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Abstract: This paper presents the issues of modeling the operation process of light utility vehicles
operating in military transport systems. The required condition for the effective operation of the
system is to maintain the means of transport at the appropriate level of technical readiness. For
this purpose, it is necessary to equip the technical system with appropriate resources enabling the
efficient implementation of fuel refilling, maintenance and repair processes. Each failure of the means
of transport causes a significant reduction in transport capacity, which then results in the inability
to perform the planned tasks. Quality control and vehicle operation process management require
advanced mathematical methods and tools. Three indicators have been proposed as quantitative
characteristics for assessing and optimizing the availability of military vehicles: functional readiness,
technical efficiency and airworthiness. To determine their value, a stochastic exploitation model
was developed based on the application of the theory of Markov processes. Based on the collected
empirical data, a nine-state phase space of the studied process was identified. Operating states were
distinguished relating to the implementation of the transport task, refueling, parking in the garage, as
well as maintenance and repairs. As part of the considerations for the continuous time, verification of
the distributions of time characteristics led to the development of a semi-Markov model. The ergodic
probabilities calculated based on the conditional probability matrix of interstate transitions and the
expected values of the time spent in the states were used to determine the indicators of functional
availability, efficiency and technical suitability. In order to determine the possibility of optimizing the
process, a sensitivity analysis was performed. Reducing the amount of time the vehicles must wait
for repair by about 50% can improve the values of the indexes from 0.91 to 0.95.

Keywords: exploitation process modeling; semi-Markov model; readiness; maintenance analysis;
transportation system

1. Introduction

Military transport systems aim to ensure that transport capacity corresponds to the
existing needs. The determinants of the level of transport needs include combat operations,
training plans and the current activity of military units. The fleet of reliable vehicles is one
of the main factors determining the high quality and timely implementation of processes
in modern transport systems. The condition for the effective operation of the system
is to maintain the means of transport in a state of technical efficiency and be ready to
perform tasks [1,2]. The fulfilment of this condition is possible thanks to the organization of
operating systems with appropriate technical resources to carry out processes of diagnosis,
servicing and repair of vehicles. Along with the increase in the intensity of the use of means
of transport, the demand for fuel and other consumables increases significantly, especially
in the case of military vehicles traveling outside the area of public roads [3–5].
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Military exploitation systems are largely based on a plan-preventive maintenance
strategy, aiming to maximize the technical availability of facilities [6–9]. This strategy
assumes the implementation of maintenance with a specific labor intensity, in accordance
with the required scope. The guidelines for maintenance activities, time intervals and
the size of the service life between maintenance are defined based on the manufacturer’s
technical specifications and the knowledge and experience of specialists dealing with
planning and standardization of operation at individual management levels. The main
disadvantages of this strategy are its cost-intensive nature and low flexibility.

The operation process covers activities related to a technical object from the moment of
its production to its liquidation. During this period, there are essentially two overlapping
sub-processes usage and maintenance. The rational use of machines and devices allows for
extending the intervals between subsequent maintenance services, recreating the technical
service life of the facility, and also reducing the current operating costs. The model of the
operation process should, on the one hand, reflect the basic technical characteristics of the
object consistent with the modeling objective, and on the other hand, it should be used for
the rational forecasting of use and maintenance [10–13].

Markov’s theory has found applications in many fields of science and technology.
There are many scientific studies in the literature on the use of Markov processes for re-
liability modeling [14,15], the operation of objects [16–19] and technical systems [20,21].
Depending on the case study and the purpose of modeling, the authors constructed models
based on a diverse number of operational states in the phase space. The least compli-
cated Markov chain model was presented in [22] and applied to simulate and optimize
energy savings for machines operating in production systems. Models with three states
were constructed to analyze and assess the technical availability of buses [23], special
vehicles [24], operational readiness of wind turbine elements [17], working time of pro-
duction machines [25], the time interval of preventive maintenance [26] and the reliability
of technical facilities [27]. In [28], the authors developed a five-state semi-Markov model
with the Weibull distribution of the residence times of four types of buses in the states
of the renewal process. This model allowed for profit optimization per unit of time and
availability depending on the duration of preventive maintenance.

The comparison of the values obtained by the six-state Markov and semi-Markov
models, which the authors of the publication [29] developed for production machines,
indicated that the unverified assumption of the exponential distribution of the time the
object stays in states may lead to significant errors in the calculation of the readiness indices.
In the presented case study, the difference between the results of the semi-Markov model
and the erroneous Markov model was as much as 0.40, which is less than half of the actual
value of the readiness index.

Markov models with 9- and 16-state phase spaces are presented in [8,30] with much
more elaborate models. The increased number of states allows a detailed analysis of the
process and factors affecting the technical readiness of the facility. The multi-state models
presented in [31] accurately reflected the stochastic nature of the electric vehicle driving
cycle during their use in urban areas, outside the city, on the motorway and during road
congestion. Table 1 summarizes the literature review containing the latest publications in
the field of modeling the exploitation process with the use of Markov theory.

In this publication, the authors addressed the issue related to the operation of light
utility vehicles operating in military transport systems. The research sample consisted of
19 Honker vehicles for which detailed data were collected during the three-year research
period. The operating system is focused on maintaining the high reliability of vehicles
through an appropriately planned and implemented maintenance strategy. The plan-
preventive system each time assumes the scope of maintenance works after a specified
amount of work (mileage) or time elapsed. Unfortunately, the records of operation are
still kept in the form of traditional documentation registered on an ongoing basis by direct
users (drivers) and in relation to inspections and repairs by service and repair workshops.
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Source documents that create departure orders, technical service cards and operation plans
were used to prepare detailed databases individually for each facility.

Table 1. Literature review of Markov and semi-Markov modeling in engineering.

Paper Case Study Model Results and Conclusions

[22] Machines in manufacturing
system Two-state Markov chain The model was developed to simulate and

optimize energy saving.

[8] Military helicopters Nine-state Markov model
Boundary probabilities were calculated for
all states and the functional readiness index

reached 0.9223.

[17] Spring shock absorber in wind
turbine system

Three-state semi-Markov
model of maintenance

Erlang distribution of sojourn time. The
system operational availability reached

0.6354–0.6497.

[25] Machines in wafer fabrication
work centre

Three-state hidden
semi-Markov model

Accuracy of the machine condition
recognition was 95.56% and prediction

accuracy of job processing time was 94.91%.

[29] Production machines Six-state Markov and
semi-Markov models

Readiness index: 0.85 (semi-Markov model)
and 0.45 (Markov model). Groundless

assumption of exponential distribution lead
to incorrect results.

[24] Special vehicles Three-state semi-Markov
model Technical readiness factor was 0.95.

[30] Means of transport 16-state semi-Markov model
of exploitation process

Genetic algorithm was proposed for
determining the optimal strategy to control

availability.

[23] Buses in transportation
system

Three-state hidden Markov
model

Probability of availability reached values in
the range 0.896–0.969.

[28] Four types of city bus renewal
processes

Five-state semi-Markov model
(Weibull distribution)

The model allows to optimize the profit per
unit time and readiness to carry out

transport tasks depending on the time to
preventive maintenance.

[27] Reliability of technical objects Three-state semi-Markov
model

Reliability function for Poisson and
Furry-Yule failure rate processes.

[26] Marine diesel engines Three-state semi-Markov
model (Weibull distribution)

The optimal preventive maintenance interval
was 1095 h.

[31] Driving cycles of electric
vehicles

Multistate Markov models of
acceleration

The models describe the stochastic nature of
driving cycles in four scenarios: rural,

highway, urban and congestion.

[19] Offshore wind farms Six-state Markov model
The proposed method allows for improving

maintenance efficiency of offshore wind
farms.

[10] Transformers Five-state Markov chain Prediction of maintenance cost in 20-year
forecast horizon.

The current review of the literature allows the authors to state there are no studies
on the analysis and evaluation of the operation of heavy goods vehicles with the use of
the Markov theory. It was a premise for conducting scientific research and developing an
exploitation model for the aforementioned group of military vehicles. In addition, Honker
vehicles have a significant share in the structure of the military transport fleet of the Polish
Armed Forces. Carrying out the modeling of the operation process based on the application
of the Markov theory requires a thorough understanding of the examined process and
enables the analysis and assessment of the basic operational indicators of the studied object.
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This article presents the original methodology for creating a stochastic model of
Honker vehicles based on the Markov theory. An algorithm for creating a mathematical
model was developed, the practical usefulness of which was verified on the actual opera-
tion process of the said sample of vehicles. An event model covering the nine-state phase
space of the process was developed. The determined values of ergodic probabilities for
individual operational states constituted the basis for calculating the values of functional
availability, efficiency and technical suitability indicators. From the point of view of the
transport capacity of the entire system as well as economic and technical conditions, the
personnel managing the vehicle operation process aim to maximize the presented readiness
and/or reliability measures. The proposed methodology makes it possible to indicate pos-
sible components influencing the improvement of exploitation indicators. The performed
sensitivity analysis of the model allows for the examination of the impact of improving the
organization of the repair subsystem, consisting of the shortening/elimination of waiting
time for spare parts, on the readiness indicators of the tested sample of vehicles.

The nine-state model adds to the current state of the literature both in terms of the
subject of the study and the application of sensitivity analysis to identify opportunities for
improving process efficiency. No previous scientific studies have addressed the issue of
modeling the operation of light utility vehicles (trucks) using Markov and semi-Markov
process theory. In addition, a completely novel way of analyzing the sensitivity of the
semi-Markov model in terms of the dependence of the values of ergodic probabilities on
the values of expected dwell times was proposed.

The article has been divided into the following main chapters. The introduction
reviews the current state of knowledge on the application of Markov theory to the exploita-
tion process. Section 2 describes the methodology of creating event-based models of the
operation process using the Markov theory. Section 3 provides a statistical analysis of
the source data constituting the basis for the development of the model. In Section 4, the
semi-Markov model is described, and the process research results are presented together
with the model sensitivity analysis. The values of ergodic probabilities of the semi-Markov
model were confronted with the standard Markov model. Finally, the Section 5 includes
the conclusions from the conducted research.

2. Methods

The actual operation processes are a composition of deterministic and random sub-
processes. Random components are usually interpreted as stochastic processes X(t) reflect-
ing changes in the operational states of the tested object in discrete or continuous time. In
the processes of exploitation at a random moment t, the object is only in one of the states
identified in the phase space S = X(t). This assumption requires precise determination
of all possible operational states in which vehicles may be in the course of the operation
process. The stochastic processes fulfilling the Markov property are essential in terms
of applicability. According to Markov’s theory, the conditional probabilities of reaching
the future states X(tz+1) result only from the current state X(tz) [32]. Mathematically, this
property is consistent with Equation (1) [33–35]:

P{X(tz) = xz|X(tz−1) = xz−1, X(tz−2) = xz−2, . . . , X(t0) = x0} = P{X(tz) = xz|X(tz−1) = xz−1}. (1)

The literature is dominated by the division of Markov processes with regard to time
and state space, which distinguishes four types of processes, i.e., processes:

1. Discrete in time and discrete in states;
2. Continuous in time and discrete in states;
3. Discrete in time and continuous in states;
4. Continuous in time and continuous in states.

In operation, the most frequently used models are based on discrete processes in states,
developed for both discrete and continuous time [8,16,24,28,29].
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2.1. Markov Chains

The Markov chain assumes the discretization of time into specific ∆t intervals, the
width of which depends on the characteristics of the process, measurement technique, and,
above all, the adopted modeling objective [36]. With the increase in the dynamics of the
process course, the possibility, and, at the same time, the necessity to perform frequent
measurements and the focus on creating a very accurate model, the values of time ∆t
decrease. The dynamics of changes in the operational states identified in the phase space for
the operation of light utility vehicles determine the assumption of the duration of moments
∆t for the time interval equal to 1 min. Increasing this value could cause the undesirable
omission of registering the occurrence of conditions, which are usually short-lived. At the
same time, reducing the time intervals is practically impossible due to recording the course
of operation processes of vehicles operating in military transport systems.

Constructing the Markov Chain Model based on an empirical process flow requires
acquiring data on interstate transitions. For this purpose, it is reasonable to create a matrix
of the number of interstate transitions according to the Formula (2):

N =


n11 n12 · · · n1(k−1) n1k
n21 n22 · · · n2(k−1) n2k

...
...

. . .
...

...
n(k−1)1 n(k−1)2 · · · n(k−1)(k−1) n(k−1)k

nk1 nk2 · · · nk(k−1) nkk

. (2)

The values of the N matrix correspond to the total number of observed interstate
transitions in the analyzed period of the process implementation, where nij is the transition
from the i state to the j state.

For a homogenous Markov chain, the conditional probability pij of transition from
state i to state j in one step is the same for every moment t. The homogeneity of the
process indicates the invariability of the rules affecting the state changes at any time of its
implementation. If the analyzed realizations of the process are included in the same phase
of operation, then the course of the process should be homogenous. The probability values
of the conditional interstate transitions are presented by means of the stochastic matrix P,
according to the Formula (3) [33,37,38]:

P =


p11 p12 · · · p1(k−1) p1k
p21 p22 · · · p2(k−1) p2k

...
...

. . .
...

...
p(k−1)1 p(k−1)2 · · · p(k−1)(k−1) p(k−1)k

pk1 pk2 · · · pk(k−1) pkk

, (3)

provided that the following formula [37] is fulfilled:

k

∑
j=1

pij = 1. (4)

The probabilities of the interstate transitions of the P stochastic matrix can be obtained
using the values of the N interstate number matrix by estimation [31,35,39] according to
the relationship:

pij =
nij

k
∑

j=1
nij

, (5)



Energies 2022, 15, 5062 6 of 24

where the standard error of the conditional probability estimation [40,41] is calculated
according to the formula:

SE
(

pij
)
=

√√√√ pij
(
1− pij

)
∑k

j=1 nij
. (6)

The values of ergodic probabilities πj are calculated by solving the following matrix
Equation (7) [37]:

(PT − I) ·Π = 0, (7)

assuming that the normalization condition is met, according to the formula:

n

∑
j=1

πj = 1. (8)

2.2. Markov and Semi-Markov Processes

Discrete Markov models in states and continuous in time allow for the analysis of the
operation process under constant supervision and monitoring of the course of changes in
operational states. This approach excludes the influence of the size of the time moments ∆t
on the values of the instantaneous and ergodic characteristics of the process. In principle,
the change of state from Si to Sj can take place at any time during the process. It is
also assumed that only one state change can occur at any time t. The Markov process
assumes the presence of exponential distributions of the characteristics of individual states
describing the analyzed process [42–44].

The transition intensity matrix Λ is the quantitative characteristic of the Markov process:

Λ =


λ11 λ12 · · · λ1(k−1) λ1k
λ21 λ22 · · · λ2(k−1) λ2k

...
...

. . .
...

...
λ(k−1)1 λ(k−1)2 · · · λ(k−1)(k−1) λ(k−1)k

λk1 λk2 · · · λk(k−1) λkk

, (9)

whose elements meet the following dependencies:

∀i, j, i 6= j, λij =
d
dt

pij = lim
∆t→0

pij(t + ∆t)− pij(t)
∆t

, (10)

∀i, λii = −
d
dt

pii = lim
∆t→0

1− (pii(t + ∆t)− pii(t))
∆t

. (11)

All elements of the matrix on the main diagonal have non-positive values, while all
other elements are non-negative and the sum of all elements for each row of the transition
intensity matrix is equal to 0.

In the operation processes of objects, the estimators of the values of the elements λij
of the interstate intensity matrix are the reciprocal of the average residence times in the Si
state before the transition to the Sj state. On the other hand, the value of λii is taken as the
reciprocal of the sum of the remaining elements in the i row. The presented description of
the estimation of the intensity matrix elements can be written using the relationship:

λij =
1

Tij
, (12)

λii = −∑
j 6=i

λij, (13)

where Tij is the average transition time from state Si to state Sj.
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The condition of exponential distributions of the stochastic process characteristics
narrows the spectrum of applications of the Markov model in continuous time. Some char-
acteristics of the operation process may not meet it. From the point of view of the reliability
of the mapping, this excludes the possibility of applying the Markov model [29,45]. The
generalization of the Markov process is the semi-Markov process, which does not require
the fulfilment of the condition of exponential distributions of interstate transition times. In
the semi-Markov process, the durations of states are independent random variables with
any distribution function [27,43,46].

The basic characteristic of the semi-Markov process is the matrix of the renewal kernel
Q(t), the elements of which are the products of the probability pij and the transition between
the states Si and Sj and the distribution function of the conditional duration distribution of
the state Si before the transition to Sj, according to the equation [30,47]:

Q(t) =


0 Q12(t) · · · Q1(k−1)(t) Q1k(t)

Q21(t) 0 · · · Q2(k−1)(t) Q2k(t)
...

...
. . .

...
...

Q(k−1)1(t) Q(k−1)2(t) · · · 0 Q(k−1)k(t)
Qk1(t) Qk2(t) · · · Qk(k−1)(t) 0

, (14)

wherein:
Qij(t) = pij · Fij(t), (15)

where pij is the probability of transition from the Si state to Sj, and Fij(t) is the distribution
function of the residence time in state Si before the transition to state Sj.

An embedded Markov chain is formulated for a semi-Markov process in continu-
ous time, which represents changes in the process state without taking into account the
residence times in individual states.

The embedded Markov chain assumes the possibility of transition from the Si state to
Sj, assuming that i 6= j. The interstate transition probability matrix for such a chain can have
non-zero elements only outside the main diagonal, which can be written by the formula:

P =


0 p12 · · · p1(k−1) p1k

p21 0 · · · p2(k−1) p2k
...

...
. . .

...
...

p(k−1)1 p(k−1)2 · · · 0 p(k−1)k
pk1 pk2 · · · pk(k−1) 0

. (16)

If the embedded Markov chain is ergodic and there are expected E(Ti) values of the
times in individual states, then the ergodic values of the probabilities πj for the semi-
Markov process can be determined using the following dependencies:

πj =
pj · E

(
Tj
)

k
∑

i=1
pi · E(Ti)

, (17)

E
(
Tj
)
=

k

∑
i=1

pijTij, (18)

where pi is the ergodic probability of the embedded Markov chain for state Si, and Tij is the
average transition time from state Si to state Sj.

Figure 1 shows a block diagram of creating a model of the exploitation process based
on the theory of Markov and semi-Markov. The first stages of stochastic modeling are the
identification of the technical object, the selection of a statistical sample, and the collection
of empirical data in the form of databases. Then a choice is made between discrete-time



Energies 2022, 15, 5062 8 of 24

and continuous-time models. In the case of discrete-time, a model is constructed based
on a Markov chain. When analyzing a process in continuous time, verification of the
exponential distribution of time characteristics, a condition for the possibility of using
a Markov model, is carried out. Two non-parametric consistency tests are proposed as
statistical verification tools: χ2 and Kolmogorov, depending on the size of the research
samples. For empirical data containing statistical samples less than 80, the Kolmogorov test
is recommended, while otherwise, there is no contraindication to using the χ2 test [48,49].
For processes satisfying the condition of the exponential distribution, Markov models are
used, while otherwise, a semi-Markov model is an appropriate solution. The calculation of
the values of operating indicators is carried out on the basis of the ergodic probabilities of
the corresponding model.
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2.3. Functional Readiness, Technical Efficiency and Technical Suitability

Functional readiness is usually understood as the ability of a technical system or
object to undertake and perform tasks consistent with its intended use in the required
time [50,51]. The availability index Kr reflects the quantitative characteristic of functional
availability, which for the Markov model is expressed as the sum of the probabilities of
ergodic operational states k ∈ Sr, in which the object can start the task or is in the process
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of its implementation. The mathematical notation of this relationship is presented by
the formula:

Kr = ∑
k∈Sr

πk, (19)

where πk is the ergodic probability of the desired (from the standpoint of readiness) set of
operational states k ∈ Sr.

In functional readiness, the vehicle is technically fully operational, i.e., it has an ade-
quate supply of fuel and consumables and is not being serviced. The functional availability
indicator shows the share of time that can be allocated to the implementation of tasks by
the technical object during its operation period.

The concept of technical efficiency refers to a wider set of operational states than in
the case of functional availability. The technically efficient facility has a technical resource
to perform the tasks. However, it may require refueling or short-term maintenance before
or after use. For the Markov model, the technical efficiency coefficient Ke is the sum of the
ergodic probabilities of operational states l ∈ Se in which the technical object has a technical
service life and does not require periodic maintenance, which is shown in the relationship:

Ke = ∑
l∈Se

πl , (20)

where πl is the ergodic probability of the desired set of operational states l ∈ Se.
Technical suitability expresses the condition of a technical object, in which it is not

damaged, or there is no need to repair it. The technical suitability condition is an extension
of the technical efficiency by the time needed to perform periodic maintenance in order to
restore its technical life. The technical suitability index Ks for the Markov model is therefore,
the sum of the probabilities of ergodic operational states m ∈ Ss, in which the object is not
damaged. This is expressed in the equation:

Ks = ∑
m∈Ss

πm, (21)

where πm is the ergodic probability of the set of operational states m ∈ Ss.
There is the following relationship between the sets defining the states of functional

readiness, technical efficiency and technical suitability:

Sr ⊂ Se ⊂ Ss. (22)

3. Object of Analysis
3.1. Case Study

The case study of the conducted research is a trial of Honker light utility vehicles,
constituting a fleet of vehicles of the military unit transport system. The analyzed technical
facilities perform tasks related to the transport of people and small loads weighing up to
1000 kg.

Determining the phase space of the studied process requires the reproduction of a
detailed phase trajectory for each object in the three-year research period. In the case of
the operation process, one should also take into account the conditions resulting from the
operation organization system as well as standards and guidelines for the maintenance sub-
system of technical facilities. In the case of military transport systems, the implementation
of the vehicle operation process depends on both instructions and procedures developed
by the operators of military equipment as part of the adopted operational strategy. As a
result of the analysis of the process of light utility vehicles carried out by the authors of this
study, a nine-state phase space was identified, for which the possible interstate transitions
were specified in Table 2.
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Table 2. State space of the light utility vehicles operation process.

State Name Possible Transition from Possible Transition to

S1 Task execution S2, S4, S6, S7 S2, S5, S6, S8
S2 Refueling S1, S3, S4 S1, S3, S5
S3 Parking in garage S2, S5, S6, S7 S2, S4, S6
S4 Pre-task service S3 S1, S2
S5 Service after task S1, S2, S6 S3, S9
S6 Periodic maintenance S1, S3, S7 S1, S3, S5,
S7 Repair S8, S9 S1, S3, S6, S9
S8 Diagnostics S1, S9 S7, S9
S9 Awaiting repair S5, S7, S8 S7, S8

The distinguished operating states are mutually disjoint subsets, which means that
at any time t the object may be in only one of them. For example, the vehicle is in the S3
garage state while waiting to be used. Before starting the task, it is necessary for the direct
user to check the correct operation of the systems and mechanisms that determine the safe
use of the vehicle. These activities correspond to state S4. State S1 means completion of
the transportation task, upon completion of which the object should be serviced after use
(S5). Its purpose is to re-check its operational condition, including the removal of minor
defects and cleaning the body. The implementation of the S2 refueling state may occur
before, during, or after the task commencement, depending on the identified needs. State
S6 corresponds to the performance of periodic vehicle maintenance in accordance with
the operational strategy as well as instructions and guidelines. S7, S8 and S9 states are
undesirable from the standby point of view, as they symbolize damage to the object and
the need for repair.

The database was developed on the basis of operational documentation covering a
three-year research period. Its fragment is presented in Table 3. In the following rows of
the database, the transitions between the various operational states were identified, along
with detailed records in the following system: transition number, date, hour and minute.
The accuracy of the measurement in the order of 1 min is determined by the occurrence
of short-term states and is necessary to verify the correctness of the time balance over the
entire research period.

Table 3. Example of a part of database sheet.

No. Date Time S1 S2 S3 S4 S5 S6 S7 S8 S9

267 30.03.2020 08:40:00 1
268 30.03.2020 08:45:00 1
269 30.03.2020 13:31:00 1
270 30.03.2020 13:35:00 1
271 30.03.2020 13:40:00 1
272 31.03.2020 07:00:00 1
273 31.03.2020 07:30:00 1
274 31.03.2020 11:30:00 1
275 04.04.2020 07:20:00 1
276 04.04.2020 07:25:00 1
277 05.04.2020 08:40:00 1
278 05.04.2020 08:45:00 1

3.2. Statistical Analysis of Data

For the verification of the empirical distribution with the theoretical distribution, non-
parametric consistency tests are commonly used [52–54]. The choice of test depends on
the type of distribution being verified, the random variable and the sample size. The most
common test χ2 requires a sample size of at least 80 realizations of a random variable. For a
small number of interstate transitions in the operation process, this condition may not be
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met. In this case, the verification of the assumptions of the Markov process is performed
using the Kolmogorov test.

The condition for the exponential distribution of transition times between states was
verified with the use of the Kolmogorov conformance test (Table 4). As the H0 hypothesis, it
was assumed that the distribution of Tij times for individual allowed interstate transitions
is consistent with the exponential distribution. The alternative hypothesis (H1) contradicts
this assumption. The Uy statistic of the Kolmogorov test has the form (23):

Uy = max
1≤i≤y

(
d−y , d+y

)
, (23)

wherein:

d−y = max
1≤i≤y

∣∣∣∣F(xi)−
i− 1

y

∣∣∣∣, (24)

d+y = max
1≤i≤y

∣∣∣∣ i
y
− F(xi)

∣∣∣∣, (25)

where F(xi) is the cumulative value of the theoretical distribution according to the H0
hypothesis, and y is the sample size.

Table 4. Results of Kolmogorov test.

Tij y Uy Statistics Critical Range Hypothesis

T12 798 0.2585 <0.0479, 1> H1
T15 3340 0.2019 <0.0234, 1> H1
T16 32 0.1834 <0.2343, 1> H0
T18 32 0.3587 <0.2343, 1> H1
T21 396 0.4773 <0.0678, 1> H1
T23 366 0.4970 <0.0705, 1> H1
T25 695 0.4731 <0.0513, 1> H1
T32 365 0.1428 <0.0706, 1> H1
T34 4063 0.2867 <0.0213, 1> H1
T36 76 0.2907 <0.1534, 1> H1
T41 3769 0.6316 <0.0221, 1> H1
T42 294 0.6151 <0.0786, 1> H1
T53 3988 0.4533 <0.0215, 1> H1
T59 70 0.5071 <0.1598, 1> H1
T61 11 0.4395 <0.3914, 1> H1
T63 84 0.2843 <0.1461, 1> H1
T65 23 0.4757 <0.2750, 1> H1
T71 27 0.2320 <0.2544, 1> H0
T73 67 0.3295 <0.1632, 1> H1
T76 10 0.4754 <0.4094, 1> H1
T79 44 0.4082 <0.2006, 1> H1
T87 63 0.3348 <0.1683, 1> H1
T89 39 0.2445 <0.2128, 1> H1
T97 85 0.2186 <0.1452, 1> H1
T98 70 0.5196 <0.1598, 1> H1

For the Uy statistic values within the range of critical values <D(y;α), 1> for the
significance level α, the H0 hypothesis is rejected and H1 is accepted. Otherwise, there is no
reason to reject the H0 hypothesis. For the significance level α = 0.05, the value D(y;α) can
be approximated using the formula:

D(0.05; y) =
1.358

√
y + 0.12 + 0.11√

y
. (26)

At the adopted significance level of α = 0.05, only two time characteristics, T16 and T71,
achieved the values of the Kolmogorov test statistics, which are not included in the critical
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intervals. This means there are no grounds to reject the null hypothesis assuming the
exponential distribution of the times of stay in individual states. Thus, for the remaining
time characteristics, the null hypothesis was rejected and an alternative was adopted. The
results of the statistical test for all variables are presented in Table 4. Figure 2 presents the
frequency graphs for two exemplary times T16 and T34 and the course of the exponential
distribution with the parameter estimated on the basis of the reciprocal of the mean values
from both statistical samples. The number of histogram intervals was determined using
the square root method.
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The exploitation process does not fulfill the condition of exponential distributions
and, therefore, cannot be considered a Markov process in continuous time. In this case,
semi-Markov processes should be used for modeling.

4. Results and Discussions
4.1. Semi-Markov Model (SMM)

The embedded Markov chain in the semi-Markov process, in accordance with the
adopted assumptions, does not allow for the possibility of returns (transition from the
Si state to the Si state). This assumption adopts that every change of the process state is
recorded, while its absence means that the object is in the Si state before transitioning to the
next Sj state for a period of time equal to Tij [26,28–30]. The matrix (27) shows the empirical
numbers of transitions between particular exploitation states as a result of observation
of the process. On the other hand, matrix (28) represents the probabilities of transitions
between states estimated on the basis of the matrix of the number of transitions.

N =



0 798 0 0 3340 32 0 32 0
396 0 366 0 695 0 0 0 0
0 365 0 4063 0 76 0 0 0

3769 294 0 0 0 0 0 0 0
0 0 3988 0 0 0 0 0 70

11 0 84 0 23 0 0 0 0
27 0 67 0 0 10 0 0 44
0 0 0 0 0 0 63 0 39
0 0 0 0 0 0 85 70 0


, (27)
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P =



0 0.189910 0 0 0.794860 0.007615 0 0.007615 0
0.271791 0 0.251201 0 0.477008 0 0 0 0

0 0.081039 0 0.902087 0 0.016874 0 0 0
0.927640 0.072360 0 0 0 0 0 0 0

0 0 0.982750 0 0 0 0 0 0.017250
0.093220 0 0.711864 0 0.194915 0 0 0 0
0.182432 0 0.452703 0 0 0.067568 0 0 0.297297

0 0 0 0 0 0 0.617647 0 0.382353
0 0 0 0 0 0 0.548387 0.451613 0


. (28)

Table 5 summarizes the values of the standard error for the conditional probabilities
(28) estimated on the basis of the matrix of the number of interstate transitions (27). Ac-
cording to Formula (6), with the increase in the number of transitions from the Si state, the
standard error SE(pij) decreases. For this reason, the values of the standard error are higher
for operational states in which the technical object is relatively rare. Nevertheless, for all
conditional probabilities, the SE(pij) did not exceed the value of 0.05 [55,56]. The result at
this level is considered acceptable.

Table 5. Standard errors of probabilities estimation.

SE(pij) S1 S2 S3 S4 S5 S6 S7 S8 S9

S1 0 0.0061 0 0 0.0062 0.0013 0 0.0013 0
S2 0.0117 0 0.0114 0 0.0131 0 0 0 0
S3 0 0.0041 0 0.0044 0 0.0019 0 0 0
S4 0.0041 0.0041 0 0 0 0 0 0 0
S5 0 0 0.0020 0 0 0 0 0 0.0020
S6 0.0268 0 0.0417 0 0.0365 0 0 0 0
S7 0.0317 0 0.0409 0 0 0.0206 0 0 0.0376
S8 0 0 0 0 0 0 0.0481 0 0.0481
S9 0 0 0 0 0 0 0.0400 0.0400 0

Figure 3 presents a graph illustrating possible transitions between states during the
implementation of the operation process. According to the assumptions made for the
embedded Markov chain, the fact that the object remains in the same state is not treated
as a Si → Si transition. For this reason, the SMM model graph does not have connections
coming from the Si state and going directly to the Si state. This means a lack of return to
the same state, which is commonly used in modeling the operation processes.

Assuming that at t = 0, the vehicle is technically efficient and awaits the appearance
of the task, it is possible to determine the instantaneous probabilities of the embedded
Markov chain. This assumption reflects the initiation of the operation process for a vehicle
included in the transport system. The instantaneous probabilities are the matrix product of
the initial distribution matrix p0 and the n-th power of the conditional probability matrix
P, where n corresponds to the number of transitions between states. The development of
the dependence of the instantaneous probabilities on the number of interstate transitions
allows us to determine the period after which their values stabilize at a certain level and
the stochastic process reaches the equilibrium state.

Figures 4 and 5 show changes in the value of the instantaneous probabilities of the
embedded Markov chain in the semi-Markov process. In the range from t = 0 to t = 30,
there are fluctuations with a large amplitude of changes in the values, which decrease with
time and after overcoming about 50 transitions, the probability values remain constant.
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4.2. Ergodic Probabilities of SMM

The ergodic probabilities of the semi-Markov process are determined on the basis of
the probabilities of the embedded Markov chain and the values of the expected time in
individual states of the process. For the embedded Markov chain, the ergodic probabilities
are computed using the matrix equation:

(PT − I) · Pj =



−1 p21 0 p41 0 p61 p71 0 0
p12 −1 p32 p42 0 0 0 0 0
0 p23 −1 0 p53 p63 p73 0 0
0 0 p34 −1 0 0 0 0 0

p15 p25 0 0 −1 p65 0 0 0
p16 0 p36 0 0 −1 p76 0 0
0 0 0 0 0 0 −1 p87 p97

p18 0 0 0 0 0 0 −1 p98
0 0 0 0 p59 0 p79 p89 −1


·



p1
p2
p3
p4
p5
p6
p7
p8
p9


=



0
0
0
0
0
0
0
0
0


, (29)
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which can be written as a system of Equation (30) together with the condition (31) of
system normalization:

−p1 + 0.271791p2 + 0.927640p4 + 0.093220p6 + 0.182432p7 = 0
0.189910p1 − p2 + 0.081039p3 + 0.072360p4 = 0

0.251201p2 − p3 + 0.982750p5 + 0.711864p6 + 0.452703p7 = 0
0.902087p3 − p4 = 0

0.794860p1 + 0.477008p2 − p5 + 0.194915p6 = 0
0.007615p1 + 0.016874p3 − p6 + 0.067568p7 = 0

−p7 + 0.617647p8 + 0.548387p9 = 0
0.007615p1 − p8 + 0.451613p9 = 0

0.017250p5 + 0.297297p7 + 0.382353p8 − p9 = 0

, (30)

9

∑
j=1

pj = 1. (31)

After solving the system of equations, the values of ergodic probabilities pj of the
inserted Markov chain were obtained. The expected E(Tj) times of staying in individual
operating states were determined as average values based on empirical data. The values of
pj and E(Tj) were used to calculate the values of ergodic probabilities in the semi-Markov
model. The results of the conducted analyses are summarized in Table 6.

Table 6. Ergodic probabilities of states in embedded Markov chain and SMM.

State S1 S2 S3 S4 S5 S6 S7 S8 S9

pj 0.223537 0.077505 0.239575 0.216117 0.215872 0.006267 0.007722 0.005343 0.008063
E(Tj) (min) 717.52 4.60 3956.58 5.00 8.13 271.95 174.63 36.11 13,240.50

πj 0.131311 0.000292 0.776024 0.000885 0.001436 0.001395 0.001104 0.000158 0.087396
πj (%) 13.1311 0.0292 77.6024 0.0885 0.1436 0.1395 0.1104 0.0158 8.7396

The garage state S3 had the highest value of the ergodic probability of over 77%. On
the basis of the calculated values of probabilities, it can be concluded that the trucks and
passenger cars stay together in other states for approximately 13% of the time during the
entire three-year research period. The S9 state also obtained a significant level of ergodic
probability, which indicates that the vehicles remain in a state of waiting for repair for
almost 9% of their operational time. The remaining operational states obtained probability
values below 1% and do not have a significant impact on the availability rates.

4.3. Calculations of Indicators in SMM

In the nine-state exploitation model, state subsets were distinguished corresponding
to the functional readiness Sr, technical efficiency Se and technical suitability Ss. The
mathematical notation is presented by the Formulas (32)–(34):

Sr = {S1, S3}, (32)

Se = {S1, S2, S3, S4, S5}, (33)

Ss = {S1, S2, S3, S4, S5, S6}. (34)

Functional readiness corresponds to the vehicle being in the task (S1) or garage (S3)
state. Technical efficiency extends the set of these states with fuel refilling (S2) and the
implementation of maintenance before starting the task (S4) and after its completion (S5).
On the other hand, technical suitability also takes into account the implementation of
periodic maintenance (S6), the purpose of which is to restore the technical service life. The
graphical diagram of the division of the operating conditions set into individual subsets is
shown in Figure 6.
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For such defined subsets, the values of functional availability, technical efficiency and
technical suitability indicators were calculated. The results are presented in Table 7. The
values of all three indicators are similar, which means a small share of the time of current
and periodic maintenance and refueling in the entire test period.

Table 7. Values of Kr, Ke and Ks indicators in SMM.

Indicator Value

Functional readiness Kr 0.907334
Technical efficiency Ke 0.909947
Technical suitability Ks 0.911343

The high probability value of the S9 ergodic state has the greatest impact on the
reduction of the indicators of functional availability, technical efficiency and technical
suitability of vehicles. This state corresponds to the situation when the vehicle has suffered
a breakdown, is out of order and requires repair. Due to the lack of technical possibilities, it
is not in the repair state (S7) and is not in the diagnosis phase (S8). The main reasons for
such a situation are logistic delays related to the limited availability of spare parts and the
lack of qualified technical personnel within the specified time.

4.4. Sensitivity Analysis of SMM

The calculated ergodic probability π9 of the S9 state has the strongest impact on the
values of the Kr, Ke and Ks indicators. Due to this fact, the sensitivity analysis of the SMM
model was carried out in order to investigate the impact of the presence of objects in the
S9 state on the ergodic probabilities and technical readiness rates. The parameter against
which the variability analysis was performed is the expected value of the duration of the S9
state. For the change of this parameter, expressed as a percentage and amounting to ∆E(T9),
the values of the ergodic probabilities of the semi-Markov process can be determined using
the relationship:

πj =
pj · E

(
Tj
)

∑8
i=1 pi · E(Ti) + p9 · E(T9) · (1− ∆E(T9))

for j = {1, 2, 3, . . . , 8}, (35)

π9 =
p9 · E(T9) · (1− ∆E(T9))

∑8
i=1 pi · E(Ti) + p9 · E(T9) · (1− ∆E(T9))

. (36)

The undoubted advantage of the SMM model is the ability to perform a sensitivity
analysis for a wide range of changes in the E(T9) parameter without the need to solve
many matrix equations. Table 8 shows the results of the analysis for selected ∆E(T9) values.
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Figure 7 presents a graph of changes in ergodic probabilities for continuous changes in the
value of ∆E(T9).

Table 8. Ergodic probabilities obtained in sensitivity analysis of SMM.

∆E(T9) (%) π1 π2 π3 π4 π5 π6 π7 π8 π9

0 0.131311 0.000292 0.776024 0.000885 0.001436 0.001395 0.001104 0.000158 0.087396
10 0.132468 0.000294 0.782865 0.000893 0.001449 0.001407 0.001114 0.000159 0.079350
20 0.133646 0.000297 0.789828 0.000901 0.001462 0.001420 0.001124 0.000161 0.071162
30 0.134846 0.000300 0.796916 0.000909 0.001475 0.001433 0.001134 0.000162 0.062826
40 0.136067 0.000302 0.804133 0.000917 0.001488 0.001446 0.001144 0.000164 0.054339
50 0.137310 0.000305 0.811481 0.000926 0.001502 0.001459 0.001154 0.000165 0.045698
60 0.138577 0.000308 0.818965 0.000934 0.001515 0.001472 0.001165 0.000167 0.036897
70 0.139867 0.000311 0.826588 0.000943 0.001530 0.001486 0.001176 0.000168 0.027932
80 0.141181 0.000314 0.834354 0.000952 0.001544 0.001500 0.001187 0.000170 0.018799
90 0.142520 0.000317 0.842268 0.000961 0.001559 0.001514 0.001198 0.000171 0.009492
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Figure 7. Ergodic probabilities of SMM obtained in simulation by reduction of the expected value of
sojourn time E(T9).

On the basis of the determined ergodic probabilities, the possibilities of improving
the values of the readiness ratios were carried out at the assumed levels of reduction of the
time spent in the state of incapacity and waiting for repair. The results are presented in
Table 9 and Figure 8.

Table 9. Indicators values obtained in sensitivity analysis of SMM.

∆E(T9) (%) Kr ∆Kr Ke ∆Ke Ks ∆Ks

0 0.907334 0.000000 0.909947 0.000000 0.911343 0.000000
10 0.915334 0.008000 0.917970 0.008023 0.919377 0.008035
20 0.923476 0.016142 0.926135 0.016188 0.927555 0.016213
30 0.931764 0.024430 0.934447 0.024500 0.935880 0.024538
40 0.940202 0.032868 0.942910 0.032962 0.944356 0.033013
50 0.948794 0.041460 0.951527 0.041580 0.952986 0.041643
60 0.957545 0.050211 0.960303 0.050356 0.961775 0.050433
70 0.966459 0.059125 0.969243 0.059295 0.970729 0.059386
80 0.975541 0.068206 0.978350 0.068403 0.979850 0.068508
90 0.984794 0.077460 0.987630 0.077683 0.989145 0.077802
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Reducing the waiting time for repairs by 50% would result in an increase in the values
of the Kr, Ke and Ks indicators to the level of about 0.95, which at the same time means their
improvement by over 0.04. The sensitivity analysis of the SMM model was carried out with
regard to the impact of changes in the expected value of the time of staying in the S9 state.

4.5. Markov Model (MM)

Markov models, assuming exponential distributions of time characteristics, often use
stochastic models to describe the operation processes of machines, devices and technical
systems. For small deviations of empirical distributions of interstate times from the theoret-
ical assumptions of the Markov theory, the results obtained for Markov and semi-Markov
models may be similar or even negligibly small.

For the analyzed sample of means of transport, the non-parametric Kolmogorov test
showed grounds for rejecting the null hypothesis about exponential distributions. However,
the authors of the publication conducted an analysis of the applicability of the Markov
model as a simplification of the generalized SMM presented in Sections 4.1–4.4. The basic
characteristic of the Markov model is the matrix of interstate transition intensity Λ. In the
case study under consideration, the value of the Λ matrix presented in the matrix, which
were estimated on the basis of the mean values of the transition times between the states
according to the Equations (11) and (12).

Λ =



−0.012136 0.000890 0 0 0.001593 0.007880 0 0.001773 0
0.214402 −0.657021 0.229036 0 0.213583 0 0 0 0

0 0.000241 −0.000650 0.000257 0 0.000152 0 0 0
0.199841 0.200000 0 −0.399841 0 0 0 0 0

0 0 0.122711 0 −0.270079 0 0 0 0.147368
0.003216 0 0.003819 0 0.003446 −0.010481 0 0 0
0.007004 0 0.005194 0 0 0.010753 −0.028343 0 0.005392

0 0 0 0 0 0 0.045652 −0.062586 0.016934
0 0 0 0 0 0 0.000068 0.000088 −0.000156


. (37)

Ergodic probabilities of the Markov process for the entire set of operational states are
calculated by solving the matrix Equation (38) together with the system normalization
condition (39).
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ΠT ·Λ =



π1
π2
π3
π4
π5
π6
π7
π8
π9



T

·



−λ11 λ21 0 λ41 0 λ61 λ71 0 0
λ12 −λ22 λ32 λ42 0 0 0 0 0
0 λ23 −λ33 0 λ53 λ63 λ73 0 0
0 0 λ34 −λ44 0 0 0 0 0

λ15 λ25 0 0 −λ55 λ65 0 0 0
λ16 0 λ36 0 0 −λ66 λ76 0 0
0 0 0 0 0 0 −λ77 λ87 λ97

λ18 0 0 0 0 0 0 −λ88 λ98
0 0 0 0 λ59 0 λ79 λ89 −λ99


=



0
0
0
0
0
0
0
0
0



T

, (38)

9

∑
j=1

πj = 1. (39)

Mathematica and MS Excel software were used for the presented calculations. The
results for MM are summarized in Table 10 and Figure 9, comparing them with the values
of ergodic probabilities obtained for SMM. Percentage differences between the models
reached significant values, with the most similar probabilities occurring for the S2 state
and differing by over 41.0%. The greatest discrepancies in the results occurred for the S6
state, for which the ergodic probability obtained in MM was as much as 1153.69% higher
than in SMM. In addition, the S6, S7, S8 and S9 states, which are a subset of the technical
inoperability and failure states, achieved positive differences. The use of MM to evaluate
the operation process would result in a significant reduction of the values of the Kr, Ke, and
Ks indices, inconsistent with the actual state.

Table 10. Comparison of results obtained by MM and SMM.

π1 π2 π3 π4 π5 π6 π7 π8 π9

SMM 0.131311 0.000292 0.776024 0.000885 0.001436 0.001395 0.001104 0.000158 0.087396
MM 0.012784 0.000172 0.275931 0.000177 0.000435 0.017489 0.003780 0.001325 0.687906

difference −0.118527 −0.000120 −0.500093 −0.000708 −0.001001 0.016094 0.002676 0.001167 0.600510
difference

in % −90.26 −41.10 −64.44 −80.00 −69.71 1153.69 242.39 738.61 687.11Energies 2022, 15, 5062 21 of 25 
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Compared to SMM, the Markov model achieved a mean absolute percentage error
(MAPE) of 351.92%. Therefore, the hypothesis about the possibility of using the Markov
process to describe state changes by the analyzed technical objects in the considered nine-
element set of operational states should be unambiguously rejected.

5. Conclusions

The theory of Markov processes was used to model the operation of light utility
vehicles. The paper presents a semi-Markov model that allows for the assessment the
technical readiness of means of transport operating in a real system. On the basis of the
systems of Chapman–Kolmogorov equations and the values of the expected times of stay in
operating states, the values of the ergodic probabilities of the process were determined. The
main reason for the reduction of functional availability, technical efficiency and technical
suitability indicators was the high probability value of the S9 state (Awaiting repair). This
indicates the occurrence of significant delays in the implementation of repairs of damaged
vehicles. Therefore, in eliminating the reasons for the presence of technical objects in the S9
state, the operating system does not have sufficient technical resources to carry out repairs
without unnecessary time delay. Repair delays are mainly caused by the unavailability
of spare parts and a shortage of qualified technical personnel. In order to maximize the
technical readiness of vehicles, it is necessary to focus on improving the organization of
the spare parts delivery system, which will significantly reduce the time spent by technical
facilities in the S9 state.

For the current state of the operation system, the functional availability ratio Kr has
reached the value of 0.907334, which should be interpreted as follows: for more than 90%
of the duration of the operation process, vehicles in good technical condition await the
appearance of a task or are in the process of its implementation. A slight difference between
the technical efficiency index Ke and the functional readiness index Kr indicates that the
process of refueling and servicing is carried out efficiently. The aforementioned processes
constitute a set of activities preparing a technically efficient vehicle to perform the task, as
well as control and check after its completion. On the other hand, the technical suitability
index Ks amounting to 0.911343 means that for over 91% of the duration of the operation
process, the vehicles are fit for use. Its high value indicates a well-thought-out and proper
implementation of the exploitation strategy. The small value of the ergodic probability for
the S6 state resulted in a slight difference between the technical efficiency index Ke and the
technical suitability index Ks. The above-mentioned results show that the capabilities of
the technical subsystem, which carries out the periodic maintenance process, are adjusted
to the requirements of the plan-preventive strategy used.

The ergodic probability π2 of 0.000292 and the expected residence time in the S2 state
of 4.60 (min) indicate an efficiently implemented refueling process. For the current level
of intensity of use of vehicles, in which over 13.0% of the operation time is during the
implementation of transport tasks, the technical system provides sufficient resources of
diesel oil and appropriate distribution equipment.

Despite the assumed high level of readiness, efficiency and suitability indicators of the
tested military vehicles, an attempt was made to optimize the process by determining the
impact of a potential reduction in the duration of the S9 state, equipped with logistic delays
occurring in the operation system. An analysis of the optimization possibilities was carried
out on the basis of changes in the expected time of stay in the S9 state based on analytical
relationships, which enabled the analysis based on a continuous reduction of changes in
E(T9) in the percentage range of 0.0–90.0%. As a result, the reduction of the expected time
of the vehicle’s stay in the S9 state by 50.0% resulted in the increase of all indicators by over
0.041, and the reduction by 90% increased the values of the indicators by over 0.077.

The attempt to use the Markov process, despite not meeting the condition of expo-
nential time characteristics, showed significant discrepancies between MM and SMM. The
high degree of mismatch between the Markov model and the actual process is evidenced
by the value of the MAPE error amounting to 351.92%. Therefore, it is inappropriate to use
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MM to describe the nine-state process of operation of heavy goods vehicles operating in
the military transport system. The performed non-parametric Kolmogorov test resulted in
the rejection of the hypothesis concerning the compatibility of empirical distributions of
the duration of individual states with the theoretical exponential distribution.

The proposed method allows a detailed analysis of vehicle operation as a stochastic
process with a multi-state phase space. The unquestionable advantage of the nine-state
semi-Markov model is the possibility of evaluating the operation process using indicators
of functional readiness, efficiency, and technical efficiency, calculated based on the basis of
ergodic probabilities of the process. Additionally, the model sensitivity analysis makes it
possible to determine the impact of reducing the values of expected vehicle dwell times
in each state on the efficiency of the operation process. However, a disadvantage of the
proposed method is the inability to predict the values of indicators for the increased or
decreased intensity of vehicle use expressed by means of average daily mileage. This is due
to the condition of determining the characteristics of all states in the same time domain.

The proposed methodology for creating stochastic exploitation models can be applied
to a wide range of facilities and technical devices. The developed model can be used to
analyze and evaluate the operation process of other vehicles operating in technical systems
with an analogous or similar operation strategy.
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Process in Terms of Readiness. Def. Sci. J. 2021, 71, 602–611. [CrossRef]
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