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Abstract: The purpose of this study is to explore the impact of pollution control on industrial
production efficiency in 31 provinces and cities in the Yellow River and Non-Yellow River basins in
China from 2013 to 2017, using the methods of the directional distance function (hereinafter referred
to as DDF) and the technology gap ratio (hereinafter referred to as TGR) in parallel, while taking the
industrial production sector (labor force, total capital formation, energy consumption and industrial
water consumption) and the pollution control sector (wastewater treatment funds and waste gas
treatment funds) as input variables. Undesirable outputs (total wastewater discharge, lead, SO2

and smoke and dust in wastewater) and an ideal output variable (industrial output value) are taken
as output variables. It is found that the total efficiency of DDF in the Non-Yellow River Basin is
0.9793, which is slightly better than 0.9688 in the Yellow River Basin. Among the 17 provinces
and cities with a total efficiency of 1, only Shandong and Sichuan are located in the Yellow River
Basin. The TGR values of 31 provinces, cities and administrative regions are less than 1, and the
average TGR value of the Yellow River Basin is 0.3825, which is lower than the average TGR value of
the Non-Yellow River Basin of 0.5234. We can start by improving the allocation of manpower and
capital, implementing the use of pollution prevention and control funds, improving the technical
level of industrial production, improving pollutant emission, and increasing output value to improve
overall efficiency performance. This study uses the parallel method, taking the industrial production
department and the pollution control department as inputs, to objectively evaluate the changes in
industrial production efficiency and technology gap in the Yellow River and Non-Yellow River basins,
which is conducive to mastering the situation of pollution control and industrial production efficiency,
and provides the reference for SDG-6- and SDG-9-related policy making.

Keywords: DDF; TGR; wastewater; waste gas; treatment funds; Yellow River

1. Introduction

While pursuing industrial and economic development, wastewater and air pollu-
tion have short-term and long-term impacts on the environment and human beings [1,2].
Countries around the world have invested a lot of money and resources to try to solve
the problems of wastewater and air pollution caused by production and manufactur-
ing. Human beings need to take sustainable actions within the existing environmental
resources [3]. Therefore, the agenda for sustainable development sets out 17 sustainable
development goals to be achieved by 2030 and will mobilize countries around the world
to incorporate sustainable development goals into their national development strategies.
Sustainable development goals SDG-6 (sustainable development of water resources) and
SDG-9 (development of inclusive sustainable industry) play a vital role in environmental
protection, economic development and the promotion of human well-being in achieving
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these sustainable development goals. In China, since the implementation of the reform and
opening-up policy after 1980, prosperity and affluence have gone deep into the mainland
from the early coastal areas. According to data released by the World Bank (as shown in
Figure 1), we can see the impact of the 2008 financial tsunami and the 2019 COVID-19
pandemic on the global GDP growth rate. In addition, China’s GDP growth rate is better
than that of the world.
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The destruction of environmental resources caused by development has directly
affected national health and the environment for human survival. According to China’s
“industrial classification of national economy”, industries are divided into three categories:
the primary industry is mainly agriculture, the secondary industry is mainly industry
and the tertiary industry is mainly the service industry. According to the data of the
National Bureau of Statistics of China (National Bureau of Statistics of China: http://
www.stats.gov.cn/tjsj/ndsj/, accessed on 1 February 2022) (as shown in Figure 2), from
1978 to 2020, the fastest growth of China’s GDP is in the secondary industry, followed
by the service industry. The rapid development of China’s economy largely depends
on energy consumption, which has caused serious pollution [4,5]. In order to achieve
energy conservation and emission reduction and strengthen pollution control [6], we
must pay attention to the relevant issues of sustainable development goals SDG-6 and
SDG-9. In order to improve environmental quality, improve national health and well-
being, maintain environmental resources and pursue sustainable development, which has
become a universal common value, the State Council of China put forward the outline of
the Yellow River Basin Ecological Protection and High-Quality Development Plan in 2021
(Outline of Ecological Protection and High-Quality Development Plan for the Yellow River
Basin (2021): http://www.gov.cn/zhengce/2021-10/08/content_5641438.htm, accessed
on 1 February 2022). In addition to investing in pollution prevention and control funds,
it also standardized the high energy consumption and high-pollution enterprises in the
region. It includes various pollutant discharge standards and monitoring systems to ensure
that significant progress will be made in the ecology and development of the Yellow River
Basin by 2025.

As mentioned above, the government’s policy and financial expenditure on environ-
mental protection have a certain input–output relationship and impact mechanism between
regional energy use and pollutant emission (Figure 3). When the industrial production
department promotes economic development due to the investment of labor, capital, en-
ergy and water resources, the pollution control department is due to the investment of
government prevention and control funds. It is beneficial to improve the unintended

http://www.stats.gov.cn/tjsj/ndsj/
http://www.stats.gov.cn/tjsj/ndsj/
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substances discharged from the production process, such as SOx and smoke dust in waste
gas, heavy metal lead in wastewater, etc., to maintain the natural environment and the
health of people. Therefore, this study uses DDF and TGR methods to objectively evaluate
the impact of pollution control on the production efficiency of the Yellow River Basin and
Non-Yellow River Basin in China from 2013 to 2017. The structure of this study is as follows:
Section 2 analyzes the literature on industrial production efficiency, energy efficiency, water
efficiency, air pollution emission and treatment; Section 3 introduces the methods; and
Section 4 introduces the data, narrative statistics and empirical result analysis. The last part
puts forward conclusions and suggestions for future research.
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2. Literature

Previous studies on industrial production efficiency, such as the one conducted by [7],
used the SDG-9 index to assess the degree of industrialization of countries, as well as social
inclusiveness, less use of natural resources and environmental impact. Ref. [8] using the
DEA method, discusses the relationship between the American manufacturing industry
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and environmental performance. The unintended output is reported as SOx, NOx, Co,
etc. It is found that air pollution is mainly a by-product of manufacturing activities. The
share of the manufacturing industry in the total amount of state-owned products and
the share of the polluting industry in the total amount of manufacturing activities are
two important factors determining the intensity of pollution. Using DEA, Ref. [9] discuss
the energy conservation and carbon reduction efficiency of China’s industrial production
from 2006 to 2010. The input variables are labor, capital and energy consumption, and the
output variables are SO2, wastewater and GDP. It is found that the energy conservation
and emission reduction efficiency in East China is the best. Ref. [10] using the DEA
method, evaluated the environmental efficiency of 46 countries in 2002, 2007 and 2011.
The input variables are labor, capital and energy use, and the output variables are GDP,
CO2 and NOx. The study found that the energy efficiency of countries rich in oil and
natural gas resources is relatively poor. Ref. [11] using the DEA method, discuss the
analysis of the energy and environmental efficiency of two petrochemical plants in China
from 2012 to 2013, and divide the output into expected output and unexpected output.
It was found that by analyzing the energy efficiency and environmental efficiency of the
ethylene production process in complex chemical processes, the energy saving and emission
reduction potential of ethylene plants can be obtained, and the efficiency performance
of DMU can be improved by improving energy efficiency and reducing carbon emission.
Research on energy efficiency by [11] evaluated the efficiency of the water, food and
energy (WEF) relationship in 30 provinces and municipalities in China from 2005 to 2017.
Inputs were labor force, water resource use, energy use, food consumption and other
variables, and outputs were social benefits, wastewater discharge and solid discharge. The
researchers analyzed the weight of the WEF relationship, and put forward the strategy
of sustainable resource management. Ref. [12] discussing the research results of DEA
application in the field of energy and environment from the 1980s to 2010, found that
the development process will produce various pollutants to air, water and other types
of pollutants which are related to health and climate change. Therefore, it is necessary
to strike a balance between economic growth and pollution mitigation. Ref. [13] using
the DEA method to explore the impact of U.S. economic growth on the environmental
efficiency of the power sector, found that there is a stable n-shape relationship between
environmental efficiency and regional economic growth, while in the case of local pollutants,
there is an inverted n-shape relationship between environmental efficiency and regional
economic growth. For policymakers, climate change needs to consider the relationship
between economy, environment and society at the same time. On the research related
to water use efficiency, Ref. [14] evaluated the efficiency of SDG-6 and a serious water
shortage in the Medjerda Basin in Tunisia. Ref. [15] used the DEA method to explore
the water use efficiency of 10 cities in the Minjiang River Basin in China in 2018. The
research found that the input of social water and economic water are different, and the
output of GDP and unintended wastewater are the factors affecting water use efficiency.
Ref. [16] using TFP and Tobit models, discuss the water use efficiency of 30 provinces and
municipalities in China from 2006 to 2015. The study found that the efficiency of water
use in the administrative regions of provinces and cities is low, so we should establish
the awareness of water conservation from the investment of education, so as to balance
economic development and water use efficiency. Ref. [17] used the DEA method to explore
China’s regional ecological efficiency from 2003 to 2014. The input variables were labor
force, water consumption, energy consumption, etc., and the output variables were GDP,
SO2, smoke and dust, industrial wastewater, household waste, etc. The study found that
the efficiency and progress rate of the eastern region are better than other regions, and
there is still room for improvement in China’s overall environmental efficiency. Ref. [18]
used DDF to evaluate the water resources and wastewater discharge efficiency of China’s
industrial sector. The input variables were labor, capital and industrial water consumption,
and the output variables were industrial output value, chemical oxygen demand, etc. The
study found that the eastern region has made progress in science and technology, and the
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pollutants discharged by industrial production in the western region are more serious.
Ref. [19] using the DDF model, evaluated the efficiency of administrative water removal
in 31 provinces and cities in China from 2011 to 2015. The study found that there were
significant differences between the efficiency performance and technology gap in Eastern,
Central and Western China. Ref. [20] evaluating the relationship between China’s industrial
water efficiency and regional differences from 2005 to 2015, found that the industrial water
efficiency values of administrative regions in 31 provinces and cities are less than 1, among
which the per capita water resources, R&D investment, regulation formulation, GDP and
industrial structure will affect the industrial water efficiency. Ref. [5] using the SBM model,
studied the economic production and sewage treatment efficiency of 30 provinces and
cities in China from 2011 to 2017. The input variables were labor force, domestic and
industrial water, investment in sewage treatment projects and the number of sewage
treatment plants. The output variables were GDP, chemical oxygen demand of wastewater
discharge and heavy metal pollution. The study found that there are great differences
in inefficiency in different regions of China. The efficiency in the economic production
stage is significantly higher than that in the sewage treatment stage. The sewage treatment
efficiency is the main drag factor of the overall efficiency. Ref. [21] assessed the regional
differences of China’s provincial air pollution efficiency from 2006 to 2015. The study
found that there were significant differences in air pollution emission efficiency in various
regions. Air pollution emission efficiency was significantly positively correlated with
economic development level, industrial structure optimization, technological innovation
and foreign direct investment (FDI), and negatively correlated with energy consumption
structure. Ref. [22] used DEA and regression analysis to explore China’s energy efficiency
performance from 2001 to 2013. Input variables included labor, capital and energy use, and
output variables were GDP, industrial wastewater, solid waste and air pollutants. The study
found that technological innovation has a positive impact on TFEE. The government should
pay attention to technological innovation, which will be conducive to the effectiveness
of energy conservation and emission reduction and environmental pollution prevention
and control. Research on pollution control costs, such as [23], discusses the efficiency
of China’s iron and steel industry and pollution control. It is found that the production
efficiency of China’s iron and steel industry is low and causes serious pollution to the
environment. Enterprises must improve the overall efficiency by increasing environmental
protection investment, introducing foreign advanced technology and strengthening the
R&D of pollutant management.

As for the discussion on energy consumption and pollution control technology,
for example, in a paper by [24], it is estimated that Beijing, China, will improve its air
quality by adjusting its industrial structure, controlling pollutant emissions, controlling
vehicle pollution emissions and other measures and regulations due to rapid industrializa-
tion, urbanization and motorization, the continuous growth of energy consumption and
the resulting emissions of a variety of pollutants. Ref. [25] assessing the impact of foreign
investment on greenhouse gas emissions in developing countries, found that foreign in-
vestment enabled technology transfer, improved labor, reduced greenhouse gas emissions,
improved energy efficiency and achieved sustainable development goals.

As mentioned above, most previous studies focused on industrial production effi-
ciency, energy efficiency, pollutant emission and control. Therefore, this study uses the
DDF method to explore the impact of pollution control on the production efficiency of
31 provinces and municipalities in the Yellow River Basin and Non-Yellow River Basin in
China from 2013 to 2017, and uses TGR to measure the change in the technology gap. We
objectively evaluate the efficiency difference of pollution control in different provinces and
cities to provide an effective reference basis for policy formulation and budget control.

The main contributions of this study are as follows:

(1) Different from the previous literature results, this study uses the parallel method and
takes the industrial production department and the pollution control department as
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input variables to objectively evaluate the impact of pollution prevention and control
funds on industrial production efficiency in 31 provinces and municipalities in China;

(2) This study compares the changes in industrial production efficiency and the technology
gap between the Yellow River Basin and Non-Yellow River Basin, which is conducive
to mastering the situation of pollution control and production efficiency in 31 provinces
and municipalities in China, and provides objective suggestions as a reference for
SDG-6- and SDG-9-related policy making.

3. Research Method

Ref. [26] first put forward the concept of a deterministic nonparametric front in 1957.
It is used to measure the production level of a decision-making unit. Then, Ref. [27]
proposed the CCR model. Ref. [28] proposed the BCC model. Over time, Ref. [29] (1996)
proposed the directional distance function (DDF). In addition, Ref. [30] introduced the VRS
super-efficiency Nerlove–Luenberger (N–L) model to solve the unreasonable problem. This
method can adjust the input and output levels in the same proportion, and the efficiency
value obtained under the VRS super-efficiency of DDF can be used for ranking all DMUs.
The directional distance function model under variable return to scale (VRS) and the
calculation method of efficiency values used in this study are as follows:

3.1. Directional Distance Function, DDF

This study uses [31] to extend the non-oriented method in the DDF model based on
the SBM described by [32]. All models can evaluate the general efficiency value (≤1) at the
same time, and its calculation method is as follows:

Non-oriented DD model

In this case, we have

max β

s.t. Xλ + βgx ≤ xk (1)

Yλ − βgy ≥ yk

∑ λ = 1

λ ≥ 0

(d(I), d(IN), d(O), d(ON), d(OBad)) = ( x(I)
o , 0 , y(O)

o , 0 , y(OBad)
o ) (2)

[DD-C]

ξ∗ = MAXξ

st.X(I)λ + ξx(I)
o + s(I) = x(I)

o

X(IN)λ + s(IN) = x(IN)
o

Y(O)λ − ξy(O)
o − s(O) = y(O)

o (3)

Y(ON)λ − s(ON) = y(ON)
o

Y(OBad)λ + ξy(OBad)
o + x(OBad) = y(OBad)

o

ξ ≥ 0 , λ ≥ 0 , s(I) ≥ 0, s(IN) ≥ 0, s(O) ≥ 0, s(ON) ≥ 0 , s(OBad) ≥ 0 .

We define the efficiency value of DMU(xo, yo) as

θ∗ = 1 − ξ∗.

3.2. Technology Gap Ratio, TGR

Since the production boundary of g groups is included in the common production
boundary, the technical efficiency under the common boundary must be less than that
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under the group boundary. The ratio of the two is called the technical efficiency gap ratio
(TGR), as follows:

TGR =
Technical efficiency under common boundary

Technical efficiency under group boundary
(4)

4. Data Analysis and Empirical Results
4.1. Selection of Data Sources and Variables

This study evaluates the impact of pollution control in 31 provinces and municipalities
of China on China’s industrial production efficiency from 2013 to 2017. The publicly
quantifiable data are obtained from the statistical yearbook of China’s National Bureau
of Statistics (National Bureau of Statistics of China: http://www.stats.gov.cn/tjsj/ndsj/,
accessed on 1 February 2022) from 2013 to 2017, and the efficiency is analyzed through
open and objective data. The relevant contents of the selected variables are as follows:

Labor force: including manufacturing, power, heat, gas and water production and
supply, and the number of employed persons in urban units. Employed persons refer to per-
sons aged 16 and above who engage in certain social work and obtain labor remuneration
or business income. Unit: 10,000 persons.

Total capital formation: refers to the total value of fixed assets acquired by permanent
residents less fixed assets disposed of in a certain period of time. Fixed assets are assets
produced through production activities with a service life of more than one year and a
unit value of more than the specified standard, excluding natural assets. It can be divided
into total tangible fixed capital formation and total intangible fixed capital formation. Unit:
100 million yuan.

Energy consumption: electricity consumption by region. Unit: 100 million kWh.
Industrial water consumption: industrial water consumption by region. Unit: 10,000 tons.
Wastewater treatment fund: the completion of wastewater treatment investment

generated by industrial pollution. Unit: 10,000 yuan.
Waste gas treatment funds: the completion of waste gas treatment investment gener-

ated by industrial pollution. Unit: 10,000 yuan.
Total wastewater discharge: total wastewater discharge by region. Unit: 10,000 tons.
Lead in wastewater: the discharge of main pollutants in wastewater. Unit: kg.
SO2: emission of sulfur dioxide in waste gas by region. Unit: 10,000 tons.
Smoke and dust: emission of smoke (powder) dust in waste gas by region. Unit:

10,000 tons.
Industrial output value: regional industrial output value. Unit: 100 million yuan.

4.2. Input and Output Variables Statistical Analysis

As shown in the narrative analysis of various variables from 2013 to 2017 (Table 1),
the average part shows a growth trend in labor force, total capital formation, energy
consumption, waste treatment funds and industrial output value. The amount of industrial
wastewater, wastewater treatment funds, lead, SO2, smoke and dust in wastewater show a
downward trend. The total amount of wastewater discharge has little change. In the largest
part, labor force, total capital formation, energy consumption, waste gas treatment funds
and industrial output value show a growth trend. Lead, SO2, smoke and dust in wastewater
show a downward trend, and other variables change little. In the minimum part, total
capital formation, energy consumption, total wastewater discharge and industrial output
value show a growth trend, the wastewater treatment funds and waste gas treatment funds
show a downward trend, and the other variables have little change.

http://www.stats.gov.cn/tjsj/ndsj/
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Table 1. Input–output variables from 2013 to 2017 statistical analysis.

Labor Force Total Capital
Formation

Energy
Consumption

Total Industrial
Water

Consumption

Wastewater
Treatment

Funds

Waste Gas
Treatment

Funds

Average

2013 148.6032 11,812.7645 1723.3352 459,258.0645 45,272.5484 83,133.5484
2014 182.6548 12,682.8452 1794.7323 453,709.6774 40,284.6129 206,745.4194
2015 182.1581 13,043.6935 1836.5487 437,548.3871 37,176.5806 254,643.0645
2016 176.2806 13,773.8355 1927.3248 430,580.6452 38,198.0645 168,325
2017 170.4032 14,564.3548 2034.7742 421,935.4839 34,916 181,119.3871

Max

2013 561 30,952.9 4956.62 1,931,000 263,797 303,865
2014 1052.4 33,780.8 5235.23 2,201,000 150,634 701,240
2015 1046 35,587.4 5310.69 2,380,000 175,141 1,281,351
2016 1011.7 34,647.1 5610.13 2,390,000 164,863 781,673
2017 991 39,657.5 5959 2,486,000 158,518 966,722

Min

2013 1.5 899.1 30.65 17,000 922 174
2014 2.1 1052.1 33.98 17,000 572 466
2015 2.1 1032 40.53 17,000 90 1453
2016 2.3 1162.8 49.22 14,000 893 273
2017 1.6 1376.1 58 16,000 15 47

St. Dev

2013 134.3751 7620.3602 1242.815 440,588.3164 51,282.9423 73,775.0457
2014 209.0452 8142.8745 1289.1049 460,820.1524 38,242.0501 162,597.069
2015 211.8303 8407.9079 1365.0845 475,238.4551 37,554.2495 260,514.5884
2016 205.8528 8924.2812 1451.4981 479,438.3363 41,606.7403 159,393.1626
2017 200.9428 9999.0218 1520.3991 490,473.7122 38,104.0369 197,602.603

Total
Wastewater
Discharge

Lead in
WASTEWA-

TER
SO2 Smoke and Dust Industrial

Output Value

Average

2013 224,336.5161 2455.2355 85.181 41.231 8629.4897
2014 231,024.1613 2360.7935 63.6906 56.1532 8946.4632
2015 237,200.8387 2562.2484 59.9719 49.6135 8874.8148
2016 229,385.5806 1707.4355 35.5765 32.6023 9199.2548
2017 225,697.129 1237.0387 28.2394 25.6861 9731.27

Max

2013 862,471 24,318.6 663 131.33 27,426.26
2014 905,082 21,609.3 159.02 179.77 29,144.15
2015 911,523 18,172.8 152.57 157.54 30,259.49
2016 938,261 14,564.8 113.45 125.68 32,650.89
2017 882,020 7656.9 73.91 80.37 35,291.83

Min

2013 5005 2.6 0.42 0.68 61.16
2014 5450 2.5 0.42 1.39 66.16
2015 5883 3.6 0.54 1.71 69.88
2016 6143 5.1 0.54 1.65 86.44
2017 7176 3.7 0.35 0.66 102.16

St. Dev

2013 184,430.1127 4632.3228 114.938 30.1237 7120.6401
2014 190,473.1071 4170.2846 39.6557 42.5921 7468.1265
2015 195,601.8016 4068.4679 37.3853 38.3135 7741.992
2016 194,225.7237 3159.2792 25.0893 26.6502 8400.5834
2017 185,112.1309 1898.2696 19.5832 18.5803 9102.946

4.3. Empirical Results

In this study, 31 provinces and municipalities in China were divided into two groups:
the Yellow River Basin and the Non-Yellow River Basin. The DDF method was used
to evaluate the difference in industrial production efficiency between the two groups.
The common boundary efficiency and group boundary efficiency of the two groups are
evaluated by the TGR method to find the technology gap ratio. The results and analysis are
as follows.
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(1) Industrial production efficiency of DDF in the Yellow River and Non-Yellow River
Basins

The empirical results show that (as shown in Figure 4 and Appendix A) the best
average value of the total efficiency of the Yellow River and Non-Yellow River basins is 1
in 17 provinces and cities, including Beijing, Tianjin and Hebei, of which only Shandong
and Sichuan are located in the Yellow River Basin, and a total of 15 provinces and cities
are located in the Non-Yellow River Basin. The average total efficiency of the Non-Yellow
River Basin is 0.9793, and the three worst-performing regions are Yunnan (0.7804), Xinjiang
(0.9188) and Guizhou (0.9257). The average value of the total efficiency of the Yellow
River Basin is 0.9688, which is slightly lower than that of the Non-Yellow River Basin. The
three regions with the worst performance of the total efficiency are Gansu (0.8604), Shanxi
(0.9417) and Ningxia (0.9592). We further explore the period efficiency of each year in the
Non-Yellow River Basin, with the best performance in 2015 and 2016, the efficiency value
is 0.982, the worst performance is 0.9741 in 2013, of which Yunnan (0.7197) has the worst
efficiency performance. In the part of efficiency in each year of the Yellow River Basin, only
0.9863 performed best in 2013, slightly higher than 0.9741 in the Non-Yellow River Basin.
In the next four years, the overall efficiency performance lagged behind the Non-Yellow
River Basin. The overall efficiency performance was the worst in 2015 (0.9561), of which
Gansu (0.7593) performed the worst in 2015.
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This study further uses the Wilcoxon rank sum test to make α = 0.05; the confidence
interval is 95%, and the result shows that z = −3.517, which indicates that there are regional
differences in DDF efficiency between the Yellow River Basin and the Non-Yellow River
Basin, and the efficiency value of the Non-Yellow River Basin is better than that of the
Yellow River Basin.

(2) Analysis of TGR technology gap ratio between the Yellow River and Non-Yellow River
Basins

We use TGR to objectively measure the level of industrial production efficiency. When
the TGR value is closer to 1, it means that the industrial production efficiency is relatively
high and the efficiency is better. On the contrary, the lower or closer the TGR value is to
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0, the more it indicates that there is still room for significant improvement. According to
the TGR of 31 provinces and cities in China from 2013 to 2017 (Figure 5 and Appendix B),
the TGR values of 22 provinces and cities in the Non-Yellow River Basin are less than 1,
indicating that the technical level has not reached the technical level on the common
boundary, which can improve the efficiency of industrial production and pollution control.
The average value of TGR is 0.5234, and a total of 12 regions are higher than the average
value. The better-performing regions are Tibet (0.9876), Hainan (0.8965) and Liaoning
(0.8675), the three worst-performing regions are Hubei (0.1413), Guangxi (0.1321) and
Hunan (0.1156). The TGR values of nine provinces, cities and administrative regions in the
Yellow River Basin are also less than 1. The average TGR value is 0.3825, which is lower
than the average TGR value of the Non-Yellow River Basin by 0.5234. In total, the four
regions are higher than the average value. The better-performing regions are Ningxia
(0.7545), Qinghai (0.5708) and Shandong (0.5411), and the three worst-performing regions
are Sichuan (0.1965), Shaanxi (0.1822) and Inner Mongolia (0.1152).
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Based on the combined analysis of DDF efficiency and TGR results of the Yellow
River and Non-Yellow River basins from 2003 to 2007 (Figure 6), the overall efficiency
performance of the two regions has little change during the study period. Among them,
the Yellow River Basin was only slightly better than the Non-Yellow River basin (0.9863) in
2013 (0.9741), but in the TGR part, the performance of the two regions still has room for
significant improvement. Among them, the TGR of the Yellow River Basin is significantly
behind the Non-Yellow River Basin. Through reasonable human and capital allocation,
we can implement the use of pollution prevention and control funds, and improve the
technical level of industrial production to improve pollutant emission and increase output
value, to improve the overall efficiency performance.
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5. Conclusions and Suggestions

Using DDF and TGR methods, this study invested industrial production departments
and pollution control departments in parallel to explore the impact of pollution control on
industrial production efficiency in 31 provinces and municipalities in the Yellow River and
Non-Yellow River basins of China.

5.1. Conclusions

(1) During the study period, the total efficiency of the Non-Yellow River Basin was 0.9793,
slightly better than that of the Yellow River Basin of 0.9688. Among the 17 provinces
and cities with a total efficiency of 1, only Shandong and Sichuan were located in
the Yellow River Basin, and the other 15 provinces and cities were located in the
Non-Yellow River Basin, indicating that the industrial production efficiency still had
significant regional differences due to the input of production factors and pollution
control funds.

(2) During the study period, the TGR values of 31 provinces and municipalities in the
Yellow River Basin and Non-Yellow River Basin were less than 1, while the average
TGR value of the Yellow River Basin was 0.3825, which was lower than the average
TGR value of Non-Yellow River Basin by 0.5234, indicating that the technical level
did not reach the technical level on the common boundary, and there is still room for
substantial improvement. In order to achieve the sustainable development goals of
SDG-6 and SDG-9, in addition to the cost of pollution prevention and control, clean
energy should be developed to reduce pollution, and rational allocation of resources
should be used to improve industrial production technology and overall efficiency.

(3) The main contribution of this study is in introducing the method of parallel DEA; in
addition to many input variables in the industrial production sector, we also discuss
the impact of the financial input of the pollution control department on wastewater,
exhaust emissions and total efficiency. In addition, this study covers the research scope
of the Yellow River Basin and the Non-Yellow River Basin, which helps to provide
broader policy recommendations.

5.2. Research Recommendations

The open and quantifiable data of the Yellow River and Non-Yellow River basins in
this study are taken from the database of the National Bureau of Statistics of China. The
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pollution control is carried out through open and objective data. The analysis of China’s
industrial production efficiency has restrictions on the selection of input- and output-related
variables due to the difficulty in obtaining and omission of some data. It is suggested that,
in the future, scholars more widely consider relevant data and extend the observation
period to make the research results more objective. In addition, this study mainly focuses
on the Yellow River and Non-Yellow River basins. It is suggested that different basins such
as the Yangtze River and the Pearl River be added as object of discussions in the future to
make a longer-cycle cross-basin comparison with each other, to understand China’s efforts
in industrial production and pollution control, and to provide analysis and basis for SDG-6
and SDG-9 sustainable development goals and policies.
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Appendix A

Table A1. Efficiency of DDF in the Yellow River and Non-Yellow River basins from 2013 to 2017.

DMU 2013 2014 2015 2016 2017 Average

Non-Yellow
River Basin

Beijing 1 1 1 1 1 1
Tianjin 1 1 1 1 1 1
Hebei 1 1 1 1 1 1
Liaoning 1 1 1 1 1 1
Jilin 1 1 1 1 1 1
Black Dragon River 1 1 0.9822 1 0.9153 0.9795
Shanghai 1 1 1 1 1 1
Jiangsu 1 1 1 1 1 1
Zhejiang 1 1 1 1 1 1
Anhui 1 1 1 1 1 1
Fujian 0.9452 0.9623 0.9628 0.9739 1 0.9688
Jiangxi 1 1 1 1 1 1
Hubei 0.9752 1 1 1 1 0.9950
Hunan 1 1 1 1 1 1
Guangdong 1 1 1 1 1 1
Guangxi 0.9851 0.9599 0.9883 1 0.9535 0.9774
Hainan 1 1 1 1 1 1
Chongqing 1 1 1 1 1 1
Guizhou 0.8202 0.8524 0.956 1 1 0.9257
Yunnan 0.7197 0.7832 0.8194 0.8017 0.7779 0.7804
Tibet 1 1 1 1 1 1
Xinjiang 0.9856 0.9906 0.8959 0.829 0.8928 0.9188

Average 0.9741 0.9795 0.9820 0.9820 0.9791 0.9793
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Table A1. Cont.

DMU 2013 2014 2015 2016 2017 Average

Yellow River
Basin

Shanxi 0.9803 0.9184 0.8889 0.9211 1 0.9417
Inner Mongolia 1 1 1 1 0.9912 0.9982
Shandong 1 1 1 1 1 1
Henan 1 0.9553 0.9696 1 1 0.9850
Sichuan 1 1 1 1 1 1
Shaanxi 1 1 0.9871 1 1 0.9974
Gansu 0.9196 0.9101 0.7593 0.8367 0.8763 0.8604
Qinghai 1 1 1 0.9816 0.9041 0.9771

Ningxia 0.9771 0.9183 1 1 0.9005 0.9592

Average 0.9863 0.9669 0.9561 0.9710 0.9636 0.9688

Appendix B

Table A2. TGR analysis of the Yellow River and Non-Yellow River basins from 2013 to 2017.

DMU 2013 2014 2015 2016 2017 Average

Non-Yellow
River Basin

Tibet 0.9999 0.9905 0.9475 0.9999 1.0000 0.9876
Hainan 0.8629 1.0000 1.0000 0.6278 0.9917 0.8965
Liaoning 0.7303 0.9488 0.9319 0.8129 0.9134 0.8675
Black Dragon River 1.0000 0.8539 0.7762 0.8059 0.9007 0.8673
Beijing 0.3992 0.8811 1.0000 0.9602 1.0000 0.8481
Tianjin 0.8239 0.8445 0.8448 0.6499 0.9749 0.8276
Chongqing 0.7837 0.6317 0.8055 0.7210 1.0000 0.7884
Shanghai 0.6246 0.8022 0.6441 0.5595 1.0000 0.7261
Hebei 0.5811 0.6070 0.5647 0.5945 0.6271 0.5949
Jilin 0.6069 0.6110 0.5334 0.4927 0.7060 0.5900
Jiangsu 0.4275 0.4250 0.4565 0.6617 0.8183 0.5578
Zhejiang 0.5043 0.5831 0.4352 0.5733 0.5748 0.5341
Guizhou 0.2885 0.2245 0.6365 0.8179 0.3949 0.4725
Xinjiang 0.4264 0.4511 0.4149 0.2540 0.2649 0.3623
Yunnan 0.1555 0.1228 1.2204 0.1098 0.1180 0.3453
Guangdong 0.2396 0.2759 0.2457 0.2527 0.3327 0.2693
Fujian 0.1190 0.1098 0.1074 0.5034 0.2717 0.2223
Anhui 0.1420 0.1688 0.1492 0.2067 0.3441 0.2022
Jiangxi 0.2279 0.1759 0.1545 0.1403 0.1336 0.1664
Hubei 0.1083 0.1171 0.1063 0.1685 0.2065 0.1413
Guangxi 0.1500 0.1202 0.1116 0.1289 0.1498 0.1321
Hunan 0.1053 0.0971 0.1026 0.1043 0.1685 0.1156

Average 0.4685 0.5019 0.5540 0.5066 0.5860 0.5234

DMU 2013 2014 2015 2016 2017 Average

Yellow River
Basin

Ningxia 0.7257 0.5888 0.9243 1.0000 0.5335 0.7545
Qinghai 0.5908 0.5105 0.6123 0.5184 0.6219 0.5708
Shandong 0.4784 0.5117 0.5014 0.7260 0.4879 0.5411
Shanxi 0.5274 0.3898 0.2413 0.6932 0.8063 0.5316
Gansu 0.2921 0.2695 0.2941 0.2438 0.2970 0.2793
Henan 0.1332 0.1277 0.2076 0.2589 0.6282 0.2711
Sichuan 0.2343 0.2222 0.1036 0.2253 0.1971 0.1965
Shaanxi 0.1672 0.1651 0.1600 0.1811 0.2375 0.1822
Inner Mongolia 0.1090 0.1059 0.1154 0.1205 0.1254 0.1152

Average 0.3620 0.3213 0.3511 0.4408 0.4372 0.3825

Note: the total average value of TGR in the Yellow River and non yellow river basins is 0.4825.
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7. Kynčlová, P.; Upadhyaya, S.; Nice, T. Composite index as a measure on achieving Sustainable Development Goal 9 (SDG-9)
industry-related targets: The SDG-9 index. Appl. Energy 2020, 265, 114755. [CrossRef]

8. Zaim, O. Measuring environmental performance of state manufacturing through changes in pollution intensities: A DEA
framework. Ecol. Econ. 2004, 48, 37–47. [CrossRef]

9. Wu, J.; Lv, L.; Sun, J.; Ji, X. A comprehensive analysis of China’s regional energy saving and emission reduction efficiency: From
production and treatment perspectives. Energy Policy 2015, 84, 166–176. [CrossRef]

10. Valadkhani, A.; Roshdi, I.; Smyth, R. A multiplicative environmental DEA approach to measure efficiency changes in the world’s
major polluters. Energy Econ. 2016, 54, 363–375. [CrossRef]

11. Geng, Z.; Dong, J.; Han, Y.; Zhu, Q. Energy and environment efficiency analysis based on an improved environment DEA
cross-model: Case study of complex chemical processes. Appl. Energy 2017, 205, 465–476. [CrossRef]

12. Sueyoshi, T.; Yuan, Y.; Goto, M. A literature study for DEA applied to energy and environment. Energy Econ. 2017, 62, 104–124.
[CrossRef]

13. Halkos, G.E.; Polemis, M.L. The impact of economic growth on environmental efficiency of the electricity sector: A hybrid
window DEA methodology for the USA. J. Environ. Manag. 2018, 211, 334–346. [CrossRef] [PubMed]

14. Fehri, R.; Khlifi, S.; Vanclooster, M. Disaggregating SDG-6 water stress indicator at different spatial and temporal scales in Tunisia.
Sci. Total Environ. 2019, 694, 133766. [CrossRef] [PubMed]

15. Hu, Z.; Yan, S.; Yao, L.; Moudi, M. Efficiency evaluation with feedback for regional water use and wastewater treatment. J. Hydrol.
2018, 562, 703–711. [CrossRef]

16. Song, M.; Wang, R.; Zeng, X. Water resources utilization efficiency and influence factors under environmental restrictions. J. Clean.
Prod. 2018, 184, 611–621. [CrossRef]

17. Yang, L.; Zhang, X. Assessing regional eco-efficiency from the perspective of resource, environmental and economic performance
in China: A bootstrapping approach in global data envelopment analysis. J. Clean. Prod. 2018, 173, 100–111. [CrossRef]

18. Li, J.; See, K.F.; Jin, C. Water resources and water pollution emissions in China’s industrial sector: A green-biased technological
progress analysis. J. Clean. Prod. 2019, 229, 1412–1426. [CrossRef]

19. Zhou, Z.; Wu, H.; Song, P. Measuring the resource and environmental efficiency of industrial water consumption in China: A
non-radial directional distance function. J. Clean. Prod. 2019, 240, 118169. [CrossRef]

20. Chen, Y.; Yin, G.; Liu, K. Regional differences in the industrial water use efficiency of China: The spatial spillover effect and
relevant factors. Resour. Conserv. Recycl. 2021, 167, 105239. [CrossRef]

21. Wang, K.-L.; Miao, Z.; Zhao, M.-S.; Miao, C.-L.; Wang, Q.-W. China’s provincial total-factor air pollution emission efficiency
evaluation, dynamic evolution and influencing factors. Ecol. Indic. 2019, 107, 105578. [CrossRef]

22. Wang, H.; Wang, M. Effects of technological innovation on energy efficiency in China: Evidence from dynamic panel of 284 cities.
Sci. Total Environ. 2020, 709, 136172. [CrossRef] [PubMed]

23. Chen, L.; He, F.; Zhang, Q.; Jiang, W.; Wang, J. Two-stage efficiency evaluation of production and pollution control in Chinese
iron and steel enterprises. J. Clean. Prod. 2017, 165, 611–620. [CrossRef]

24. Zhang, H.; Wang, S.; Hao, J.; Wang, X.; Wang, S.; Chai, F.; Li, M. Air pollution and control action in Beijing. J. Clean. Prod. 2016,
112, 1519–1527. [CrossRef]

25. Sarkodie, S.A.; Strezov, V. Effect of foreign direct investments, economic development and energy consumption on greenhouse
gas emissions in developing countries. Sci. Total Environ. 2019, 646, 862–871. [CrossRef] [PubMed]

26. Farrell, M.J. The Measurement of Productive Efficiency. J. R. Stat. Soc. 1957, 120, 253–290. [CrossRef]
27. Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444.

[CrossRef]
28. Banker, R.D.; Charnes, A.; Cooper, W.W. Some Models for Estimating Technical and Scale Inefficiencies in Data. Envelopment

Analysis. Manag. Sci. 1984, 30, 1078–1092. [CrossRef]
29. Chambers, R.G.; Chung, Y.; Fare, R. Benefit and distance functions. J. Econ. Theory 1996, 70, 407–419. [CrossRef]

http://doi.org/10.1186/s42834-022-00131-0
http://doi.org/10.1016/j.jdeveco.2022.102833
http://doi.org/10.3390/su6095820
http://doi.org/10.1007/s11869-021-01025-7
http://doi.org/10.1007/s11356-020-09537-y
http://doi.org/10.1016/j.apenergy.2020.114755
http://doi.org/10.1016/j.ecolecon.2003.08.003
http://doi.org/10.1016/j.enpol.2015.05.005
http://doi.org/10.1016/j.eneco.2015.12.018
http://doi.org/10.1016/j.apenergy.2017.07.132
http://doi.org/10.1016/j.eneco.2016.11.006
http://doi.org/10.1016/j.jenvman.2018.01.067
http://www.ncbi.nlm.nih.gov/pubmed/29425942
http://doi.org/10.1016/j.scitotenv.2019.133766
http://www.ncbi.nlm.nih.gov/pubmed/31756819
http://doi.org/10.1016/j.jhydrol.2018.05.032
http://doi.org/10.1016/j.jclepro.2018.02.259
http://doi.org/10.1016/j.jclepro.2016.07.166
http://doi.org/10.1016/j.jclepro.2019.03.216
http://doi.org/10.1016/j.jclepro.2019.118169
http://doi.org/10.1016/j.resconrec.2020.105239
http://doi.org/10.1016/j.ecolind.2019.105578
http://doi.org/10.1016/j.scitotenv.2019.136172
http://www.ncbi.nlm.nih.gov/pubmed/31905588
http://doi.org/10.1016/j.jclepro.2017.07.155
http://doi.org/10.1016/j.jclepro.2015.04.092
http://doi.org/10.1016/j.scitotenv.2018.07.365
http://www.ncbi.nlm.nih.gov/pubmed/30064112
http://doi.org/10.2307/2343100
http://doi.org/10.1016/0377-2217(78)90138-8
http://doi.org/10.1287/mnsc.30.9.1078
http://doi.org/10.1006/jeth.1996.0096


Energies 2022, 15, 5697 15 of 15

30. Ray, S.C. The directional distance function and measurement of super-efficiency: An application to airlines data. J. Oper. Res. Soc.
2008, 59, 788–797. [CrossRef]

31. Färe, R.; Grosskopf, S. Directional distance functions and slacks-based measures of efficiency. Eur. J. Oper. Res. 2010, 200, 320–322.
[CrossRef]

32. Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [CrossRef]

http://doi.org/10.1057/palgrave.jors.2602392
http://doi.org/10.1016/j.ejor.2009.01.031
http://doi.org/10.1016/S0377-2217(99)00407-5

	Introduction 
	Literature 
	Research Method 
	Directional Distance Function, DDF 
	Technology Gap Ratio, TGR 

	Data Analysis and Empirical Results 
	Selection of Data Sources and Variables 
	Input and Output Variables Statistical Analysis 
	Empirical Results 

	Conclusions and Suggestions 
	Conclusions 
	Research Recommendations 

	Appendix A
	Appendix B
	References

