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Abstract: The wireless power transmission (WPT) of an autonomous underwater vehicle (AUV)
tends to have non-negligible eddy current loss with increasing frequency or coil current due to
the conductivity of seawater. In this paper, the inductor-capacitor-capacitor and parallel (LCC-P)
topology and the magnetic coupler with an H-shaped receiver structure are chosen to achieve a
compact system on the receiving side. The conditions for constant current output of the LCC-P
topology are analyzed based on the cascaded circuit analysis method. The traditional parameter
design method does not consider the influence of eddy current loss on the system circuit model, by
introducing the equivalent eddy current loss resistance at both the transmitting side and receiving
side, a modified circuit model of the WPT system in the seawater condition was obtained. Afterward,
a nonlinear programming model with the optimal efficiency of the constant current mode as the
objective function is established, and the genetic algorithm is used to obtain the optimal system
parameters. An underwater AUV-WPT prototype was built and the finite element simulation and
experimental results verified the theoretical analysis.

Keywords: inductor-capacitor-capacitor (LCC-P) topology; constant current (CC); parameter design;
eddy current loss; genetic algorithm

1. Introduction

Wireless power transfer (WPT) does not require a physical connection to achieve
energy transmission [1]. Compared with wired charging technology, it has the advantages
of safety, concealment, and strong environmental adaptability [2,3]. It has been widely
used in electronic devices [4], electric vehicles [5], and autonomous underwater vehicles
(AUVs) [6–9]. The energy supply problem of AUVs greatly restricts the endurance and
working range of AUV. The use of WPT technology for AUV charging can effectively
expand the endurance range of AUV and improve the concealment of charging.

The space inside the AUV is very limited, which puts forward high requirements on the
weight and volume of the receiver of the system, that is, the receiver should be as compact as
possible, including the optimization of the magnetic coupler [7–9], compensation topology
select [10–16], etc. The magnetic coupler selects the arc shaped transmitter and the H-
shaped structure receiver proposed by [17], which not only occupies a small volume but
also has the characteristics of light weight. The function of the compensation topology
is to adjust the reactive power in the system by adding inductive or capacitive elements,
thereby improving the transmission efficiency. The topology with a simple structure on the
receiving side is more suitable for the actual application requirements of AUV.

The series-series (S-S) topology is widely used due to its simple structure, and the
resonant frequency is decoupled with the coupling coefficient and the load [13], which is
beneficial for wireless charging systems. However, in AUV-WPT systems that is prone
to misalignment, the output power will increase with the occurrence of the misalign-
ment, which will lead to overcurrent and is not conducive to the safety of the system.
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Hou et al. [14] added a parallel resonant capacitor on the basis of SS topology to form the
series-series parallel (S-SP) topology, combining the advantages that the value of the SS
topology output voltage gain intersection value is fixed and does not vary with the coupling
coefficient, and the input phase angle at the series-parallel (SP) topology gain intersection
point is zero. It makes the S-SP topology insensitive to the change in the coupling coefficient
of the magnetic coupler, so it has better adaptability to variable parameters. However,
the resonance condition is related to the mutual inductance, so it is difficult to maintain
the resonance state under variable coupling conditions. Thrimawithana et al. [15] pro-
posed a double-side inductor-capacitor-inductor (LCL) topology to keep the transmitting
coil current constant when the receiver is unloaded. However, the self-inductance value
of the transmitting coil needs to be the same as the resonant inductance, which greatly
limits the flexibility of the parameter design. Li et al. [16] proposed a double-side LCC
topology, which has been widely used in electric vehicle wireless charging systems. The
double-side inductor-capacitor-capacitor (LCC) topology has the advantage of the high
degree of freedom in parameter design; the resonant frequency is decoupled with coupling
coefficient and load. However, the number of compensation components used in the circuit
is large, leading to a high cost and large size, which is unfavorable for AUV with compact
interior space.

In this paper, the WPT system including an inductor-capacitor-capacitor (LCC-P)
topology combined with an H-shaped magnetic coupler is studied, which can make the
receiver more compact and save space. LCC-P topology can reduce the voltage/current
stress on switching devices and achieves similar performance as the double-side LCC topol-
ogy with fewer compensation components at the receiver. By introducing the equivalent
resistance at both the transmitter and receiver, a modified circuit model of an underwater
WPT system was obtained. Based on the model, the genetic algorithm is used to complete
the optimal design of the parameters of the system with the objective of constant current
output and optimum efficiency.

This paper is organized as follows: the circuit analysis of the LCC-P topology in
Section 2, the influence of the eddy current loss in the seawater condition on the system
parameters is analyzed and based on the genetic algorithm, and the resonance parameters
of the system are optimized with the goal of the highest efficiency in Section 3. An
experimental prototype is established to verify the results of theoretical analysis in Section 4.
The conclusions are drawn in Section 5.

2. Circuit Analysis

The WPT system using LCC-P topology is shown in Figure 1, which can be divided
into four parts: inverter, compensation topology, magnetic coupler, rectifier and filter
circuit. S1–S4 are four power MOSFETs of the inverter and D1–D4 are the rectifier diodes,
Vdc1 and Vin represent the DC input voltage and inverter output voltage, Lf, Cf, are the
compensation inductance and capacitance, Lp, LS, are the self-inductances of the transmitter
and the receiver of the magnetic coupler, M is the mutual inductance, Cp and CS are the
compensation capacitance on the transmitting side and the receiving side, respectively.
Vdc2 represents the DC output voltage on the load.
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Figure 2. Equivalent circuit of LCC-P topology in CC mode. 
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Based on the cascade analysis method of [18], the equivalent circuit of LCC-P topology
in constant current (CC) mode is shown in Figure 2. The circuit can be equivalent to the
cascade of a reverse- L circuit, a series circuit and a π circuit. The voltage-fed reverse-L
circuit has the output characteristic of a current source, the series circuit driven by a current
source can achieve CC output, and the π circuit driven by a current source can achieve CC
output. As aforementioned, the output characteristics of the circuits at all levels change
as follows: voltage source→ current source→ current source→ current source, so as to
achieve CC output for LCC-P topology.
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Assuming that the resonant frequency of the system working in the CC mode isωCC,
the reverse-L circuit and the π circuit should satisfy:

1
jωCCCf

+jωCCLf = 0 (1)

1
jωCCCS

+jωCCLS = 0 (2)

Under the CC mode, the total input impedance of the system can be obtained as:

ZinCC =

1
jωCCCf

(
jωCCLp + 1

jωCCCp
+Zref

)
1

jωCCCf
+jωCCLp + 1

jωCCCp
+Zref

+jωCCLf (3)

where, Zref is the reflected impedance at the receiving side, which can be expressed as:

Zref =

(
Req +

1
jωCCCS

) (
ω2

CCCSM
)2

(4)

Substituting (1), (2) into (3), the total input impedance of the system can be obtained:

ZinCC =

Lf
Cf

1
jωCCCf

+jωCCLP + 1
jωCCCp

+
(

Req +
1

jωCCCS

) (
ω2

CCCSM
)2 (5)

In order to meet the zero phase angle (ZPA) of the system, it is necessary to satisfy Im
(ZinCC) = 0, which can be calculated as

1
jωCCCf

+jωCCLp +
1

jωCCCp
+

1
jωCCCS

(
ω2

CCCSM
)2

= 0 (6)

Through the above analysis, when the system parameters of the LCC-P topology
satisfy (1) and (2), the CC output can be realized at the frequencyωCC. Due to the water
flow and low positioning accuracy of the underwater WPT system, the transmitter and
the receiver of the magnetic coupler are vulnerable to misalignment, resulting in large
fluctuations in mutual inductance [19]. It can be found from (1) and (2) that the CC output
characteristics of the system are decoupled with the mutual inductance, i.e., the CC output



Energies 2022, 15, 5249 4 of 13

characteristics are not affected by the misalignment of the AUV in the seawater condition,
which is conducive to the stable power supply of the AUV wireless charging system.

3. Parameter Optimization
3.1. Eddy Current Loss Analysis

The basic electrical characteristics and characterization parameters of different trans-
mission media are quite different. The transmission media included in common application
scenarios of WPT systems include air, freshwater, and seawater. The parameters of different
transmission media are compared in Table 1 [3].

Table 1. Parameters Compassion of Three Media.

Media Relative Permittivity Conductivity (S/m) Relative Permeability

air 1.0006 0 1.000004
freshwater 81 0.01 0.999991
seawater 81 4 0.999991

The conductivity in air and fresh water is almost 0, which can be approximated as
non-conductive. Therefore, when the transmission medium of the WPT system is air or
fresh water, eddy current loss does not need to be considered. The conductivity in seawater
is higher than the former, and the alternating magnetic field will generate eddy currents in
the seawater medium, resulting in eddy current losses, which will reduce the transmission
efficiency of the WPT system in seawater. AUV wireless charging systems usually work in
seawater conditions, so eddy current loss cannot be ignored. Zhang et al. [20] deduced the
axisymmetric coupling coil eddy current loss calculation formula. However, this method is
only applicable to the system where the transmitter and the receiver of the magnetic coupler
are symmetrical, and the influence of ferrite on the magnetic field in practical application
scenarios is not considered. Therefore, the finite element analysis was performed using
Ansoft Maxwell software to obtain the eddy current loss in seawater when the alternating
current passed through the coil.

The coil resistance can be neglected because Litz wire is generally used for winding
the coils [21], so the relationship between the currents of the transmitting and receiving
coils can be expressed as [12]:

IS =
jω0MIp

jω0LS +
(

Req// 1
jω0CS

) (7)

From (7), it can be found that the current phase difference is influenced by the topology
parameters on the receiving side and vary from 0 to 45 degrees. This paper takes the current
phase difference of 45◦ as an example to analyze the influence of frequency and coil current
on eddy current loss.

To analyze the influence of frequency on the eddy current loss, eddy current loss under
50 kHz to 150 kHz is captured. The current in the transmitting coil and the receiving coil is
given as 1 A, and the total eddy current loss result is shown in Figure 3.

The blue line represents the eddy current loss at each frequency, the red line represents
the ratio of eddy current loss at each frequency to that at 50 kHz. It can be seen from Figure 3
that the eddy current loss increases sharply with the increasing frequency, therefore, eddy
current loss is a non-negligible factor for underwater WPT system. In order to make a
direct equivalent to the influence of the eddy current loss in the circuit, the eddy current
loss Peddy can be divided into the sum of the eddy current loss Peddy_p generated by the
transmitting coil and the eddy current loss Peddy_S generated by the receiving coil.
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When the unilateral coil is excited by the current, the eddy current loss in the seawater
divided by the square of the current is a fixed value. The equivalent eddy current resistances
on the transmitting coil and receiving coil can be expressed as:{

Peddy_p = I2
pReddy_p

Peddy_S= I2
SReddy_S

(8)

The eddy current loss of the transmitting coil and the receiving coil as well as the
corresponding equivalent eddy current resistance simulation results are shown in Figure 4.
It can be seen from Figure 4 that the eddy current loss increases significantly with the
increase in the coil current, so it is necessary to consider the influence of the eddy current
loss on the system in the seawater condition. The ratio of the eddy current loss generated
by the unilateral coil to the square of the coil current is a fixed value, the transmitting
coil is 30 mΩ, and the receiving coil is 8 mΩ. Accordingly, the influence of eddy current
loss can be considered into the system, and when the operating frequency is determined,
the equivalent eddy current resistance is a fixed value, which is an inherent parameter
decoupled from the operating state of the system.
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3.2. Objective Function Construction 

Figure 4. Simulated the eddy current loss caused by different excitation currents. (a) Generated the
eddy current loss in seawater by the transmitting coil; (b) Generated the eddy current loss in seawater
by the receiving coil.

3.2. Objective Function Construction

The equivalent circuit model of an LCC-P WPT system in seawater condition is shown
in Figure 5. Considering the internal resistance and equivalent eddy current resistance of
each coil, the genetic algorithm is used to optimize the parameters of the system to achieve
the optimal system efficiency.
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form as ZLi = jωLi (i = f, p, s); ZCi = 1/jωCi (i = f, p, s), and define ZM = jωM, the resonant
operating frequency of the systemω0 =ωCC. Based on Kirchhoff’s law, the equations of
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Iin
Ip
IS
Ieq

 =


Vin
0
0
0

 (9)

In (9), the impedance matrix is a sparse matrix, and all non-zero elements can be
obtained as: 

Z11= Rf+ZLf +ZCf
Z22 = (R p+Reddy_p) + ZLp+ZCp+ZCf

Z33= (R S+Reddy_S) + ZLS+ZCS
Z44= Req+ZCS

Z12= Z21 = − ZCf
Z23= Z32 = − ZM
Z34= Z43 = − ZCS

(10)

(9) can be simplified as ZI = V , which the current vector I can be solved, and then the
transmission efficiency can be expressed as:

η(ω) =

∣∣Ieq
∣∣2Req

real(VinI∗in)
(11)

when wirelessly charging the AUV battery, in the CC mode, the charging current remains
unchanged, while the charging voltage will continue to increase, so that the equivalent
resistance of the load will slowly increase, causing the system to deviate from the designed
operating state. Assuming that the change interval of the equivalent load Req in the CC
mode is (Rmin, Rmax), in order to ensure that the system has excellent charging efficiency in
the CC mode, an objective function with the optimal efficiency is established to measure
the level of charging efficiency throughout the charging phase.

F (ω, L f) =
1

Rmax − Rmin

∫ Rmax

Rmin

ηsea (ω, R eq) dReq (12)

Integrate the ηsea of the efficiency corresponding to the Req in the load interval (Rmin,
Rmax), and establish the nonlinear programming model with the optimal efficiency as follows:

max F(ω, L f)

s.t
{

ω1 ≤ ω ≤ ω2
Lf1 ≤ Lf ≤ Lf2

(13)

where, (ω1, ω2) is the frequency sweep range, (Lf1, Lf2) is the compensation inductance
sweep range. In order to ensure that the output current meets the requirements, the constant
current system also needs to constrain the transconductance GV of the system. Set the lower
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limit of the transconductance to meet the output requirements is GVmin, and integrate the
inequality conditions into the objective function is:

max F(ω, L f)

s.t

{
Cf >

1
ω2

0 Lp

|GV| > |GVmin|
(14)

3.3. Function Solving

The function (13) established based on the efficiency optimization is a nonlinear
function and has many constraints, and the traditional nonlinear model solving algorithm
is easy to fall into the local optimal solution. As an adaptive global optimization search
algorithm, the genetic algorithm was first proposed by Professor Holland of the University
of Michigan [22]. It is a new method for complex system optimization.

The genetic algorithm also has its shortcomings, such as poor local search ability,
immature convergence and random walk phenomena, resulting in poor convergence
performance and long convergence time of the algorithm. In order to quickly obtain the
convergent global optimal solution, the fitness function FW of the genetic algorithm is to be
established and consider the constraints to establish a penalty function W as:

W =
2

∑
i=1

γiwi (15)

where, γi is the weight coefficient of each constraint, and wi is the penalty factor, as shown
below:

wi =


max(0, 1

ω2
0 Lp
− Cf

)
1

ω2
0 Lp
−Cf

i = 1

max(0, |GVmin|−|GV|)
|GVmin|−|GV|

i = 2

(16)

According to the penalty factor, the fitness function of the algorithm can be defined as

FW =
F

max (1, W)
(17)

From (15) to (16), when the parameter satisfies the inequality constraint, the penalty
term W = 0, the penalty function does not penalize the fitness function, at this time FW = F;
when an inequality constraint cannot be satisfied, the corresponding penalty amount W>0
will be generated, and the larger the out-of-bounds amount, the greater the value of the
penalty amount, at this time, FW = F/W. The fitness of the individual will be reduced,
so that the probability of being selected as the parent for breeding the next generation in
the iterative process of the genetic algorithm will be extremely low, which means that the
parameters of the non-optimal solution of efficiency will be discarded until the efficiency
is optimal. The optimal solution can be obtained by using the rand function of MATLAB
to generate the initial population {(ωi, Lfi) I = 1, 2 . . . 200} and the fmincon function for
nonlinear optimization. The process of the genetic algorithm is shown in Figure 6.

3.4. Algorithm Validation

In this paper, an AUV-WPT system with a rated power of 700 W is designed. The
parameters Lp, LS and M of the H-shaped magnetic coupler proposed in [17] are fixed.
Therefore, it is only necessary to add the coil inductance constraints to the genetic algorithm,
which will not affect the correctness of the parameter optimization proposed in this paper.

Based on the genetic algorithm in Section 3.3, a set of optimized effective solutions for
the resonant frequency f 0 and compensation inductance Lf of the WPT system obtained are
96.15 kHz and 9 µH, respectively. By substituting the optimized results into the CC output
conditions of the LCC-P topology, the other parameters of the system can be calculated and
values are shown in Table 2.
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Table 2. Parameters Optimization of Genetic Algorithm.

Parameter Symbol Value

Transconductance GV 0.067
Resistance range RL 10–20 Ω

Resonant frequency f 0 96.15 kHz
Transmitter inductance Lp 49.84 µH

Transmitter-side series compensation capacitance Cp 88.23 nF
Receiver inductance LS 26.28 µH

Receiver-side parallel compensation capacitance CS 104.18 nF
Compensation inductance Lf 9 µH

Transmitter-side parallel compensation capacitance Cf 304.44 nF

When the system compensation network parameters are fixed, and the operating
frequency and load of the system are changed, the output characteristics of the WPT system
based on the LCC-P topology are shown in Figure 7.
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It can be seen from Figure 7a that at the designed CC operating point with the best
efficiency, the WPT system realizes the ZPA and has the conditions to achieve soft switching;
Figure 7b shows that at the designed CC output frequency point, the system can realize the
CC output characteristic independent of the load.
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4. Experiments

An experimental prototype was built to verify the above theoretical analysis and op-
timization results, which is shown in Figure 8. The system specifications and the circuit
parameters are listed in Table 3. The rated power is set to 700 W, and the conductivity is
increased to 4 S/m by adding sea salt to the freshwater to simulate the real seawater condition.
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Table 3. System Parameters.

Note Symbol Value (Air) Value (Seawater)

Resonant frequency f 0 96.15 kHz 96.15 kHz
DC input voltage Vdc1 100 V 100 V

Transmitter inductance Lp 49.84 µH 49.26 µH
Transmitter resistance Rp 90 mΩ 120 mΩ
Transmitter-side series

compensation capacitance Cp 88.23 nF 88.23 nF

Receiver inductance LS 26.28 µH 26.39µH
Receiver resistance RS 35 mΩ 43 mΩ

Receiver-side parallel
compensation capacitance CS 104.18 nF 104.18 nF

Compensation inductance Lf 9 µH 9µH
Transmitter-side parallel

compensation capacitance Cf 304.44 nF 304.44 nF

Coupling coefficient k 0.438 0.443
Resistance range RL 10–20 Ω 10–20 Ω

The SCT3040KL silicon carbide power MOSFET is selected to form the full-bridge
inverter, and the control module adopts the TMS320F28335 chip. In order to reduce the
coil loss, the coil is wound with 0.1 × 400 strands of Litz wire. The receiving side adopts a
bridge uncontrolled rectifier. Input voltage/current, output voltage/current, transmission
power and transmission efficiency are measured by the power analyzer ZLG PA5000H.

4.1. Seawater Effects

The input and output power and efficiency tests of the system in air and seawater
conditions are shown in Figure 9. Where, Udc1, Idc1 and P1 represent the system input
voltage, current, power, respectively, Udc2, Idc2 and P2 represent the system output voltage,
current, power, respectively, η1 and η2 represent the DC-DC efficiency in air condition and
seawater condition, respectively.
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Figure 9. Power and efficiency test. (a) Air condition; (b) Seawater condition.

The results show that this AUV-WPT system is capable of transferring power efficiently.
In addition, the transmission power in the seawater condition is slightly greater than that
in air, while the transmission efficiency is slightly lower than that in air. Combining Table 3
and Figure 9, it can be found that the eddy current in seawater enhances the magnetic field
between the magnetic coupler and increases the coupling coefficient, thereby increasing
the output power in the seawater condition. However, due to the additional eddy current
loss caused by seawater, the transmission efficiency is ultimately reduced compared to air.

In the case of air and seawater as two transmission media, if the coil currents on the
transmitting coil and receiving coil of the magnetic coupler are kept the same, the eddy
current loss will be the difference between the total losses in the two cases, and the eddy
current loss in the experiment can be calculated as [23]:

Peddy = Ploss_seawater − Ploss_air (18)

The eddy current loss varying with the input voltage and the load resistance are shown
in Figure 10. It can be seen that eddy current loss increase sharply with increasing input
voltage for a fixed load of 16 Ω, and more gently with load resistance for a fixed input
voltage of 100 V. In general, the experimental results are consistent with the simulated
results, the reason for the small discrepancy in the values is that in order to ensure the
safety and operability of the experiment, the seawater under the experimental condition
only submerges the transmitting coil and the seawater region is smaller than the simulated
condition, so the experimental results of the eddy current loss will be slightly smaller than
the simulated results. However, the consistency of the curve proves the feasibility and
effectiveness of the method of equivalent eddy current loss as two resistances of the coil.
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4.2. Analysis of System Output Characteristics

To verify that the parameters design can achieve a CC output for the LCC-P topology.
By adjusting the load resistance, the relationship between output voltage and current with
load is shown in Figure 11. The results show that as the load changes, the output current
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decreases slightly, but basically remains at an output level of about 7A, while the output
voltage increases linearly with the addition of the load. At the rated load of 16 Ω, the output
current is about 7A and the output voltage is about 115 V, which can meet the charging
demand of AUV.
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Setting the input voltage to 100 V and changing the load resistance, the DC-DC
efficiency and output power vary with the resistance, as shown in Figure 12. The input
voltage was fixed at 100 V by a programmable DC power supply, and the resistance of
the load was changed with an adjustable load box. It can be seen from Figure 12 that
as the load resistance increases, the efficiency of the load gradually increases, and the
maximum efficiency in seawater condition is 91.85%. The output power is proportional
to the load resistance, which also indicates that the output current is independent of the
load. Therefore, the system can easily control the charging to the AUV. The validity of the
parameter design is verified by the experimental results.
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5. Conclusions

In this paper, the underwater WPT system with an LCC-P topology has been modeled
and analyzed, and the effect of eddy current loss generated by seawater on the system
is considered. Finite element simulations and experimental results show that when the
magnetic coupler and transmission medium are determined, the eddy current loss of the
system is only related to coil current and frequency. By introducing the equivalent eddy
current loss resistance at both the transmitting side and receiving side, an improved circuit
model of the underwater WPT system is developed and the genetic algorithm is used to
obtain the optimal system parameters. A prototype of the AUV-WPT system was built and
the experimental results verified the theoretical analysis. The results show that the system
can transmit 802.3 W of power in seawater with a transmission efficiency of 91.12 %.
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