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Abstract: With the development of power modules for high voltage, high temperature, and high
power density, their size is becoming smaller, and the packaging insulation experiences higher
electrical, thermal, and mechanical stress. Packaging insulation needs to meet the requirement that
internal electric field, temperature, and mechanical stress should be as low as possible. Focusing on
the coupling principles and optimization design among electrical, thermal, and mechanical stresses
in the power module packaging insulation, a multi-objective optimization design method based
on Spice circuit, finite element field numerical calculation, and multi-objective gray wolf optimizer
(MOGWO) is proposed. The packaging insulation optimal design of a 1.2 kV SiC MOSFET half-
bridge power module is presented. First, the high field conductivity characteristics of the substrate
ceramic and encapsulation silicone of the packaging insulation material were tested at different
temperatures and external field strengths, which provided the key insulation parameters for the
calculation of electric field distribution. Secondly, according to the mutual coupling principles among
electric–thermal–mechanical stress, the influence of packaging structure parameters on the electric
field, temperature, and mechanical stress distribution of packaging insulation was studied by finite
element calculation and combined with Spice circuit analysis. Finally, the MOGWO algorithm was
used to optimize the electric field, temperature, and mechanical stress in the packaging insulation.
The optimal structural parameters of the power module were used to fabricate the corresponding SiC
MOSFET module. The fabricated module is compared with a commercial module by the double-pulse
experiment and partial discharge experiment to verify the feasibility of the proposed design method.

Keywords: power module; packaging insulation; finite element method; multi-physics; multi-objective
optimization

1. Introduction
1.1. Motivation

Wide-bandgap semiconductors, including SiC and GaN, have the characteristics of
high breakdown field strength, low switching loss, and high-temperature resistance, which
can significantly improve the efficiency and power density of power modules [1]. Due to
the wide bandgap characteristic of SiC, it is quite suitable for high-voltage applications such
as high-voltage DC power transmission, automotive, and mechatronic applications [2–5].
To increase the power density of SiC power modules, their sizes are becoming smaller, and
the working voltage and temperature are becoming higher, which makes the packaging
insulation withstand greater electrical, thermal, and mechanical stress. This puts forward
more challenges for the insulation design of packaging materials [6].
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1.2. Related Works on Nonlinear Electrical Conductivity of Packaging Insulation and Its
Optimization Design

With the development of SiC devices with 10 kV, 15 kV, and even higher-rated voltage,
the insulation of the high-voltage module plays a key role in the reliability and should
be carefully considered in the module design process. A half-bridge SiC MOSFET power
modules are subjected to DC voltages with constant magnitude or unipolar square wave
voltages, and the steady-state electric field distribution inside the encapsulation insulating
material under the DC electric field are determined by its electrical conductivity. However,
the electrical conductivity is not a constant value but a complex parameter with a nonlinear
relationship to temperature and local electric fields. The current research on power module
packaging insulation mainly focuses on reducing the maximum electric field at the “triple
junction” in the packaging insulation by increasing the thickness of the ceramic substrate [7],
adjusting the offset of the substrate metal layer [8], improving the pad size and corner
curvature of the substrate [9,10]. However, the variation of electrical conductivity of
insulating materials with the local electric field and temperature has not been considered
in the existing studies. The nonlinear characteristic of the electrical conductivity is the key
to calculating the electric field distribution in the module package and is considered in the
proposed optimization design process in this paper.

For the packaging insulation optimization design of power modules, the current re-
search mainly focuses on reducing stray parameters [11,12], reducing thermal resistance [13],
and improving package reliability [14]. Most of the research is based on lumped parameters
design or two-dimensional analysis for electric field and temperature. A multi-objective
optimization design model with stray parameters, thermal resistance, and inelastic working
energy density as the optimization goals is studied in [15]. A multi-objective model for
maximizing the lifetime of a two-dimensional power module under power cycling and
thermal cycling is established in [16]. A Bayesian optimization scheme is proposed to
solve electric field crowding for a 10 kV SiC power module in [17]. However, there is little
research on the design of high-voltage power module packaging insulation considering the
coupling effect of temperature, electric field, and mechanical stress. There is no research on
the effect of the nonlinear electrical conductivity characteristics of the packaging insulation
material on the 3D power module packaging insulation design.

1.3. Contribution of This Paper

This paper proposes an electrical–thermal–mechanical stress coupling simulation and
optimal design method based on the combination of Spice circuit simulation, finite element
field numerical calculation, and multi-objective gray wolf optimizer (MOGWO) algorithm
for optimal design of SiC MOSFET power module packaging insulation. The coupling
relationship between electrical, thermal, and mechanical stress in power module packaging
insulation and the influence of packaging structure parameters on electrical, thermal, and
mechanical stress on packaging insulation are analyzed. The MOGWO algorithm is used to
obtain the optimal structural parameters of the power module packaging. Finally, according
to the optimal structural parameters, a 1.2 kV half-bridge SiC MOSFET power module is
fabricated. Then, the double-pulse test experiment is carried out to evaluate the dynamic
switching performance, and the partial discharge experiment is carried out to verify the
reliability of packaging insulation. The contributions of this paper are listed below:

(1) The nonlinear electric conductivity of packaging insulation with respect to applied
voltage and temperature is experimentally investigated and the nonlinear electric con-
ductivity is used in the multi-physics simulation to determine the electric distribution
in the packaging insulation.

(2) A multi-physics 3D simulation combining Spice circuit and finite element method
is proposed and the effect of packaging structure parameters on the electric field,
temperature, and mechanical stress distribution are investigated.
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(3) A multi-objective optimization algorithm based on MOGWO is proposed to trade off
the maximum electric field, temperature, and mechanical stress, providing optimized
packaging structure parameters.

2. High Field Conductivity of the Packaging Insulating Materials at Various Temperatures

As mentioned in the introduction, the electric field distribution inside the packaging
insulation material is jointly determined by the permittivity and conductivity, and the
steady-state electric field mainly depends on the conductivity; however, the nonlinear
electrical conductivity of packaging insulation materials is related to both the applied
electric field and temperature, but there is no systematic research on the high field electrical
conductivity characteristics of packaging insulation materials.

To this end, this paper firstly tested high field conductance at different temperatures
on substrate ceramic and silicone encapsulation.

2.1. High Field Conductivity Measurement

The conductivity test system is shown in Figure 1, consisting of a high-voltage source,
a Keithley 6517 ammeter, and a three-electrode holder. The protective electrode is grounded
to avoid the influence of surface leakage current on the test. The electrical conductivity
of 0.2 mm thick encapsulation silicone and 0.5 mm thick Al2O3 substrate ceramics were
measured at 30, 50, 70, and 90 ◦C, respectively. The packaging insulation materials were
polarized under each electric field for 1800 s, and the average value of the last 30 s of
polarization was taken as the quasi-steady-state current density and conductivity.
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2.2. High Field Conductivity of Silicone Encapsulating Material

The fabrication process of the encapsulation silicone sample is as follows: firstly, the
silicone matrix and the curing agent were mixed in a mass ratio of 10:1. Secondly, the
mixture was placed into a vacuum oven for degassing for 30 min, and the degassed silicone
was injected into a 0.2 mm thick tetrafluoroethylene mold and then placed in a press
machine at room temperature to cure for 24 h to obtain a silicone film sample. Lastly, the
samples were short-circuited and degassed in a vacuum oven at 60 ◦C for 24 h to remove
byproducts and residual charges.

The conductivity test results of the encapsulation silicone are shown in Figure 2. The
quasi-steady-state current density increases with the applied electric field and temperature.
At 30 ◦C, the current density curve can be divided into two regions: the slow growth region
under a low electric field and the fast-growing region under a high electric field, which
match the first two stages of space charge-limited current (SCLC) theory. At 50–90 ◦C, the
slope of the current density curve does not change and is approximately parallel to the
curve of the fast-growing region under a high electric field at 30 ◦C. As the applied electric
field increases, each segment of the curve is, respectively, defined as J1 and J2. At 30 ◦C,
the current density of silicone is proportional to the applied electric field, and the slope of
J1 is close to 1, which conforms to Ohm’s law. At 30 ◦C, the slope of J2 is greater than 2,
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indicating that the steady-state current density of silicone at this time transitions to the
limited current stage by the trap-limited space charge [18]. At 50 to 90 ◦C, the increase
in temperature enhanced the injection of charges from electrodes, which results in the
formation of more carriers and increases the conductivity of the silicone. The hopping
conductivity model [19] can be used to fit the conductivity in the silicone, and the fitting
result is as follows:

γ = A exp(− ϕ

kT
)sinh(BE)EC (1)

where A, B, and C are constants, T is the temperature, and k is the Boltzmann constant. By
curve fitting of the data in Figure 2, A is 7.46 × 10−7, ϕ is 0.59 eV, B is 1.87 × 10−8, and
C is 0.28.
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2.3. High Field Conductivity of Al2O3 Substrate Ceramic

The conductivity test results of Al2O3 ceramics are shown in Figure 3. The current
density of the ceramic increases with the applied field strength and temperature. The
DBC substrate is trigonal α-ceramic and provided by a commercial manufacturer. At
low temperatures, impurity ions and local ions on the crystal lattice are the main sources
of conductance. At high temperatures, when the thermal vibrational energy of the ion
exceeds the binding barrier, the ion transitions away from the lattice and becomes a carrier,
forming the intrinsic carrier conductance. In both cases, the ceramic conductivity and
temperature satisfy the Arrhenius equation, that is, the conductivity changes exponentially
with temperature. The current density curve presents a one-segment and the slopes are all
approximately 1, which satisfies Ohm’s law. The conductivity model obtained by fitting is

γ = A exp(− ϕ

kT
) (2)

where A is a constant, ϕ is the activation energy, and k is the Boltzmann constant. By
curve-fitting of the data in Figure 3, A is 9.01× 10−11, and ϕ is 0.29 eV. The DBC substrate is
a trigonal α-ceramic. At low temperatures, impurity ions and local ions on the crystal lattice
are the main sources of conductance. At high temperatures, when the thermal vibration
energy of the ions exceeds the binding barrier, the ions transition away from the lattice
and become carriers, forming the intrinsic carrier conductance. In both cases, the ceramic
conductivity and temperature satisfy the Arrhenius equation, that is, the conductivity
changes exponentially with temperature.
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3. 3D Multi-Physics Coupling Simulation of SiC MOSFET Power Module
Packaging Insulation

As mentioned in the introduction, the electric field, temperature, and mechanical
stress distributions in the packaging insulation are coupled and the key parameters are also
determined by multi-physics. Section 3.1 theoretically analyzes the coupling relationship
and all the coupling effect is considered and modeled in the proposed simulation scheme
in Section 3.2. Based on the proposed scheme, Section 3.3 focuses on the effect of pack-
aging structure parameters on multi-stress distribution, which provides the basis for the
optimization in Section 4.

3.1. Multi-Physics Coupling Analysis of SiC MOSFET Power Module Packaging Insulation
3.1.1. Basic Theory of Multi-Physics Calculation

The calculation of electric field, temperature, and mechanical stress distribution in
packaging insulation can be calculated using the Maxwell equation, heat conduction
equation, and thermal expansion equation:

E = −∇ϕ

∇ · J + ∂∇ε0εrE
∂t = 0

J = γ(E, T)E
ρCp

∂T
∂t = λ∇2T + Q

εV = χ∆T = χ
(

T − Tre f

)
σ = YεV

(3)

where E is the electric field strength, ϕ is the electric potential, J is the current density,
T is the temperature, ε0 is the vacuum permittivity, εr is the relative permittivity, γ is the
electrical conductivity, ρ is the density, Cp is the constant pressure heat capacity, Q is the
heat source, that is, the power loss of the chip, λ is the thermal conductivity, χ is the
thermal expansion coefficient, εV is the strain, σ is the stress, Y is Young’s modulus, and
Tref is the reference temperature. It is noted that multi-physics coupling relationships will
be discussed in the following section and they are also considered in Equation (3) in an
implicit form.

3.1.2. Coupling Relationship between Thermal Field and Electric Field
The coupling of the electric field to thermal field is mainly reflected in the heating

source. The SiC MOSFET generates power loss Pd during operation, which causes the mod-
ule temperature to rise. Power loss includes two parts: conduction loss and switching loss.
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Switching losses are closely related to the stray parameters of the module packaging [20].
Meanwhile, MOSFET on-state losses are mainly caused by the device’s on-state resistance,
which is a function of temperature. The total power loss can be expressed as

Pd = PT(AV) + Pon + Po f f
= I2

DS
R

(DS)on + Eon fs + Eo f f fs

= I2
DS

R0

[
1 + κ

(
Tj − 25

)]
+ fs[

∫ t90%
t10%

vds_on(t)id_on(t)dt +
∫ t10%

t90%
vds_o f f (t)id_on(t)dt]

(4)

where R(DS)on is the on-state resistance, Eon and Eoff represent the turn-on loss and turn-off
loss of the primary switch of the chip, respectively, R0 is the on-state resistance value at
25 ◦C, and IDS is the drain–source current of the chip during normal operation. κ is the
temperature coefficient of on-state resistance, Tj is the junction temperature of the chip, fs is
the switching frequency, vds is the drain–source voltage, id is the drain current, and t10%
and t90% are the transient time between the drain–source voltage at 10% and 90% of the
rated voltage.

The switching loss is related to stray inductance and capacitance of the SiC MOSFET
power module. The stray parameters are extracted from multi-physics simulation with
the finite element method and the switching loss is evaluated from Spice simulation in
this paper. Cσ+ and Cσ− are the parasitic capacitances from the positive and negative
terminals to the substrate, respectively, Cσout is the parasitic capacitance from the output
terminal to the substrate, CσGH and CσGL are the parasitic capacitances from the gate of
the upper and lower phase leg of half-bridge SiC MOSFETs to the substrate, respectively.
Cσout and CσGH are charged and discharged, respectively, by the displacement current
during switching transients, while the voltages across Cσ+, Cσ−, and CσGL are fixed, so
the impedance between the output and the substrate can be expressed as Cσout and CσGH
in parallel. Lloop represents the equivalent inductance within the package including trace
parasitic inductances and bond–wire inductance. The double pulse circuit is built in LTspice
simulation software, as shown in Figure 4b. The stray inductance is represented as Lloop,
Cσ represents the parallel of Cσout and CσGH. Through the Spice simulation, the switching
loss Eon and Eoff of every cycle can be calculated by integrating the operating voltage and
current of the module with rated 1200 V voltage and 60 A current.
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The coupling of thermal field to electric field is mainly reflected in the change of electri-
cal parameters such as conductivity. The conductivity of the packaging material is a function
of the local electric field and temperature, so the conductivity in Equations (1) and (2) are
obtained through the experiments presented in Section 2 above. The electric field distribu-
tion is not only related to the insulating structure, but also to the temperature distribution.
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3.1.3. Coupling Relationship between Thermal Field and Mechanical Stress

The coupling of thermal field to mechanical stress is mainly reflected in the thermal
expansion stress. While the SiC MOSFET power module is working, due to the uneven
temperature distribution inside the module and the different thermal expansion coefficients
of different materials of the power module, mechanical stress is generated inside the
module. As shown in Equation (3), the temperature difference is an important factor
affecting the thermal stress of the power module.

The coupling of mechanical stress to thermal field is mainly reflected in the influence
of interface stress on contact thermal resistance. When the two materials are in contact,
there are voids between the contact interfaces due to the difference in surface roughness,
resulting in an increase in thermal resistance at the interface. If the stress at the interface
increases, it will reduce the size and width of the air gap, thereby affecting the thermal
resistivity. At the contact interface, the contact thermal conductivity hk is expressed as

hk = hconstriction + hgap

hconstriction = 1.25ks
m
δ

(
P

Hmic

)0.95

hgap =
kgap

X+Mgap

(5)

where hconstriction represents the constriction conductivity, which is related to the surface
properties and contact pressure; hgap represents the air gap conductivity, which is related to
the medium in the space. P is the contact pressure, Hmic is the aluminum microhardness, δ is
the surface roughness, m is the roughness gradient, Mgap is the gas thinning parameter, ks is
the contact thermal conductivity, kgap is the gap thermal conductivity, and X is the average
plane microscopic spacing. The mechanical stress effect on thermal contact conduction
mentioned above is also modeled in the multi-physics simulation.

3.2. 3D Multi-Physics Coupling Simulation of SiC MOSFET Power Module Packaging Insulation

A half-bridge SiC MOSFET module is taken as an example to conduct a three-dimensional
multi-physics simulation of packaging insulation. The structure is shown in Figure 5. The
SiC chip is soldered on the copper trace of the DBC substrate, and the electrical connection
between the top surface of the chip and the DBC is realized by bonding wires. Three
terminal posts (V+, V−, and AC) connect the copper trace of the DBC to the external
power supply and output AC voltage. The DBC is soldered on the baseplate, and the
heat generated by the chip is mainly transferred down to the heat sink through the DBC
substrate. Silicone is filled as encapsulation to protect the chip and metal interconnection
parts. The material parameters of the power module packaging insulation for multi-physics
simulation are shown in Table 1.

Table 1. Main parameters of selected materials for multi-physics simulation.

Material Copper Silicone Al2O3 Solder Bond Wire SiC

Thermal expansion
coefficient (1/K) 17 × 10−6 420 × 10−6 6.5 × 10−6 23 × 10−6 23 × 10−6 3.4 × 10−6

Constant pressure heat capacity
(J/kg/K) 385 1453 730 226 900 690

Relative permittivity — 2.7 9.8 — — 11.9

Density (kg/m3) 8960 900 3780 7300 2700 3210

Thermal Conductivity (W/m/K) 400 0.145 35 50 238 501

Young’s modulus (Pa) 110 × 109 5 × 106 400 × 109 40 × 109 70 × 109 501 × 109

Poisson’s ratio 0.35 0.48 0.22 0.4 0.33 0.45

Conductivity (S/m) 5.998 × 107 Equation (1) Equation (2) 8.33 × 106 3.534 × 107 —
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The multi-physics coupling simulation flow chart is shown in Figure 6, which mainly
includes four parts:

(1) The key electrical parameters of packaging insulation were obtained through the
aforementioned experiments. A complete SiC MOSFET half-bridge power module
was built in the multi-physics finite element software. The material parameters of the
power module shown in Table 1 were imported, and the parasitic capacitance and
parasitic inductance of the module package were extracted, respectively.

(2) The stray parameters were input into the double-pulse-test Spice circuit to simulate
and calculate the operating loss, and the influence of the stray parameters of the
module package on the switching loss of the SiC MOSFET was used in multi-physics
simulation as the heat source.

(3) The multi-physics coupled finite element simulation of encapsulated module insu-
lation was performed. The multi-physics finite element model includes an electric
field calculation module, a temperature calculation module, and a mechanical stress
calculation module, and the influence of multi-physics coupling factors on material
parameters is also considered.

(4) According to the relationship between the packaging structure parameters and the
multi-physics performance (electric field, temperature, and mechanical stress), the
optimal design was applied to reduce the maximum electric field, temperature, and
stress in the packaging insulation by adjusting the optimal structure parameters of
the power module package.

The excitation parameters and boundary conditions are set as follows:

(1) The voltage of the drain terminal of the upper phase leg is set as 1200 V, and the
source terminal of the lower phase leg and the back trace of the DBC are grounded.
The ac output terminal is set as 1200 V or 0 V for the switching output.

(2) The heat source is the SiC MOSFET chip and the heat is diffused within the packaging
by conduction in solids. The heat diffuses from the bottom of the module to the
environment and is modeled as contacting heat sink with constant heat transfer
coefficients. The heat diffuses from the top side of the silicone encapsulation to the
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environment and is modeled by contacting air with constant heat transfer coefficients.
The heat sources of the two SiC MOSFET chips are set according to the LTspice
double-pulse simulation results, as in Equation (4). The environmental temperature is
20 ◦C. The heat transfer coefficients of the heat sink bottom and surrounding sides
are 3000 and 20 W/m2/K. The heat transfer coefficient of the top side of the silicone
encapsulation is 5 W/m2/K.

(3) The heat sink and surrounding sides of the silicone encapsulation are fixed. The other
surfaces are free to expand and shrink. The thermal expansion stress is calculated by
the thermal–mechanical coupling model.
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3.3. Influence of SiC MOSFET Power Module Structure on Electrical, Thermal, and Mechanical Stress

The multi-physics simulation is performed according to the procedure shown in
Figure 6. The SiC MOSFET power module structure is changed to investigate the effect of
structure parameters on multi-stress distribution. The copper trace spacing d, the width
w, length l, and the thickness h of the solder layer are changed from 0.5 to 2 mm, 10 to
14.5 mm, 16.5 to 21 mm, and 0.05 to 0.2 mm, as shown in Figure 5c.

The results of the electric field, temperature, and mechanical stress simulations are
shown in Figure 7. The strongest electric field is at the three junction points of the DBC
copper electrode, silicone, and ceramics. The temperature of the silicone at the contact
position with the upper phase leg chip is the highest, and the maximum mechanical stress
in the package insulation is on the contact surface of the silicone, solder, and heat sink.
Figure 8 shows the effect of the packaging structure parameters on the maximum electric
field, temperature, and mechanical stress in the package insulation. Since there are four
variables, the curves shown in Figure 8 are, respectively, the curves obtained by changing
only one variable under a set of fixed variable values (d = 0.5 mm, w = 10 mm, l = 16.5 mm,
h = 0.05 mm).

3.3.1. Effect of Packaging Structure on Electric Field Distribution

The influence of the copper trace distance d on the electric field involves two aspects:
on the one hand, as d increases, the thermal resistance decreases, the heat dissipation
performance of the module becomes better, and the temperature at the position of the maxi-
mum electric field decreases, and the conductivity of the encapsulation silicone decreases,
which in turn leads to an increase in the field strength. On the other hand, as the trace
distance increases, the insulation distance increases, and the electric field decreases. The
combined effect of these two factors leads to the minimum value. While the width w or
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length l of the copper trace increases, the heat dissipation is enhanced, then the temperature
decreases. In this way, the conductivity of the silicone decreases, and the electric field
increases. With the increase of the thickness h of the solder layer, the thermal resistance
increases, the heat dissipation is weakened, the conductivity of the silicone increases, and
the field strength decreases.

3.3.2. Effect of Packaging Structure on Temperature Distribution

While the copper trace spacing d, the width w, and length l of the copper trace increase,
the thermal resistance is reduced, and the heat dissipation of the module is enhanced.
The switching power loss of the chip is slightly reduced, the conduction loss power is
reduced, and the total power loss is reduced. Therefore, the maximum temperature shows a
downward trend. When the thickness h of the solder layer increases, the thermal resistance
increases, which weakens the heat dissipation of the module. The switching power loss
of the module is almost unchanged, and the conduction loss power increases, increasing
the total power loss. The cooling capacity of the module is weakened, so the maximum
temperature increases.

Energies 2022, 15, x FOR PEER REVIEW 10 of 22 
 

 

copper electrode, silicone, and ceramics. The temperature of the silicone at the contact 
position with the upper phase leg chip is the highest, and the maximum mechanical stress 
in the package insulation is on the contact surface of the silicone, solder, and heat sink. 
Figure 8 shows the effect of the packaging structure parameters on the maximum electric 
field, temperature, and mechanical stress in the package insulation. Since there are four 
variables, the curves shown in Figure 8 are, respectively, the curves obtained by changing 
only one variable under a set of fixed variable values (d = 0.5 mm, w = 10 mm, l = 16.5 mm, 
h = 0.05 mm). 

 
90

The triple point

0.5
1
1.5
2
2.5
3
kV/mm

 

(a) (b) 

 

130

90

100
110
120

℃
The highest temperature

 

(c) (d) 

 

50
100
150
200
250
300

MPa

The Maximum stress point

 

(e) (f) 

Figure 7. The distribution of the electric field, temperature, and mechanical stresses of power mod-
ule packaging: (a) 3D view of electric field distribution, (b) cross-section view of electric field distri-
bution, (c) 3D view of temperature distribution, (d) cross-section view of temperature distribution, 
(e) 3D view of mechanical stress distribution, (f) cross-section view of mechanical stress distribution. 

Figure 7. The distribution of the electric field, temperature, and mechanical stresses of power module
packaging: (a) 3D view of electric field distribution, (b) cross-section view of electric field distribution,
(c) 3D view of temperature distribution, (d) cross-section view of temperature distribution, (e) 3D
view of mechanical stress distribution, (f) cross-section view of mechanical stress distribution.
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3.3.3. Effect of Packaging Structure on Mechanical Stress Distribution

With the increase of copper trace spacing d, copper trace width w, and length l, the heat
dissipation area increases, leading to a decrease in temperature and maximum mechanical
stress. As the thickness h of the solder layer increases, the area of the heat sink remains
unchanged. However, because the thermal resistance of the module increases, under the
same temperature difference, the smaller the thickness h, the greater the deformation, and
the deformation is proportional to the stress, so the mechanical stress increases.

Since the effects of structure parameters on the electric field, temperature, and me-
chanical stress are complicated and present coupling relationships, optimization should be
performed to determine the optimized packaging parameters, which is presented in the
following section.

4. Multi-Objective Optimization Design of Packaging Insulation Based on MOGWO Algorithm
4.1. MOGWO Algorithm

The gray wolf algorithm is an intelligent optimization algorithm based on group
behavior. It has the characteristics of strong convergence, few parameters, easy imple-
mentation, and adaptive adjustment [21]. Therefore, the MOGWO algorithm is used to
determine the optimal packaging structure parameters.

The gray wolf population has a pyramid-shaped social hierarchy, as shown in Figure 9.
The first level of the pyramid is the leader of the population, called α. The second level of
the pyramid is α’s think tank team, called β. The third level of the pyramid is the δ, which
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obeys the decision-making commands of α and β. α and β with poor fitness will also be
reduced to δ. The bottom layer of the pyramid is ω, which is mainly responsible for the
balance of relationships within the population.
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The hunting behavior of gray wolves mainly includes four parts [21]:

(1) Surrounding the prey: In the group of gray wolves, the distance between the individ-
ual gray wolf and the prey is

D =
∣∣C·Xp(t)− X(t)

∣∣ (6)

where t is the current moment, C is coefficient vectors, Xp is the position vector of the
prey, and X is the position vector of the gray wolf population:

X(t + 1) = Xp(t)− A·D
A = 2a·r1 − a
C = 2·r2

(7)

where a is a vector of convergence factors that decreases linearly from 2 to 0 as the
number of iterations increases, and r1 and r2 are random vectors in the range [0, 1].

(2) Hunting: When the gray wolf finds the location of the prey, α leads β and δ to surround
the prey. Among the positions of the three optimal solutions α, β, and δ determine the
position of the prey, and at the same time, other gray wolf individuals update their
positions according to the position of the optimal gray wolf individual:

Dα =|C1 · Xα(t)− X(t)|
Dβ =

∣∣C2 · Xβ(t)− X(t)
∣∣

Dδ =|C3 · Xδ(t)− X(t)|
X1 = Xα − A1 · Dα

X2 = Xβ − A2 · Dβ

X3 = Xδ − A3 · Dδ

X(t + 1) = (X1 + X2 + X3)/3

(8)

where Dα, Dβ, and Dδ represent the distances between α, β, and δ and other gray
wolves, respectively; Xα, Xβ, and Xδ represent the current positions of α, β, and δ,
respectively; Cα, Cβ, and Cδ are random vector constants, and X is the current position
of the gray wolf group.

(3) Attacking the prey: In the iterative process, as the value decreases linearly from 2 to 0,
the corresponding value of |A| also changes in the interval [−a, a]. When the prey
is no longer moving, the gray wolf pack will attack the prey. When |A| < 1, gray
wolves attack their prey, that is, they fall into a locally optimal solution.

(4) Searching for prey: When |A| > 1 or |A| = 1, the gray wolf pack is separated from
the prey. It leaves the local optimal solution and looks for more suitable prey, that
is, the global optimal solution. To avoid the algorithm becoming stuck in the local
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optimal solution instead of the global optimal solution, C is set to decrease nonlinearly
to perform a global search simultaneously in the iterative process. The MOGWO
solution algorithm flow is shown in Figure 10.
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4.2. Packaging Insulation Optimization Design of SiC MOSFET Power Module

The parameters of the packaging structure of the 1.2 kV SiC MOSFET half-bridge are
the optimization variables and reducing the maximum electric field strength, maximum
temperature, and maximum mechanical stress in the insulation of the power module
package is the optimization goal. The optimization objectives are

minEmax
minTmax
minFmax

(9)

The constraints are 
dmin ≤ d ≤ dmax

wmin ≤ w ≤ wmax
lmin ≤ l ≤ lmax

hmin ≤ h ≤ hmax

(10)

where the upper and lower limits are the same as those in the multi-physics simulation, as
shown in Section 3.3. There are several characteristics of solving the multi-physics coupled
multi-objective optimization problem for power module packaging insulation:

(1) The electrical, thermal, and mechanical stresses have a coupling relationship and
influence each other. Hence, the minimum electric field, temperature, and mechanical
stress cannot be obtained at the same time.

(2) The three objective functions of the maximum electric field, maximum temperature,
and maximum mechanical stress have different units and orders of magnitude that
cannot be directly compared. Therefore, the solution to multi-objective optimization
problems is usually to obtain the Pareto optimal solution.

The MOGWO algorithm is used to solve it. The algorithm parameters are set as
follows: the population size is 256, the maximum number of iterations is 5000, and the
number of optimal solutions is 100. The distribution of electric field, temperature, and
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mechanical stress of the gray wolf population before and after optimization is shown in
Figure 11. Each point in Figure 11b represents a structural parameter optimization of the
power module.
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Before optimization, the variation ranges of the maximum electric field, maximum
temperature, and maximum mechanical stress are 2.7~4.10 kV/mm, 108.4~147.9 ◦C, and
110.32~342.6 MPa, respectively. After the MOGWO optimization, the variation ranges
of the maximum electric, maximum temperature, and maximum stress were reduced to
2.898~2.9 kV/mm, 122.05~122.15 ◦C, and 257.3~257.8 MPa, respectively. For the ease of
fabrication, one set of solutions is selected as the optimal structural parameters of the power
module package insulation: d = 1.5 mm, w = 11.4 mm, l = 21 mm, h = 0.1 mm.

5. Experiment on the Optimal Designed SiC MOSFET
5.1. Module Fabrication

According to the half-bridge SiC MOSFET power module structure, shown in Figure 5
and the optimal structural parameters obtained by the MOGWO algorithm, the half-bridge
SiC MOSFET power module is fabricated through the process shown in Figure 12. The
SiC MOSFET chips are provided by the Shanghai Inventchip company with 1200 V and
60 A-rated parameters. The chips are soldered on the DBC and the DBC are soldered on
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the heat sink both with SAC 305 solder paste (Sn96.5/Ag3.0/Cu0.5). Then, the connections
between the top surfaces of the chips and DBC copper traces are achieved by 100 µm
bonding wire. After that, the pins for gate driving and posts for the power terminals are
soldered by lead-free Sn64.7/Bi35/Ag0.3 solder paste. Then, the 3D-printed frame housing
is attached to the heat sink with silicone glue and the module is encapsulated with the
silicone encapsulation material.
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5.2. Double Pulse Test

In order to evaluate the switching performance of the fabricated SiC MOSFET power
module and compare the fabricated module with the commercial module, a double-pulse
test circuit is built, as shown in Figure 13.
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Figure 13. Double pulse test bench.

The driving circuit is composed of an optical transmitter/receiver and driving IC
to isolate the driver from the high DC voltage. The DC bus voltage Vdc = 800 V, the DC
coupling capacitance Cdc = 70 µF, the load inductance Lload = 450 µH, and the gate drive
resistance RG = 5 Ω. A signal generator is used to generate trigger pulses. To ensure that the
power circuits connected externally to the power module are the same, the gate drive circuit
adopts the same drive board and drive connections. The SiC MOSFET power module
and the commercial SiC MOSFET power module FF45MR12W1M1 are compared at the
same voltage level to test switching characteristics. The double-pulse waveform obtained
through the experiment is shown in Figure 14.
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Through calculation, the parasitic inductance of the obtained power module is 11.23 nH,
which is smaller than the stray inductance (18 nH) of commercial power modules. The
switching loss can be obtained by measuring the voltage and current curves of the SiC
MOSFET power module during turn-on and turn-off and then integrating the product of
the two. When calculating turn-on loss, we use the integral of the product of voltage and
current in the period from 10% turn-on current to 10% turn-on voltage. The turn-off loss
is calculated by using the integral of the product of voltage and current over the period
from 10% turn-off voltage to 10% turn-off current [22,23]. According to the experimental
results in Figure 14, the turn-on loss of the commercial power module is calculated to be
0.474 mJ and the turn-off loss is 28.64 µJ. The turn-on loss of the fabricated power module
is 0.366 mJ, and the turn-off loss is 15.79 µJ. Therefore, for both the turn-on loss and the
turn-off loss, the optimally designed power module is smaller than the commercial power
module, indicating that the power module reduces the loss in the switching process.

5.3. Partial Discharge Test

As SiC MOSFET turn-on time shortens and operating voltage increases, dv/dt increases,
resulting in extremely high transient overvoltages, which may cause partial discharges
in the power module, thereby deteriorating the packaging insulation performance of the
power module. Previous studies have proposed a partial discharge detection method
under a square wave electric field based on the super-high-frequency (SHF)-down-mixing
technology [24,25].

In this paper, the SHF mixing method was used to measure the partial discharge
characteristics of the SiC MOSFET half-bridge power module packaging insulation under a
square wave electric field, as shown in Figure 15. The SHF sensor horn antenna is facing
the sample at a 10 cm distance from the sample. Figure 16 shows the results of the partial
discharge detection of the power module package insulation under the measured 1.2 kV
square waves electric field.
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The results in Figure 16 show that no partial discharge signal is detected when the
fabricated SiC MOSFET half-bridge power module operates at the rated square wave
voltage with a fast-rising edge.

It should be noted that this paper aims to introduce a multi-physics design method for
packaging insulation of SiC MOSFET modules. Due to the limited length of the paper, only
the double pulse experiment (to show the dynamic performance) and partial discharge
experiment (to verify the insulation performance) are presented. The continuous run
experiment and thermal experiment will be performed and reported in the future.

6. Conclusions and Future Works

Aiming at solving the electrical–thermal–mechanical multi-stress problem of SiC
MOSFET power module packaging insulation, this paper proposed an analyzing and
optimized design method of three-dimensional electrical, thermal, and mechanical multi-
physical field coupling of power module packaging insulation, which is based on Spice
circuit, finite element field numerical calculation, and MOGWO optimization. Through the
high field conductance characteristics of the packaging insulating substrate Al2O3 ceramic
and encapsulation silicone at different temperatures, and the correlation between the power
module loss and the packaging structure, the multi-physics numerical calculation of the
packaging insulation of the 1.2 kV half-bridge SiC MOSFET power module was carried
out. The effect of packaging structure parameters on the electric field, temperature, and
mechanical stress of packaging insulation is studied. On this basis, the MOGWO algorithm
was used to optimize the packaging structure parameters of the power module. According
to the optimization results, a 1.2 kV half-bridge SiC MOSFET power module was fabricated
and tested by experiments. The following conclusions can be drawn:
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(1) Encapsulating silicone and Al2O3 ceramic substrate have different high field conduc-
tivity characteristics. Within the operating temperature range of the power module,
the conductivity of the encapsulation silicone conforms to the hopping conductivity
mechanism. The conductivity of the substrate Al2O3 ceramics varies with temperature
and satisfies the Arrhenius relationship.

(2) The effect of the packaging structure parameters on the electric field, temperature,
and mechanical stress in the packaging insulation is determined by a variety of factors.
The maximum temperature in packaging insulation increases with solder thickness
and decreases with copper pitch, width, and length. The maximum electric field in the
packaging insulation first decreases and then increases with the copper trace spacing,
which is positively related to the copper trace width and length. The maximum
mechanical stress is inversely related to the copper trace spacing, width and length,
and the thickness of the solder layer.

(3) The 1.2 kV half-bridge SiC MOSFET power module was fabricated with the optimized
packaging parameters by the MOGWO algorithm and tested in comparison with a
commercial module. The double-pulse test result shows that the switching loss of
the fabricated power module is smaller than that of the commercial power module.
The test results of the partial discharge experiment under square voltages with high
dv/dt show that no partial discharge was detected during the operation of the power
module, thus verifying the reliability of the packaging insulation of the fabricated SiC
MOSFET half-bridge power module.

It should be noted that this paper just focuses on proposing the multi-physics simula-
tion scheme and multi-objective optimization algorithm for the half-bridge SiC MOSFET
power module. The research on other properties of the module and the inverter-level by
integrating the modules will be investigated and reported in the future. Furthermore, this
paper should also provide references for co-simulation and formal verification of power
electronic systems in the future [26–28]. The proposed multi-physics simulation scheme
and the optimization algorithm can also be applied to high-voltage power modules by iden-
tifying the packaging structure parameters and performing the multi-objective MOGWO
optimization algorithm to determine the optimal structure parameters by trading off and
obtaining the Pareto front [29].
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