstract: In predicting energy consumption, classic econometric and statistical models are used to
forecast energy consumption. These models may have limitations in an increasingly fast-changing
energy market, which requires big data analysis of energy consumption patterns and relevant
variables using complex mathematical tools. In current literature, there are minimal comparison
studies reviewing machine learning algorithms to predict energy consumption in Korea. To bridge
this gap, this paper compared three different machine learning algorithms, namely the Random
Forest (RF) model, XGBoost (XGB) model, and Long Short-Term Memory (LSTM) model. These
algorithms were applied in Period 1 (prior to the onset of the COVID-19 pandemic) and Period 2
(after the onset of the COVID-19 pandemic). Period 1 was characterized by an upward trend in energy
consumption, while Period 2 showed a reduction in energy consumption. LSTM performed best
in its prediction power specifically in Period 1, and RF outperformed the other models in Period 2.
Findings, therefore, suggested the applicability of machine learning to forecast energy consumption
and also demonstrated that traditional econometric approaches may outperform machine learning
when there is less unknown irregularity in the time series, but machine learning can work better with
unexpected irregular time series data.

Keywords: Total Energy Supply; energy consumption; forecasting; deep learning; neural network;
artificial intelligence; random forest; XGBoost; LSTM; Korea

1. Introduction

Due to a rapidly increasing oil market, sustained oil prices at inflated levels, and
climate change, there is a rising global interest in the research of energy supply and demand.
The big nation-state consumers of oil such as the EU, United States, China, and Japan have
declared carbon neutrality and are actively working toward its implementation. In October
2020, Korea also joined the ranks in aiming for and working toward carbon neutrality.
These changes represent a paradigm shift bringing forth sustainable and equitable relations
between environment, economy, and society [1].

In Korea, greenhouse gases from the energy sector account for 87% of total emissions.
Secondly, Korea is in short supply of domestic energy resources, and so almost entirely
relies on importing energy resources to satisfy its energy consumption needs [2]. Given this
context, accurate prediction of energy demand is very important for energy supply and
demand planning and carbon neutrality achievement [3]. Accordingly, the policy is moving
towards generating energy domestically via more economically viable means, and at the
same time, controlling high cost energy sources such as those of diesel or LNG production
typically used to make up for any unplanned or unexpected energy consumption. Future
energy policies covering energy consumption, prediction, and control will need to focus
on maintaining a stable energy consumption within defined upper and lower bounds. In
the existing total energy consumption prediction method, a time series model predicts
future trends based on past data. The time series model can be subdivided into a univariate
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model, an autoregressive cumulative moving average, a multivariate model, and a vector
autoregressive model [4]. Traditionally, classic econometric and statistical models are used
to forecast energy consumption. These models may have limitations in an increasingly fast-
changing energy market, which requires big data analysis of energy consumption patterns
and relevant variables using complex mathematical tools. To that end, machine learning
methods can effectively distinguish random factors and capture the hidden nonlinear
features which traditional econometric models are unable to do [5]. As such, it has the
benefit of being applicable to a much wider case with a higher prediction accuracy than
the standard time series model. For that reason, such an application to the field of energy
demand prediction is expected to yield good results.

This paper has the following research objectives. First of all, the machine learning
model that yields the optimal prediction results was used to present the future use of
machine learning towards energy demand predictions in Korea. Secondly, unlike previous
studies, this study compared and analyzed the difference in predictive power by period.
Period 1 and Period 2 were classified by selecting COVID-19 based on the period. The
usability of the model was verified by comparing the period showing similar trends
between the periods showing different trends due to shock.

The paper is structured as follows: In Section 2, related publications, articles, and
materials are discussed, and then it describes the machine learning algorithm. Section 3
describes the data collection and methodology used in the paper. Section 4 explains the
proposed machine learning model. Section 5 compares our results with statistical and
econometric models. The paper concludes in Section 6 by presenting the results, with the
main findings, and draws some methodological implications for future research.

2. Theoretical Background
2.1. Literature Review

Energy is essential to the functioning of all activities of nation-states, be they developed
or developing. As such, a number of energy consumption forecasting models have been
developed using economic, social, geographic, and demographic factors. Energy demand
models can be classified in several ways such as static versus dynamic, univariate versus
multivariate, techniques ranging from time series to hybrid models.

Chavez et al. [6] utilized a univariate ARIMA (Auto Regressive Integrated Moving
Average) model to predict patterns in energy supply and demand in the northern region
of Spain of Asturias. Ceylan and Ozturk [7] used the GNP of Turkey, its population and
import, export figures as a basis for two forms of the GAEDM model to calculate the
energy demand. Crompton and Wu [8] attempted at predicting the energy consumption of
China via a Bayesian vector-based autoregression method. The results showed low growth,
predicting a slowing down in its growth, which opened the discussion on its potential.
Mohamed and Bodger [9] used the GDP, cost of electricity, and population via a multi-linear
regression model to predict the power consumption of New Zealand.

Authors in [10] used both a linear and nonlinear regression model with ANN to
predict the electricity demand of Taiwan. Toksarı [11] through the ACOEDE (Ant Colony
Optimization approach for Energy Demand Estimation) using the population, GDP import
and export variables, attempted to predict the energy consumption of Turkey. Geem and
Roper [3] focused on using a regression and exponential model via ANN to predict the
energy demand of Korea. Ekonomou [12] also used an ANN (Artificial Neural Network)
with a linear regression method with a support vector machine model to predict the en-
ergy consumption of Greece. Lee and Tong [13] put forward an argument towards grey
information theory, utilizing a novel combination of GP (Genetic Programming) and grey
information theory, providing the basis for a prediction model of energy consumption
patterns. Ardakani and Ardehali [14] used socio-economic indicators in an IPSO (Improved
Particle Swarm Optimization) ANN model for EEC (Electrical Energy Consumption) pre-
diction. The results were such that using past data yielding a more accurate EEC prediction
was confirmed. Barak and Sadegh [15] utilized a variety of methods to make up for the
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lack of input data. Using three types of patterns of the ARI-MA-ANFIS (Auto Regressive
Integrated Moving Average Adaptive Neuro Fuzzy Inference System) model, it predicted
the annual energy consumption of Iran. An intermodel comparison showed that the third
pattern using a diversification model yielded superior capabilities compared to the patterns
that did not. Kim and Park [16] used socioeconomic and environmental variables in a DNN,
LSTM algorithm as a basis for developing a daily electricity demand forecasting model for
Korea. Table 1 is a list of research on energy consumption forecasting.

Table 1. List of reviewed articles.

Authors Method Used Forecasting Scope Forecast Energy Type Energy Market

Chav, Bernat and
Coalla [6] ARIMA Monthly Energy production and

consumption Asturias (northern Spain)

Ceylan and Ozturk [7] GAEDM Annual Energy demand Turkey

Crompton and Wu [8] Bayesian vector
autoregression Annual Energy consumption China

Mohamed and Bodger [9] Multiple linear regression Annual Electricity consumption New Zealand
Sözen, et al. [17] ANN Annual Net energy consumption Turkey

Pao [10]
ANN, linear and

non-linear statistical
models

Annual Electricity consumption Taiwan

Ediger and Akar [18] ARIMA, SARIMA Annual Primary energy demand
by fuel Turkey

Toksarı [11] ACO (Ant Colony
Optimization) Annual Energy demand Turkey

Bianco, et al. [19] Linear regression Annual Electricity consumption Italy
Geem and Roper [3] ANN Annual Energy demand Korea

Ekonomou [11] ANN Annual Energy consumption Greece
Kankal, et al. [20] ANN Annual Energy consumption Turkey

Zhu, Guo and Feng [4] BVAR Annual Household energy
consumption China

Park, et al. [21] Markov Process Monthly Energy consumption Korea

Xiong, et al. [22] GM (1, 1) Annual Energy production and
consumption China

Ardakani and
Ardehali [13]

Multivariable regression,
ANN Annual Electrical energy

consumption Iran, United States

Yuan, et al. [23] GM (1, 1) and ARIMA Annual Energy consumption China
Wang et al. [24] DNN, ANN Annual Energy demand China, India

Kim, Y. and Park, H. [15] DNN, LSTM Short term (Daily) Electric Demand Korea

As can be seen here, recent research utilizing machine learning methodologies is
actively being used across many domains. However, in the case of Korea, most of the studies
analyzed the causal relationship between energy and socioeconomic indicators [25,26] or
analyzed the increase-decrease factors. Furthermore, studies on machine learning based
energy consumption prediction have targeted building energy consumption based on the
building energy usage [27] or electric load forecasting [28].

The paper differentiates itself from prior research on several points. Firstly, it uses
various machine learning based models, an ensemble model of RF and XGB, and a deep
learning model of LSTM. This research distinguishes itself from earlier research whereby
applied linear regression and ANN models are used [22]. Secondly, by separating the time
period from the stable market situation before the COVID-19 pandemic and the rapidly
changing market situation after, a more appropriate model that fits the periodic features
and shape of the data as it relates to energy consumption is explored.

2.2. Attribute of Machine Learning Algorithms

There are many accepted versions of the definition of machine learning, but it is
generally understood to mean “A computer program is said to learn from experience E
with respect to some task T and some performance measure P, if its performance on T,
as measured by P, improves with experience E” [29]. “Experience” can be understood as
learning through data. Through this learning process, the computer modifies and adapts
its behavior toward higher precision. A concept that is important to machine learning is the
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process of generalization. Generalization means the degree to which a program is able to
predict the output of new data based on an existing machine learning model it has learned
through a similar set of existing data [30]. Accordingly, it focuses on the generalization of
the model’s prediction, and furthermore, making inferences on data possible.

Although a standardized classification for machine learning algorithms does not
exist, as can be seen in Figure 1, depending on the data to be trained on, supervised
learning, unsupervised learning, and reinforcement learning can be considered to be
the main categories of classification. Of these, supervised learning is the most widely
used algorithm.
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The structure of supervised learning is comparatively simple and is a widely known
machine learning model. It consists of input data and target data, and seeks to continuously
minimize the error between the prediction value and the actual value by feeding it a large
learning dataset. Such a system allows for the model to produce prediction values for new
input data. The performance of the model is assessed by feeding it test data not used in the
training data set [32].

Prediction techniques based on supervised learning whose variables are continuous
are treated as regression problems, whereas those whose variables are categorical are treated
as classification problems. It can be seen that machine learning comes in handy when a
problem description that can be solved by humans but the learning dataset is too large
or when a problem that can be defined mathematically is too complex for a human to be
mathematically described clearly [33]. Since each analysis model has attributes, advantages,
and disadvantages, this study attempted to compare predictive power using actual data.
Table 2 displays attributes of the algorithm used in the study.
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Table 2. Attributes of the algorithms.

Algorithms Description Pros Cons

Random Forest

• Operate by constructing a
multitude of decision trees at
training time

• Prevent overfitting

• Low interpretability• Output the class that is the mode
of the classification or regression
of the individual trees

• Good with very large data set

• Correct for decision trees’ habit
of overfitting to their training set

• No transformation needed • Less accurate than boosted
tree models• Robust against outliers

XGBoost

• An advanced implementation of
gradient boosting algorithm

• Use regularization to reduce
overfitting • Susceptible to outliers

• Use a more regularized model
formalization to control over
fitting, which gives it better
performance

• Support parallel processing • Lack of interpretability and
higher complexity

• Make splits up to the max depth
specified and then start pruning
the tree backward and remove
splits beyond which there is no
positive gain

• Harder to tune parameters
than other models

• Built-in Cross Validation • Slow to train or score

LSTM

• Variant of RNNs that introduce
a number of special,
internal gates • Introduces many more internal

parameters which must be
learned—Flexible

• Introduces many more
internal parameters which
must be learned—Time
consuming

• Internal gates help with the
problem of learning
relationships between both long
and short sequences in data

2.2.1. Random Forest

The random forest model was first proposed in 2001 by Leo Breiman [34]. Random
forest is a method by which a singular model is generated by combining the many branches
of a decision tree. RF first goes through the process of bagging, which helps improve the
performance of its algorithm. Figure 2 shows the bagging process, whereby a random
forest consisting of T number of decision trees is being trained on. Training data set is ST

0
for the tth decision tree through the process of bagging, and is a subset of S0.
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An ensemble machine learning model of the random forest consists of several decision
trees, pruning each branch as it traverses through in order to determine the pruning tree
size. This has the effect of minimizing Equation (1) [35].

∑|T|
m=1 ∑Zi∈Rm

(yi − ŷR)
2α|T| (1)

In Equation (1), |T| refers to the number of terminal nodes of tree T, Rm refers to the
split corresponding to the mth branch, α refers to the tuning parameter whereby α = 0
corresponds to no penalty and therefore the largest tree, and so by corollary, as α increases,
the size of the tree decreases [36]. The resulting classification from each tree is voted against
each other and the one with the most votes becomes the final chosen classification. Random
forest works without hyper parameter tuning and has the benefit of being one of the
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fastest machine learning algorithms that provide prediction capabilities on regression-type
problems. However, as the quantity of data increases, the speed correspondingly decreases,
does not forecast over the space beyond the bounds defined by the training data, and thus
suffers from an increased risk in data overfitting when the data contain a lot of noise. That
being said, compared with other methods, it is shown to be superior, and much of the
running research utilizes random forest for analysis purposes.

2.2.2. XGBoost

XGBoost is a model first proposed by Tianqi Chen and Carlos Guestrin in 2011 that
aimed to solve the problem of overfitting in linear models or tree-based models [37].
Additionally, it has continuously been optimized in the direction of achieving stability
across large data sets and faster computational time for dataset training. It is based on the
CART (Classification and Regression Tree) algorithm and is a flexible model that can be
accommodated for regression, classification, ranking, or otherwise a user custom objective.
XGBoost runs the model up to a parameter set max depth, and when the loss function
does not improve at a certain level, it proceeds with the pruning process in the opposite
direction. Algorithmically, this can be described as below Algorithm 1.

Algorithm 1. Tree boosting with XGBoost [38].

1. Set f̂ (x) = 0, then for each individual observation on the training set, we set the residual to the
corresponding variable ri = yi

2. For the total count B, we repeat this for b = 1, 2, . . . B

a. Replace the variable y with the residual r, then fit it to the decision tree with d + 1 terminal node.
b. f̂ (x)← f̂ (x) + λ f̂ b(x)
c. ri = ri − λ f̂ b(xi)

3. As a result, the boosting model has the output in the form of f̂ (x) =
B
∑

b=1
λ f̂ b(x)

Within standard gradient boosting, when a negative loss occurs during the tree prun-
ing, the process is stopped, whereas for XGBoost, a sparse away technique automatically
accounts for missing data values. Additionally, it has a block structure that acts to support
the parallelization of the tree structure and has the algorithmic ability to train data in a
way that reflects previous data into new data to boost its performance. XGBoost prevents
overfitting, and the model can be normalized with additional dimensions added to meet
the user’s set optimization goal and criteria. Not only that, but cross validation is possible
across each iteration of the boosting process, which has the benefit of being able to calculate
the optimal boosting iteration count. Even when it comes to validation, it has an inbuilt
cross validation function allowing for easy validation, and has high utility value as it is
supported by various computing languages such as Python, R, Java, C++, Scala, etc. Such
benefits and high performance features of this model are a reason why XGBoost is used in
the field by Google, MS Azure, Alibaba, etc.

2.2.3. LSTM

LSTM is an algorithm proposed by ref. [39] and is a special form of the RNN model
that is able to address the long-term dependency problem. As explained, RNN (Recurrent
neural network) suffers from the reduced influence of faraway training on the current result
as the sequential data quantity increases. On the other hand, LSTM has a structure known
as a memory cell that is able to store the input value and so can address problems of long-
term dependencies such as this. Accordingly, LSTM shows relatively good performance on
jobs with long data sets [39].

All RNNs have a simplified chain-like form with a repeating neural network module.
LSTM, likewise, has a similar structure, the internal repeating module is structurally
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different by contrast. Unlike a single level depth neural network, LSTM has four types of
modules that interact with each other.

In Figure 3, we can see that the three gates have a special kind of network structure.
Gates within LSTM have an important role in giving selective influence to information
feeding through it at each checkpoint. This is achieved through the activation of the
sigmoid function in a fully connected neural network whose structure is such that it
outputs a value between 0 and 1, whereby the gate opens when the sigmoid output is 1
and passes through the information, and whereby the gate closes when the sigmoid output
is 0 and no information is passed through.

Energies 2022, 15, x FOR PEER REVIEW 7 of 22 
 

 

to support the parallelization of the tree structure and has the algorithmic ability to train 
data in a way that reflects previous data into new data to boost its performance. XGBoost 
prevents overfitting, and the model can be normalized with additional dimensions added 
to meet the user’s set optimization goal and criteria. Not only that, but cross validation is 
possible across each iteration of the boosting process, which has the benefit of being able 
to calculate the optimal boosting iteration count. Even when it comes to validation, it has 
an inbuilt cross validation function allowing for easy validation, and has high utility 
value as it is supported by various computing languages such as Python, R, Java, C++, 
Scala, etc. Such benefits and high performance features of this model are a reason why 
XGBoost is used in the field by Google, MS Azure, Alibaba, etc. 

2.2.3. LSTM 
LSTM is an algorithm proposed by ref. [39] and is a special form of the RNN model 

that is able to address the long-term dependency problem. As explained, RNN (Recur-
rent neural network) suffers from the reduced influence of faraway training on the cur-
rent result as the sequential data quantity increases. On the other hand, LSTM has a 
structure known as a memory cell that is able to store the input value and so can address 
problems of long-term dependencies such as this. Accordingly, LSTM shows relatively 
good performance on jobs with long data sets [39]. 

All RNNs have a simplified chain-like form with a repeating neural network mod-
ule. LSTM, likewise, has a similar structure, the internal repeating module is structurally 
different by contrast. Unlike a single level depth neural network, LSTM has four types of 
modules that interact with each other. 

In Figure 3, we can see that the three gates have a special kind of network structure. 
Gates within LSTM have an important role in giving selective influence to information 
feeding through it at each checkpoint. This is achieved through the activation of the 
sigmoid function in a fully connected neural network whose structure is such that it 
outputs a value between 0 and 1, whereby the gate opens when the sigmoid output is 1 
and passes through the information, and whereby the gate closes when the sigmoid 
output is 0 and no information is passed through. 

 
Figure 3. LSTM cell structure [40]. 

The above LSTM structure can be formulated by Equations (2) and (7). 𝜎, tanh is the 
hyperbolic tangent function, 𝑥௧ is the input, ℎ௧ is the hidden variable at time 𝑡, 𝑜௧ is the 
output at time 𝑡, 𝑏 is the bias, 𝑈 and 𝑊 are weighting factors, and 𝑖, 𝑜, 𝑓 are input 
gates, output gates, and forget gates respectively. Each gate consists of a sigmoid neural 
network and multiplicative calculation layer, and at each point in time, the input gate 
decides whether to use the input information or not. The output gate utilizes the input 
and memory to determine the output and also controls the range of values for which to 
store into memory [41]. With the forget gate, the memory cell remembers the unit’s pre-
vious state and uses it to inform whether to apply it to the sequence of the current state. C 
refers to the memory cell and stores the current state of the unit [37]. 

Figure 3. LSTM cell structure [40].

The above LSTM structure can be formulated by Equations (2) and (7). σ, tanh is
the hyperbolic tangent function, xt is the input, ht is the hidden variable at time t, ot is
the output at time t, b is the bias, U and W are weighting factors, and i, o, f are input
gates, output gates, and forget gates respectively. Each gate consists of a sigmoid neural
network and multiplicative calculation layer, and at each point in time, the input gate
decides whether to use the input information or not. The output gate utilizes the input and
memory to determine the output and also controls the range of values for which to store
into memory [41]. With the forget gate, the memory cell remembers the unit’s previous
state and uses it to inform whether to apply it to the sequence of the current state. C refers
to the memory cell and stores the current state of the unit [37].

it = σ(Wi [ht−1, xt]) + bi (2)

ft = σ(W f [ht−1, xt]) + b f (3)

C̃t = tanh(Wc [ht−1, xt]) + bc (4)

Ct = ft × Ct−1 + it × c̃t (5)

ot = σ(Wo [ht−1, xt]) + b0 (6)

ht = ot × tan(Ct) (7)

3. Data and Methodology
3.1. Data
3.1.1. Total Energy Supply

TES (Total Energy Supply) refers to the combined final energy consumption of do-
mestic energy production and net import, and transformation losses through energy con-
sumption including stocks changes. Generally, TES is used when comparing the energy
consumption across nation states or their consumption level [42], whereas TFC (Total Final
Consumption) is used when categorizing energy consumption by sector. This paper consid-
ered TES as energy consumption for the research. TES has the following significance and
utilization. Firstly, it serves as starting data for the purposes of establishing energy supply
and demand plans. Coupled with energy consumption statistics, this can help support
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rational, energy related decision making by economic entities such as the national enter-
prise government. Secondly, it serves as a response indicator to changes in the domestic
and foreign energy market. Through statistical analysis and forecasting of the data, a more
efficient response to changes in the supply and demand of energy can be executed.

3.1.2. The Trend of Energy Consumption in Korea

The energy consumption recorded a slow growth period between 1981 and 2020 with
an annualized average increase of 4.9%, which is lower than the annualized average rate of
economic growth of 6.1%. Until the 1970’s, Korea used anthracite as a domestic source of
energy, but following the establishing and subsequent operation of economic development
started the promotion of heavy and chemical industries, resulting in an increase in oil
demand from a low oil stock situation.

However, after the 1973 and 1979 first and second wave of oil shock events, respectively,
an oil phase-out policy was in the works during the 1980s, which paved the way for the
nascent development of bituminous coal and nuclear power generation, as well as the
use of natural gas. During the early phase-out, the main energy sources were coal and
petroleum, the main components of anthracite, and in the latter half of the decade, city gas,
LNG, etc. started to be used. Such a trend of the primary sources of energy is shown in
Figure 4.

At the current state of affairs of Korea’s energy economy is shown in Table 3. In
2018 records, the TES consumed was 282 million tons of oil equivalent (Mtoe), ranked
9th globally in energy consumption, and as the 10th largest global economy, the energy
consumption size and the size of the economy are on par. Additionally, it ranked 7th
globally on energy consumption, per capita power consumption at 13th, and per capita
energy consumption at 15th. It ranked 7th in oil consumption, with refining capability
ranked 5th; it ranked highly amongst OECD member states in 2019.

Table 3. Country comparison of energy consumption [43] (1) [44] (2).

Ranking
Total Energy

Supply (TES) (1)

(Million Toe)

Oil
Consumption (2)

(Million Tonnes)

Oil Refinery
Capacity (2)

(Thousand
Barrels Daily)

Electricity
Consumption (1)

(TWh)

TES/Population (1)

(Toe per Capita)

Electricity
Consumption/Population (1)

(kWh per Capita)

1
China United States United States China Iceland Iceland
3211 842 18,974 6880 17.4 54,605

2
United States China China United States Qatar Norway

2231 650 16,199 4194 15.6 24,047

3
India India Russia India Trinidad and

Tobago Bahrain

919 242 6721 1309 12.25 18,618

4
Russia Japan India Russia Bahrain Qatar

759 174 5008 997 9.08 16,580

5
Japan Saudi Arabia Korea Japan Brunei Finland

426 159 3393 955 8.62 15,804

6
Germany Russia Japan Canada Curaçao Canada

302 151 3343 572 8.29 15,438

7
Canada Korea Saudi Arabia Korea Kuwait Kuwait

298 120 2835 563 8.22 15,402

8
Brazil Brazil Iran Germany Canada Luxembourg

287 110 2405 559 8.03 13,476

9
Korea Germany Brazil Brazil United Arab

Emirates Sweden

282 107 2290 553 7.02 13,331

10
Iran Canada Germany France Korea (15th) Korea (13th)
266 103 2085 474 5.47 11,082

World 14,282 4445 101,340 19,278 1.88 3260

(1) Energy Agency (IEA). World Energy Balances; IEA: Paris, France, 2020. (2) BP. Statistical Review of World Energy,
69th ed.; BP: London, UK, 2020.
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Furthermore, Korea’s energy consumption started to grow with its industrialization
during the 1970s, and increased dramatically in the 1990s. The energy consumption
continuously increased into the 2000s, with the 2019 supply at about 1.5 times what it was
in 2001. However, the primary energy supply as a percentage of GDP is on the decline, and
in Figure 5, we can see that the primary energy supply as a percentage of 2020 GDP has
decreased to 5.6% of the 2001 value.
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On the other hand, Korea’s energy consumption growth rate has continuously been
decreasing since its financial crisis, and its reliance on oil within energy consumption has
also been on the decline. In 1997, oil took 60.4% of the share, whereas in 2019, that was
reduced to about 38.7%. Additionally, the growth rate of oil consumption in transport
has also been on a steady decline. The per capita energy consumption of Korea is around
5.40 toe, which is 32.7% higher than the OECD average of 4.06 toe per capita. However, in
the case of per capita nominal GDP, Korea is about $31,681, which is lower than the OECD
average of $41,760 (2019 data). Although the income level of Korean citizens is lower than
that of the OECD average, when considering the higher than average energy consumption,
it speaks to the rather low energy efficiency of Korea.

With the increasing importance placed on energy security, the Korean government
is pushing toward a safer, economical, and long-term strategy of energy supply. To that
end, infrastructure expansion on account of safe and stable supply of natural gas, increased
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power plant equipment for safe power supply, and the development of the Electric Indus-
try Restructuring for the safe supply of electricity is planned. At the same time, much
consideration is being placed on the development and increased utilization of alternative
sources of energy and their appropriate proportioning with traditional sources of energy
for more efficient use of energy.

Given this context, the precise calculation and forecasting of energy demand are deeply
intertwined with the energy economy and development of Korea and as such plays a crucial
role in the energy policy of the country. The aim of this research was to utilize machine
learning techniques to provide a quicker, more precise energy demand forecasting model.

3.1.3. COVID-19 Crisis on Global Energy Supply and Demand

Coronavirus disease 2019 (henceforth referred to as COVID-19) has spread rapidly
around the world since it was first discovered in December 2019, and the World Health
Organization (WHO) declared COVID-19 as a pandemic in March 2020. As the number
of confirmed cases around the world exploded due to the COVID-19 pandemic, border
blockades and full lockdowns were implemented by countries [47]. These quarantine
measures have led to all-round changes from economic activities to lifestyle. The IMF
analyzes the global economic slowdown caused by the COVID-19 pandemic as the most
serious since the Great Depression [48]. In order to prevent the spread of COVID-19, Korea
implemented social distancing step by step instead of blockade measures.

The economic downturn and changes in people’s lifestyles caused by the COVID-19
pandemic had a serious impact on the energy market. The IEA predicted that COVID-19
would act as the biggest shock since World War II, plunging global energy consumption and
reducing greenhouse gas emissions by nearly 8% [49]. As industrial production activities
shrink and people’s lifestyles change due to the spread of COVID-19, not only electricity
but also energy consumption in Korea decreased in 2020. The TES, which had been on the
rise, showed a decreasing trend for two consecutive years for the first time ever in 2019
and 2020.

In 2020, Korea’s gross domestic product decreased by 1.0% compared with the previous
year, and total energy consumption was counted at 290.8 million toes, down 4.0% from the
previous year. Electricity sales also fell 2.2% year on year [50]. In predicting the trend of the
energy market, this study attempted to increase the effectiveness of the predictive model
by dividing it into the pre COVID-19 period and the subsequent period.

3.1.4. Independent Variables

This research used the energy demand data between the period of January 1996 and
June 2021 for analysis. In much of existing empirical research, reduced form models that
included as many possible variables did not perform significantly better than reduced form
models that had important variables selected for regression analysis [51]. Additionally,
the dynamic interplay between past energy usage, economy, population statistics, climate,
energy pricing, and other related variables are generally considered a basis for energy
consumption computational modelling.

As such, in this research, considering the frequency of use of various explanatory vari-
ables used in existing literature, GDP, population, temperature, oil prices, and independent
variables of power generation were used for forecasting. The basic statistics of each variable
are shown in Table 4.
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Table 4. Basic statistics of independent variables.

Variable Unit Average Max Min Median Standard
Deviation

Oil Prices (Dubai) $/bbl. 55.6 131.3 10.1 53.7 30.8
Index of Manufacturing

Production 2015 = 100 78.8 118.8 31.0 84.0 25.0

Population 1000 Persons 49,224.1 51,821.7 45,953.6 49,307.8 1817.4
Average Temperature ◦C 12.9 28.8 −7.2 14.0 9.9

Power Generation GWh 35,079.6 53,394.2 16,228.0 36,458.5 10,093.8

Given that the data for Gross Domestic Product (GDP) produced on a quarterly basis
needs to be converted into monthly data, the index of Manufacturing Production, which
has identical correlation to the GDP, is used as an indicator in its stead. Korea imports
70–80% of the total crude oil volume from the Middle East, and as such, given that it is
mainly influenced by Dubai Crude out of the three major oil suppliers (WTI, Brent Crude,
Dubai Crude), it was used as the oil price variable. All independent variables have a high
correlation with the dependent variables (domestic, non-domestic, total consumption), and
they are widely used in predictive models [52].

3.2. Methodology

In this research, three machine learning algorithms were used and compared on the
basis of their training accuracy. The analysis period was divided into a stable market period
and an unstable market period. The reason for dividing the period is that the predictive
ability of the model may vary depending on the market situation.

Following this, Period 1 of “January 1997 to December 2013” was set as training data,
January 2014 to December 2015 as valid data, and the stable uptrend period of January
2016 to December 2017 as the test data. On the other hand, 2019 saw the first downtrend
in energy consumption after the financial crisis of 1998, the primary reason for which
is attributed to the spread of COVID-19 and the wild fluctuations in the economy that
followed, coupled with the uncertainty in the supply of energy became all too apparent [53].
Additionally, power generation fueled by coal and gas was reduced due to the economic
slowdown in manufacturing production, and the energy consumption in the infrastructure
sector decreased by 2.0% compared with the previous year (2018) of which Heating Degree
Day (HDD) and Cooling Degree Day (CDD) dramatically declined on account of the overlap
of heat waves and cold waves [53].

Following this, Period 2 uses “January 1997 to June 2017” as training data, “July 2017
to June 2019” as valid data, the period which saw a dramatic shift in the energy market
due to the shockwave following COVID-19 etc. of “July 2019 to June 2021” as the test data,
and provides separate models to demonstrate and cross analyze their respective predictive
performance according to the market situation. The machine learning model uses the
statistics package from python for empirical analysis.

3.3. Evaluating Forecast Accuracy

To be able to select the model that is best able to predict results on new input data
is the most important yet most difficult job [35]. Within this research, the most widely
adopted reliability analysis indicator in the context of prediction driven models of Root
Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE) was used. The
equation to calculate the RMSE is shown in Equation (8), while the equation to calculate
the MAPE is shown in Equation (9).

RMSE =

√
∑n

i=1 (x1,i − x2,i)
2

n
(8)
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MAPE =
1
n

n

∑
i=1

∣∣∣∣ x1,i − x2,i

x1,i

∣∣∣∣× 100 (9)

In the above equation, x1,i is the actual observation, whereas x2,i is the estimated value
calculated by the model.

4. Korea Energy Consumption Forecasting Model
4.1. Random Forest Model

In the Random Forest model, the hyperparameter tree estimator is changed, max
depth changed, and the hyperparameter whose final RMSE value is minimized is selected
as the final model. In Period 1 and Period 2, in order to find the RF model whose RMSE
value is minimal, repeated training was conducted. One thing to note is that since the RF
model is not a time series model, through the process of making the months into dummy
variables for the purposes of creating a variety of tree classifications, pitchers were added.

Additionally, the min max scaler was used to improve performance with the input
boundary values changed to be between−1 and +1. The upper bound for the tree estimator
was set to 500, while the lower bound was initialized to 50. Given the features of the max
depth data, the upper bound was set to 7 and the lower bound set to 3. Through repeated
model training, the model with the minimal RMSE was chosen as the final Random Forest
model. In Period 1, the tree with estimator 300, max depth 5 minimized RMSE the most,
while for Period 2, the tree with estimator 500, max depth 6 minimized the RMSE the most.
Figure 6 is a comparison graph of actual and predicted values for energy consumption.
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4.2. XGBoost Model

In the XGBoost model, the hyperparameter tree estimator was changed, and with max
depth, learning rate also changed, with the hyperparameter whose final value of RMSE
was minimized being selected as the final model.

For Period 1 and Period 2, repeated training was conducted with the XGBoost model
in order to find the minimum RMSE value. One thing to note is that since the XGBoost
model is not a time series model, through the process of making the months into dummy
variables for the purposes of creating a variety of tree classifications, pitchers were added.
Additionally, the min max scaler was used to improve performance with the input boundary
values changed to be between −1 and +1. The upper bound for the tree estimator was set
to 500 while the lower bound was initialized to 100. Additionally, according to the XGBoost
model’s learning rate, the model’s resultant value can change, and so, the learning rate was
set to 0.001, 0.01, 0.05, and 0.1.

Through repeated model training, the model with the minimal RMSE was chosen as
the final Random Forest model. In the event of an equivalent minimum value, the model
whose learning process terminated sooner was chosen as the final model. This is because
as the size of the data increases, and depending on the features of the data, the model’s
learning time can change, and those whose learning times were quicker were considered to
be superior.

In Period 1, the tree with estimator 100, max depth 3, learning rate 0.05 minimized
RMSE the most, while for Period 2, the tree with estimator 100, max depth 7, learning rate
0.1 minimized the RMSE the most. A parameter was chosen for each period, and these
were chosen to be the optimal XGBoost model for that period. Figure 7 is a comparison
graph of actual and predicted values for energy consumption.
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4.3. LSTM Model

As was with the RF model and the XGBoost model, the ANN model LSTM utilized the
same data. In the case of artificial neural networks, the approach use stacked hidden layers,
and depending on the Epoch, the data results may vary. In order to analyze the earlier
data, the LSTM model used the Keras deep learning library from the Python language.
Furthermore, the LSTM uses the Keras deep learning library with a default activation
function that outputs a value between −1 and 1 via the hyperbolic tangent function. As
such, by using the min max scaler, the input values are similarly changed to a measure
between−1 and 1. The behavior of the LSTM model can change depending on the optimizer
and activation function used. As such, since tuning the parameters affects the resulting
value, suitable values for the parameters were obtained through a grid search approach
within a set boundary while the overall structure remained fixed.

In this research, the ReLU activation [54,55] was used as it was, proven to be the most
effective. Furthermore, in order to reduce overfitting and improve the performance of the
model, the dropout and recurrent dropout settings were each set to 0.1 [56]. The epochs
were set to 100, with an early stopping function with a patience setting of 10 put in place
in order to make sure the loss function output did not increase during the training. Next,
setting the number of units as 8, 16, 32, the learning rate as 0.01, 0.05, 0.1, and batch size
as 16, 32, 48 as variables, all possible combinations were attempted. The result of which
was that out of the 26 possible combinations, for Period 1, when the parameters were
unit 16, learning 0.001, batch size 16, the RMSE was minimized, and for Period 2, when
the parameters were unit 16, learning rate 0.05, batch size 32, the RMSE was similarly
minimized. The selected parameters were used to build the model for each time period.
Figure 8 is a comparison graph of actual and predicted values for energy consumption.
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5. Results and Discussion

The Random forest, XGBoost, and LSTM model were implemented using the package
Scikit learn [18,57]. The model with the lowest RMSE value was selected as the final model.
Table 5 shows a comparison of the RMSE values of the machine learning model’s test data
for Period 1 and Period 2. The parameters that yielded the lowest RMSE value for the LSTM
model for Period 1 were unit 16, learning rate 0.001, and batch size 16. The parameters
that yielded the lowest RMSE value for the Random Forest model for Period 2 were tree
estimator 500 and max depth 6.

For the comparison of prediction, there are other predicted values on Table 6. It shows
the predicted value not only machine learning algorithms but also ARIMA and ARDL.
The ARIMA, which is one of the most popular models for time series forecasting analysis,
originated from the autoregressive model (AR), the moving average model (MA), and the
combination of the AR and MA, the ARMA models [58–64]. The Korea Energy Economics
Institute (KEEI) announces the outlook using the Autoregressive Distributed Lag (ARDL)
model for energy supply and demand twice a year [65].

In Table 6, ARIMA and ARDL predictions [66,67] are closer to the actual values in
2017 and 2018. Meanwhile, the predicted value with higher accuracy can be achieved
through the proposed machine learning model in 2019, 2020, and 2021. It demonstrated
that traditional econometric approaches may outperform machine learning when there is
less unknown irregularity in the time series, but machine learning can work better with
unexpected irregular time series data.

Table 5. Performance of the models by period.

Period 1 RF XGB LSTM

RMSE 0.061 0.074 0.052
MAPE 0.070 0.096 0.079

Parameter
Estimator: 300

Estimator: 100 Activation: Relu
Learning rate: 0.05 Unit: 16

Max Depth: 5 Max depth: 3 Learning rate: 0.001
Batch: 16

Period 2 RF XGB LSTM
RMSE 0.040 0.050 0.080
MAPE 0.047 0.053 0.062

Parameter
Estimator: 500

Estimator: 100 Activation: Relu
Learning rate: 0.1 Unit: 16

Max Depth: 6 Max depth: 7 Learning rate: 0.05
Batch: 32

Table 6. Predicted value of ML, ARIMA, and ARDL. Unit: 1000 toe.

Year True Value
Predicted Value

Machine Learning ARIMA ARDL

2017 302,490 297,017 299,485 302,500
2018 307,557 304,200 311,663 308,800
2019 303,092 301,897 318,726 314,000
2020 292,076 299,244 311,664 320,300

The first half of 2021 150,188 150,277 158,250 162,450

Figures 9–11 show the machine learning predicted value against the actual value and
the optimal model’s predicted value for each time period in each graph for ease of compar-
ison. In addition, it can visually be observed that there was difference in the forecasting
capability across all machine learning models through prediction error. However, though
the models tracked the decline rather well, the predicted value strayed a noticeable amount
in tracking the post rebound rise. Overall, In Period 1, LSTM displayed superior results by
tracking similar trend intervals. The optimal model of Period 2 being Random Forest also
yielded near identical prediction values to the actual value.
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When observing the results of the machine learning approaches, the stable Period 1
prior to COVID-19 without the large market shock was best predicted by the LSTM model
out of all the machine learning models. On the other hand, Period 2, with the large shock
caused by COVID-19, economic stagnation due to the resulting recession, sudden decrease
in HDD and CDD, and the overall volatility in the energy market, had the most effective
predictive potential by RF out of all the machine learning models.

6. Conclusions

The accurate prediction of total energy consumption is crucial in implementing ef-
fective energy policy. As mentioned earlier, Korea has a high reliance on energy import,
and when such an energy dependence rate is high, accurate prediction of the energy con-
sumption (which is directly related to the energy efficiency indicator) is important. This
is because, through this, energy-related problems can be effectively addressed along with
planning the stable growth of the economy [68].

However, due to Korea’s rapid economic growth and the associated increased de-
mand in power and oil, using socio-economic indicators to develop forecasting tools is
a challenging feat. In predicting the energy demand, this research used the total energy
consumption and highly correlated variables (oil price, population, power generation,
index of manufacturing production, temperature) to confirm the suitability and usability of
machine learning forecasting. Additionally, in predicting the total energy consumption,
this research separated the time period of analysis into the comparatively stable market
period before the COVID-19 pandemic, and the subsequent unstable market.

To summarize the results of the research, firstly, Period 1 was most accurately predicted
by the LSTM model. Secondly, the RF model tended to yield the lowest RMSE and MAPE
in period 2. The following points are implications derived from the results of the study.
LSTM, which could take periodic movements into account, showed meaningful predictive
performance relative to the different machine learning methods when the market trend
was consistent. LSTM has many advantages over other feedforward and recurrent NNs in
the modeling of time series [69]. However, in nonlinear system modeling, normal LSTM
does not work well [70]. When the market behavior changed from one trend to another, RF,
with its nonlinear modelling capability, displayed the most effective predictive results [71].



Energies 2022, 15, 4880 18 of 20

The main contributions of this study are as follows. We showed the applicability of
machine learning to forecast energy consumption and also demonstrated that traditional
econometric approaches may outperform machine learning when there is less unknown
irregularity in the time series, but machine learning can work better with unexpected
irregular time series data.

This study has the following aspects of interdisciplinary and practical application.
The predictive power of machine learning in the energy market was verified using actual
data. In practice, this study can be expanded to contribute to enhancing the reliability of
energy supply and demand data. As such, energy-related companies and governments can
respond appropriately to changes in energy consumption using this forecasting model.

The limitations and the future research direction as a result of this research are as
follows. Firstly, the actual accuracy of prediction and analysis of the model can change
depending on the analysis data and variable settings, and as such, it is hard to conclusively
state that a specific approach is superior across all time periods, and further research is
required on this matter [72]. To make up for this, a separate time period covering post
COVID-19 was included for the comparative prediction, but it is a separate matter to
say whether the results presented here will also apply to future data. Secondly, much of
artificial intelligence is plagued by the “black box problem.” While we may know the inputs
and outputs of a model, in many cases, we cannot explain the prediction of a model [73–75].

Therefore, in future work, further study is required by means of combining Ex-
plainable AI (XAI) models and combining machine and econometrics methods for in-
terpretable analytics.
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