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Abstract: A growing number of countries worldwide have committed to achieving net zero emissions
targets by around mid-century since the Paris Agreement. As the world’s greatest carbon emitter
and the largest developing economy, China has also set clear targets for carbon peaking by 2030 and
carbon neutrality by 2060. Carbon-reduction AI applications promote the green economy. However,
there is no comprehensive explanation of how AI affects carbon emissions. Based on panel data
for 270 Chinese cities from 2011 to 2017, this study uses the Bartik method to quantify data on
manufacturing firms and robots in China and demonstrates the effect of AI on carbon emissions. The
results of the study indicate that (1) artificial intelligence has a significant inhibitory effect on carbon
emission intensity; (2) the carbon emission reduction effect of AI is more significant in super- and
megacities, large cities, and cities with better infrastructure and advanced technology, whereas it is
not significant in small and medium cities, and cities with poor infrastructure and low technology
level; (3) artificial intelligence reduces carbon emissions through optimizing industrial structure,
enhancing information infrastructure, and improving green technology innovation. In order to
achieve carbon peaking and carbon neutrality as quickly as possible during economic development,
China should make greater efforts to apply AI in production and life, infrastructure construction,
energy conservation, and emission reduction, particularly in developed cities.

Keywords: artificial intelligence; carbon emission; heterogeneity; mechanism

1. Introduction

The emergence of big data and artificial intelligence has had a tremendous impact
on technological development, production organization, business models, and social life.
AI has become a major engine of global economic growth and industrial development.
Governments in numerous nations have introduced policies to support the AI industry, in-
cluding the UK’s Artificial Intelligence 2020 National Strategy, Japan’s Artificial Intelligence
Industrialization Worksheet, the U.S. White House Office of Science and Technology Policy
(OSTP) Special Committee on Artificial Intelligence’s 2019 National Artificial Intelligence
R&D Strategic Plan, and China’s five departments’ National New Generation Artificial
Intelligence R&D Strategic Plan. However, as AI continues to liberate production, envi-
ronmental issues arise. While AI has the potential to alleviate some of the stresses placed
on environmental protection and climate change by increasing transportation efficiency,
optimizing energy use, and innovating low-carbon materials, it also poses new challenges
in the form of increased energy consumption and the production of electronic waste. Deter-
mining the precise environmental repercussions of the expansion of AI technology is, thus,
a serious research concern.

Concurrently, worldwide attention and efforts to address climate concerns are growing.
More than 70 nations have pledged to achieve net zero emissions by 2050 and to strengthen
their international climate commitments under the Paris Agreement. As the greatest energy
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consumer and carbon producer in the world, China has set a clear target of reaching peak
carbon emissions by 2030 and carbon neutrality by 2060. As a result, accomplishing the
goals of carbon peaking and carbon neutrality concurrently with economic expansion has
become a key concern for emerging economies today. Utilizing technologies related to
energy efficiency and carbon reduction is essential for achieving sustainable development.
Studies have demonstrated that AI technologies have a wide range of applications for
improving renewable energy transmission in the grid [1], estimating energy use in the
mining industry for energy-efficient operations [2], and optimizing energy control in
buildings to reduce energy waste [3]. If it can reduce carbon emissions to reach carbon
peaking and carbon neutrality, will the impact vary according to city size, infrastructure, or
technological advancement? What are the mechanisms underlying AI’s effect on carbon
reduction? Understanding the role of AI, reaching carbon peak and carbon neutrality,
and constructing a “human-centered” AI era all require in-depth examinations of the
aforementioned concerns, yet there is still a dearth of relevant research in these areas.

AI-related carbon reduction studies have barely begun according to existing literature.
A relevant study uses industrial robot data from 16 industries in China between 2006
and 2016 to examine the relationship between AI and energy intensity [4]. They discover
that the application of AI technology in the industrial sector reduces energy intensity by
increasing industrial output and reducing energy consumption. This is the only article that
directly relates to the topic of this research. Other relevant literature about the use of AI
to reduce carbon emissions falls into three categories. The first category relates to carbon
emissions. Existing studies have measured carbon emission levels in various industries and
regions [5–7]. These studies also categorized the factors influencing carbon emissions: fixed
asset investment projects, particularly high energy-consuming and high carbon emission
projects, are a significant source of rising carbon emissions; urbanization is associated with
a rise in average temperature [8]; and government intervention [9]. The second category
relates to AI-related characteristics. A study examined the influence of robotics applications
on regional labor markets in the US using a general equilibrium model and established a
measure of “robotics penetration” at the regional level in the US based on model results [10].
In this paper, we select the exposure of robots (ETR) as a proxy variable for the development
level of artificial intelligence (AI) [10,11]. The application of robotics has been driving
China’s transformation from a “manufacturing power” to a “manufacturing superpower”
and economy growth. According to the International Federation of Robotics (IFR), an
industrial robot is a machine that can be automatically controlled, is reprogrammable, and
includes multi-purpose machinery, a multi-joint manipulator, or multi-degree-of-freedom
robots for industrial fields, which can be used in monotonous, time-consuming, and
repetitive tasks. The study of the relationship between artificial intelligence and carbon
emissions is the third category [12]. The third category of literature examines the economic
implications of robotics. Some literature argues that the substitution effect of robots reduces
labor demand [10,13,14] and some contends that technology advancements in robotics
provide a substantial number of new jobs while displacing existing ones [15–17]. The
literature also argues that the job promotion effect of robotics applications is larger than
the substitution effect, and that the application of robots greatly increases industrial firms’
labor force employment levels [18].

Using panel data from 270 prefectural cities in China from 2011–2017 matched with
CO2 emissions data, this paper examines the impact of AI on carbon emissions in terms
of direct impact, heterogeneity, and impact mechanism. We use instrumental variables
to address endogeneity variables, and we conduct robustness tests by reconstructing
explanatory variables, adding dimensional time trend terms to the baseline model, and
including outliers of observations. Here are three areas where this study differs from
others. First, from a research standpoint, this study focuses on the influence of AI on carbon
emission and presents substantial empirical data, as opposed to the established studies
that focus on the economic consequences of AI on industrial structure and productivity.
Second, in terms of data, unlike existing studies that take the carbon emission perspective
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of industries [4], the carbon emission in this paper is at the city level, providing a new
and more rigorous perspective for studying the impact of artificial intelligence on carbon
emission. At the same time, we examine city-level heterogeneity further. Due to vast
variances in size, infrastructure, and technology, the severity of AI’s impact on carbon
emissions varies significantly between cities. Consequently, city features give crucial
information for the establishment of distinct and effective AI policies in each city. Thirdly,
this article also investigates the mechanism of AI’s function in reducing urban carbon
emission intensity by optimizing industrial structure, enhancing information infrastructure,
and enhancing the green technology innovation. Fourth, in a practical sense, under the
dual constraints of facing economic development and environmental pressure, this paper
provides empirical evidence for further development of the AI industry and provides a
new scientific basis for government policies to achieve the goal of carbon neutrality (zero
emissions) as soon as possible.

The remainder of the our work is organized as follows: Section 2 reviews relevant
literature on similar topics; Section 3 presents the empirical design and data description;
Section 4 presents the empirical results and analysis, focusing on the model’s basic regres-
sion results, robustness, and heterogeneity; Section 5 examines the mechanism by which AI
contributes to the reduction in urban carbon emission; Section 6 concludes the paper.

2. Literature Review
2.1. Impact of AI on Carbon Emissions

Studies on the effects of AI on carbon emissions are mixed. Widespread opinion holds
that AI has a positive impact on carbon reduction [19,20]. First, technical progress may
promote economic development, energy structure adjustment, and industrial structure
upgrading, which can lower carbon emission efficiently [21]. AI technology may leverage
vast data from many sources to solve complicated issues, hence boosting productivity and
reducing CO2 emissions per unit of GDP. Second, artificial intelligence, as a cutting-edge
technology, increases productivity and generates knowledge and information spillover,
which enables carbon-neutral technologies. A study jointly published by Microsoft and
PwC states that “the use of AI technology to environmental protection is predicted to
increase global GDP by 3.1 to 4.4 percent by 2030, while reducing global greenhouse
gas emissions by 1.5 to 4.0 percent”. Thirdly, AI enables more accurate detections and
predictions of company pollution, which contribute to the development of a robust carbon
emissions trading market, which further decreases CO2 emissions [22].

However, other scholars argue that technological advancements brought about by AI
not only reduce energy consumption, but also result in lower energy prices and energy
surplus, which may further stimulate energy use and transition, thereby reducing the
anticipated energy savings of the technology. This phenomenon is known as the “rebound
effect” [23,24]. AI is also relatively energy-intensive for industry, as machine learning and
industrial robotics are far more energy-intensive than human labor. In recent years, the
computational power required for major AI technologies such as DeepMind’s AlphaZero
Go program has doubled roughly every 3.4 months, tripling between 2012 and 2018. Deep
learning-based AI in particular is becoming the largest engine of corporate growth in data
centers throughout the world, and if the energy consumption and carbon emissions it
generates are not handled seriously, it will cause a “butterfly effect” catastrophe. In the
meantime, the European Union has issued a warning that the AI industry’s greenhouse gas
emissions could climb sevenfold to 14% over the next two decades.

Therefore, this article empirically indicates that it is of major importance to find
whether the implementation of artificial intelligence in China has a positive or negative
effect on carbon emissions.

2.2. AI Reduces Carbon Emissions by Optimizing Industry Structure

Industrial structure upgrading is a major driving force for energy conservation and
pollution reduction [25,26]. With the improvement of industrial structure, production
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factors gradually migrate from sectors with low marginal efficiency to sectors with high
marginal efficiency. The resource allocation tools of artificial intelligence economy can
reallocate labor, capital, and other resource factors to promote the industrial structure to
the high end of the industrial chain, which is conducive to improving energy efficiency and
reducing pollution emissions [27].

From the macro perspective, the advanced information and data represented by arti-
ficial intelligence, as a new production factor, stimulate the rapid growth of AI vehicles,
industrial robots, and other new industries, effectively promote the reallocation of produc-
tion factors, and optimize industrial institutions.

From the meso perspective, AI embedded in traditional industries provides informa-
tional driving force. For example, in the manufacturing industry, AI can be used to establish
an intelligent manufacturing system, improve the efficiency of the use and allocation of
production factors, promote manufacturing upgrades, and reduce resource losses and pollu-
tion emissions [28]. Artificial intelligence can create a new virtual workforce to replace the
workforce performing programmed tasks [10,29], thus enabling “intelligent automation”.

From the micro perspective, big data are widely distributed, changing rapidly [5], and
gradually become a decision-making resource for people to obtain deeper knowledge of
things, especially the deep integration of artificial intelligence technology and big data
which provides powerful tools for modeling and analysis of complex decision-making
problems (Yu Hong et al., 2020).

2.3. AI Reduces Carbon Emissions by Enhancing Information Infrastructure

As a byproduct of the Internet age, artificial intelligence will not only stimulate tradi-
tional information infrastructure such as fiber optics, but also encourage new information
infrastructure such as data centers and supercomputers. Statistics from the Ministry of
Industry and Information Technology indicate that by the end of May 2022, a total of
1.7 million 5G base stations were built and opened in China, and more than 650,000 new
5G base stations were built in the previous year. Furthermore, 5G users accounted for more
than a quarter of the total, with 428 million households using the technology. In addition,
the 2022 Government Work Report states:

Promote digital economy. Improve the overall digital China construction. Con-
struct a digital information infrastructure, a national integrated big data center
system, promote the deployment of 5G, encourage the digital transformation of
industries, and develop smart cities and digital villages. Accelerate the growth
of the industrial Internet, cultivate and expand integrated circuits, artificial
intelligence, and other digital sectors, and improve technical innovation and
the supply capacity of essential software and hardware.

Information infrastructure, which is ecologically friendly with fewer negative exter-
nalities, encourages dematerialization of economic activity and minimizes carbon emis-
sions [30]. Moreover, information infrastructure encourages businesses to invest in infor-
mation technology, which reduces carbon emission activities. Moreover, the information
infrastructure facilitates better articulation and communication between upstream, mid-
stream, and downstream enterprises in the industry chain, as well as the dissemination
of information and data between the productive service and manufacturing industries,
thereby achieving the separation of the production link from the service link and a cleaner
and more efficient production and operation model [31,32].

2.4. AI Reduces Carbon Emissions by Enhancing Green Technology Innovation

Technological progress and innovation are seen as significant elements in energy
conservation and emission reduction [33–35]. Technology diffusion enables the promotion
of cleaner manufacturing processes and green technology in environmentally polluted
regions, which has a favorable impact on energy and carbon emission performance [27].
Artificial intelligence is a crucial vehicle for the introduction and spread of technology.
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The new industries represented by artificial intelligence provide conventional industries
with a high-tech bonus, which is helpful to decreasing R&D clichés in industrial sectors,
supporting the transition of industries toward intelligence and greening, and increasing
industrial added value. AI may also foster the growth of an innovation ecosystem and the
building of R&D and innovation capabilities to boost productivity significantly [36]. In
addition, AI contributes to the advancement of green technology through the economies
of scale and technology spillover effects. As the number of users increases, the marginal
cost sink of artificial intelligence input decreases, yielding a considerable economy of
scale effect.

3. Materials and Methods
3.1. Identification Strategies

This article investigates the impact of artificial intelligence on carbon emissions. The
baseline model is

CEIc,t = α + β ln AIc,t + λXc,t + uc + µt + εc,t, (1)

where CEIc,t denotes the carbon emission intensity of city c in year t; AIc,t measures the
AI development level of city c in year t; Xc,t is a set of control variables; uc and µt denote
the area fixed effect and time fixed effect; εc,t is the error term. The coefficient β, the net
effect of the level of AI development on carbon emission intensity, is the key coefficient in
this paper. A significant negative β indicates a reduction in carbon emission intensity as
a result of improved AI development. Either an insignificant or a positive β indicates an
insignificant impact of AI development on carbon emission.

3.2. Variables
3.2.1. Dependent Variable (Carbon Emission Intensity)

This paper focuses on urban industrial carbon emissions due to the fact that AI
applications are currently geared toward businesses. This paper divides urban industrial
carbon emissions into two categories: direct emissions that come from energy use such
as natural gas and LPG, and indirect emissions that come from electricity utility in urban
industries. Inspired by a relevant study [37], the carbon emission is calculated as follows:

CE = C1 + C2 + C3 = α1E1 + α2E2 + α3(ηE3) (2)

CEI = CE/GDP, (3)

where CE denotes the total CO2 emissions; CEI denotes the carbon emission intensity; C1
and C2 denote the CO2 emissions from natural gas and LPG, and C3 is the CO2 emissions
from the whole society’s electricity consumption; E1, E2, E3 denote the consumptions of
natural gas, LPG, and industrial electricity, respectively; α1, α2 denote the CO2 emission
factors of natural gas and LPG (carbon emission factors come from IPCC2006 Guidelines
for National Greenhouse Gas Emission Inventories); α3 is the greenhouse gas emission
factor of the coal power fuel chain, and η denotes the proportion of coal power generation
to total generation.

3.2.2. Core Independent Variable (AI Development Level)

In the era of digital economy, artificial intelligence is widely used in various fields
of the economy and society, and manifests itself in a variety of ways. However, there
is a lack of indicators that directly measure its development level. This paper selects
industrial exposure to robots (ETR) as a proxy variable for the development level of
artificial intelligence. According to ISO 8373:2012, a robot is a programmable device that
has two or more degrees of freedom, and traverses its surroundings to complete a preset
mission. Therefore, ETR would be an excellent indicator of the extent of AI progress.
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Inspired by a relevant study [10], this paper uses a method similar to the “Bartik
instrument” [38,39] to construct the ETR for city c in year t as

ETRc,t = ∑
i∈∅

γc,i · APRit (4)

where γc,i denotes the proportion of employment in industry i in the manufacturing sector
in city c in the base year (2011), APRi,t′ denotes the robot penetration in year t in industry i
at the country level, γc,i and APRi,t are calculated by

γc,i =
Lc,i,2011

Lc,2011
(5)

APRi,t =
RNi,t

Li,2011
(6)

where Lc,i,2011 denotes the employed population in industry i in city c in the base year
(2011), Lc,2011 denotes the employed population in the manufacturing sector in city c in
the base year (2011); RNi,t denotes the stock of industrial robots in year t in industry i
country-wide, Li,2011 denotes the employed population in industry i in the base year (2011).

Since city-level employment data for manufacturing subsectors are unavailable, this
paper generates an alternative parameter γ̃c,i for γc,i from the Chinese Industrial Enterprises
Database, which contains all state-owned industrial enterprises and non-state-owned
industrial enterprises. The statistical scope, which is mainly for manufacturing enterprises,
covers the extractive industry, manufacturing industry, and electricity, gas, and water
production and supply industry. Since the database provides information on each firm’s
province, city, and number of employees at the end of the year, and the sample firms
cover nearly all local manufacturing enterprises, the alternative parameter γ̃c,i can be built
as follows:

γ̃c,l =
∑n

j=1 Lcij,2011

∑11
i=1 ∑n

j=1 Lcij,2011
(7)

where Lcij,2011 denotes the employed population in firm j of city c in industry i in the base
year (2021). The total employed population in industry i in city c is the summation of the
year-end 2011 employees of all firms in industry i in city c from the Database of Chinese
Industrial Enterprises; the total employed population in the manufacturing sector is the
summation of the year-end 2011 employees of all firms in city c.

3.2.3. Instrumental Variables

Similar to China over the sample period, the growth of industrial robots in the United
States can reflect the trend of technological progress, and its impact on China’s carbon
emissions satisfies the endogeneity assumption of instrumental variables. At the same
time, changes in the US industrial robot stock do not correlates with variables affecting
China’s carbon intensity, satisfying the exogeneity assumption of instrumental variables.
Therefore, we use US industrial robots as an instrumental variable for the exposure to
Chinese industrial robots:

ETRIV
c,t = ∑

i∈∅

LCN
ci,2011

LCN
c,2011

·
RNUS

it
LCN

i,1990
, (8)

where RNUS
it denotes the US industrial robot stock in industry i in year t.

3.2.4. Control Variables

The control variables in this present work are fixed asset investment (invest), which
is denoted as the ratio of the city’s total fixed asset investment to regional GDP; financial
development level ( f in), which is denoted as the proportion of the city’s year-end loan
balance of financial institutions to the regional GDP; urbanization ratio (urban), which is
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expressed as the population share of the municipal district; and government intervention
(expenditure), which is expressed as the ratio of the city’s general public budget expenditure
to the regional GDP.

3.3. Data Source

This research examines the impact of AI development on carbon emissions using panel
data for 270 prefecture-level cities in China from 2011 to 2017. Publicly accessible statistics
from the China City Statistical Yearbook, International Federation of Robotics (IFR), China
Industrial Enterprises Database, China Labor Statistics Yearbook, EPS Data Platform, and
China Research Data Service Platform (CNRDS) are the primary sources of research data.
Table 1 contains the descriptive statistical analysis of the variables.

Table 1. Variables and descriptive statistics.

Variables Variable Symbols Mean Standard Deviation 50th Percentile Min. Max.

Carbon emissions intensity CEI 0.0300 1.020 −0.270 −1.450 6.200
Exposure to robot ln ETR 2.380 0.870 2.380 −0.0700 5.370

Financial development f in 0.790 0.290 0.760 0.0900 2.200
Fixed asset investment invest 0.370 0.240 0.300 0.0500 1

Percentage of population in urban areas Urban 0.0800 0.0500 0.0700 0.0100 1.270
Government intervention Expenditure 11.94 1.030 11.82 8.130 16.08

4. Results
4.1. Basic Regression Results

This study employs a two-way fixed effects model, controlling for temporal and
area-level fixed effects, to examine the connection between AI development and carbon
emissions intensity. The results of the baseline regressions are shown in Table 2. Column (1)
displays the results of regression with the level of AI development as the sole explanatory
variable, whereas column (2) displays the results of regression with the addition of control
variables. As seen in Table 2, each 1% improvement in AI development reduces carbon
intensity by 0.0027%, which is statistically significant at the 1% level. The estimated
coefficients become smaller when control variables are included, but are still significant.
This demonstrates that the development of artificial intelligence has a statistically significant
positive effect on reducing the intensity of carbon emissions.

In addition, this paper investigates the disparate impacts of AI development level on
cities with varying carbon emission levels. Cities with carbon emission intensity greater
than the 50 percent quantile are in the high-CEI group, whereas those with less than the
50 percent quantile are in the low-CEI group. Columns (3) and (4) show the grouping
regression results. Developing AI considerably lowers the carbon emission intensity of
both groups of cities, with the absolute value of the estimated coefficients being greater for
cities in the low-CEI group, indicating better carbon reduction impacts. The reason for this
could be that cities with lower carbon emission intensities are more productive overall and
are better able to make use of artificial intelligence tools to boost efficiency and cut down
on carbon output.

Although the baseline regression shows a significant result, there may be endogeneity
issues. The regression model in this paper only controls for factors such as financial
development level, fixed asset investment, urbanization level, and government intervention.
It does not control for variables that affect carbon emission intensity, and there may be
unobservable variables, such as culture or institutions, that lead to omitted variable bias.
Furthermore, there may be reverse causality as reduced carbon emission intensity frequently
implies an enhanced urban environment, and a good urban environment may also be a
factor in attracting AI technological expertise. To address potential endogeneity and reverse
causality issues, this research introduces an instrumental variable for AI development
in China using data on the stock of industrial robots in the United States during the
sample period.
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Table 2. Baseline model.

Variables (1) (2) (3) (4)
Low CEI High CEI

ln ETR −0.2720 *** −0.2389 *** −0.0296 * −0.1809 ***
(0.0306) (0.0336) (0.0154) (0.0574)

f in 0.0852 ** −0.0309 * 0.1836 ***
(0.0373) (0.0171) (0.0628)

invest 0.0937 0.2343 *** 0.2307 **
(0.0708) (0.0373) (0.1039)

urban −0.9216 *** −0.2271 *** −0.9533 ***
(0.0804) (0.0430) (0.1344)

expenditure 2.0483 *** −0.7688 *** 1.3422 ***
(0.3446) (0.2863) (0.4475)

Constant 0.6761 *** 0.5837 *** −0.5593 *** 0.8422 ***
(0.0739) (0.1004) (0.0483) (0.1628)

Observations 1890 1614 735 840
Adjusted
R-squared 0.6586 0.6815 0.4286 0.5961

F statistics 79.20 43.35 45.95 15.24
Year FE YES YES YES YES

Province FE YES YES YES YES
t-statistics based on standard errors clustered at the city level are reported beneath each coefficient estimate.
Significance levels are indicated by *, **, and *** for 10%, 5%, and 1%.

The outcomes of the 2SLS regression with instrumental variables are displayed in
Table 3. The estimated coefficient of stage 1 in column (1) is 0.9432, which is significant at
the 1% level, showing that the instrumental variables are highly correlated with China’s
urban exposure to robots. The estimated stage 2 coefficient in column (2) is negative and
statistically significant at the 1% level. The absolute value of the estimated second-stage
coefficient of IV is significantly greater than the OLS regression results, indicating a reverse
causal effect in which the reduction in urban carbon emission intensity has a dampening
effect on the application of AI, thereby causing the OLS regression to underestimate the
carbon reduction effect of AI. The instrumental variable test indicates that the model does
not have unidentified and weak instrumental variables. Specifically, the Anderson canon.
corr. LM statistic is 1420.719 with a p-value of 0.0000, which rejected the null hypothesis
of unidentifiability; the Cragg–Donald Wald F statistic value is 12,000, which exceeds the
empirical judgment of 10 and passes the weak instrumental variable test.

Table 3. IV regression model.

Variables (1) (2)
First Stage Second Stage

ln ETRIV 0.9432 ***
(0.0086)

ln ETR −0.2594 ***
(0.0716)

Cragg–Donald Wald F 2659.34 12,000
Anderson canon. corr. 1420.719

F statistics 2659.34
Observations 1629 1614

Adjusted R-squared 0.9648 0.0990
Year FE YES YES

Province FE YES YES
t-statistics based on standard errors clustered at the city level are reported beneath each coefficient estimate.
Significance levels are indicated by *, **, and *** for 10%, 5%, and 1%.

4.2. Heterogeneity Analysis

On a full-sample basis, the preceding study showed that AI development significantly
reduces carbon emissions. However, the impact of AI development on carbon emissions
may also vary by city size.

According to the Chinese government’s classification of city size, cities with a perma-
nent urban population of less than 500,000 are small cities, those with more than 500,000
and less than 1 million are medium cities, those with more than 1 million and less than
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5 million are large cities, and those with more than 5 million and less than 10 million are
megacities. According to these criteria, this study divides cities into three groups: small
and medium-sized cities, large cities, and megacities and supercities. Table 4 exhibits the
outcomes of grouped regressions for cities of various sizes, with columns (1), (3), and (5)
showing the outcomes of regressions using the level of AI development as the independent
variable, and columns (2), (4), and (6) showing the outcomes of regressions with control
variables. According to the regression results, the impact of AI on carbon emission intensity
is not significant in small and medium-sized cities, but it is significant at the 1% level in
large cities, megacities, and supercities, and the absolute value of the coefficients grows as
city size increases. This may be due to the properties of artificial intelligence technologies.
The inputs for artificial intelligence technologies are primarily software, with zero marginal
cost of use but stringent data size constraints. The larger a city’s population, the easier it
is for economic activities to generate large-scale data, the stronger the foundation for AI
applications, and the greater its impact on reducing the intensity of carbon emissions.

Table 4. Heterogeneity analysis: city size.

Variables

City Size

Mega- and Supercities Large Cities Medium and Small Cities
(1) (2) (3) (4) (5) (6)

ln ETR −0.2526 *** −0.1484 *** −0.2138 *** −0.1877 *** −0.0475 −0.3022
(0.0354) (0.0414) (0.0447) (0.0475) (0.1786) (0.2801)

Controls NO YES NO YES NO YES
Observations 648 554 1163 993 79 67

Adjusted
R-squared 0.6347 0.6668 0.6695 0.7051 0.9169 0.9686

F statistics 50.82 23.54 22.90 30.34 0.0707 19.83
Year FE YES YES YES YES YES YES

Province FE YES YES YES YES YES YES
Columns (1) and (2) indicate the regression results for mega- and supercities; columns (3) and (4) indicate the
regression results for large cities; columns (5) and (6) indicate the regression results for medium and small cities.
When Controls is NO, it indicates that the control variables are not controlled; when Controls is YES, it indicates
that the control variables are controlled. t-statistics based on standard errors clustered at the city level are reported
beneath each coefficient estimate. Significance levels are indicated by *, **, and *** for 10%, 5%, and 1%.

The application of artificial intelligence technology depends not only on the production
of massive amounts of data, but also on the level of technologies and infrastructures such
as the Internet. The more established traditional infrastructure construction for data
collecting and transmission makes it more feasible to apply AI technology to optimize the
consumption and distribution of energy, which improves energy efficiency.

This research then proceeds to group regressions for cities with varying levels of
infrastructure. Table 5 displays the results of the regression by infrastructure grouping.
The regression outcomes in columns (1) and (2) indicate that the development of AI has no
significant effect on the carbon emission reduction in cities with inadequate infrastructure.
The regression results in columns (3) and (4) indicate that, for cities with better infrastruc-
ture, the application of AI technology reduces carbon emission, and the absolute value of
coefficient is greater than the baseline regression, which is consistent with our hypothesis.
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Table 5. Heterogeneity analysis: infrastructure.

Variables
Traditional Infrastructure

Poor Infrastructure Better Infrastructure
(1) (2) (3) (4)

ln ETR −0.0073 −0.0221 −0.3059 *** −0.2190 ***
(0.0517) (0.0528) (0.0334) (0.0350)

Controls NO YES NO YES
Observations 917 821 973 792

Adjusted
R-squared 0.7203 0.7446 0.6162 0.6836

F statistics 0.0202 22.91 83.78 44.31
Year FE YES YES YES YES

Province FE YES YES YES YES
Columns (1) and (2) indicate the regression results for cities with poor traditional infrastructure; columns (3) and
(4) indicate the regression results for cities with better traditional infrastructure. When Controls is NO, it indicates
that the control variables are not controlled; when Controls is YES, it indicates that the control variables are
controlled. t-statistics based on standard errors clustered at the city level are reported beneath each coefficient
estimate. Significance levels are indicated by *, **, and *** for 10%, 5%, and 1%.

Artificial intelligence, as a knowledge-intensive frontier technology, is highly asso-
ciated with the local technological level. As the two fundamental components of AI,
algorithms and processing power are not only essential for the ongoing development of AI,
but also for assessing AI’s effectiveness in practical applications. The algorithm determines
the theoretical productivity in software, whereas the arithmetic power ensures the actual
productivity in hardware, both of which are affected by the technological level.

The results of grouped regressions for various technological levels are presented in
Table 6. According to the regression results in columns (1) and (2), the development of
AI has no statistically significant effect on carbon emissions in cities with modest levels
of technology. Lower technological level does not support the application of AI, and AI-
capable talent may be scarce; hence, substantial reductions in carbon emissions cannot be
attained. The regression results in columns (3) and (4) indicate that the deployment of AI can
significantly reduce carbon emissions in cities with a higher technological level. These cities
have greater human resources to make algorithmic breakthroughs and greater financial
resources to construct hardware facilities that rely on the development and application of
AI technologies, such as data centers and supercomputers.

Table 6. Heterogeneity analysis: technology.

Variables
Regional Technology Level

Low-Tech High-Tech
(1) (2) (3) (4)

ln ETR −0.0513 −0.0377 −0.2221 *** −0.1483 ***
(0.0561) (0.0538) (0.0294) (0.0352)

Conrols NO YES NO YES
Observations 912 826 964 775

Adjusted
R-squared 0.6930 0.7382 0.5770 0.6131

F statistics 0.834 29.61 57.23 26.68
Year FE YES YES YES YES

Province FE YES YES YES YES
Columns (1) and (2) indicate the regression results for low level of technology; columns (3) and (4) indicate the
regression results for high level technology. When Controls is NO, it indicates that the control variables are
not controlled; when Controls is YES, it indicates that the control variables are controlled. t-statistics based on
standard errors clustered at the city level are reported beneath each coefficient estimate. Significance levels are
indicated by *, **, *** for 10%, 5%, and 1% respectively.

4.3. Robustness Tests

This paper has addressed the endogeneity issue through instrumental variables, and
to further verify the robustness of the benchmark regression results, the following aspects
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are tested by reconstructing the independent variables, adding dimensional time trend
terms to the benchmark model, and considering outliers of the observations, and the results
are presented in Table 7.

First, because of China’s “poor oil, rich coal, and little gas” resource endowment, ther-
mal power generation makes up more than 70% of the electricity, making coal combustion
the primary source of carbon emissions in China. This research reconstructs the indepen-
dent variables using sulfur dioxide emission intensity (ratio of sulfur dioxide emissions to
regional GDP) because the consumption of coal frequently entails the emission of sulfur
dioxide. The regression results in column (1) of Table 7 reveal that the regression coeffi-
cient using sulfur dioxide emission intensity as the independent variable is still negative
and significant at the 1% level, implying that the application of AI technology reduces
environmental pollution significantly.

Second, there is a significant latitudinal gradient in China, with urban centers spread
out across the country from alpine regions to tropical regions. Wintertime heating needs in
alpine cities will have a considerable impact on carbon emission intensity. In contrast, with
China’s economic growth and technical development, carbon emissions will likewise vary
over time. Then, we introduce the interaction term latitude ∗ year for city dimension and
year in the benchmark model to investigate whether there is an interactive effect of both
time and region on the carbon reduction effect of AI. The regression findings in column (2)
of Table 7 indicate that the regression coefficient of AI with the interaction term is −0.2437
and is statistically significant at the 1% level. The coefficient of regression for the interaction
term latitude ∗ year is considerably positive at the 1% level.

Finally, we regress the baseline model after customizing the samples of explanatory
factors, explained variables, and control variables to exclude the probable influence of out-
liers in the sample observations on the regression findings; the resulting regression results
are shown in (3) in Table 7. The estimated coefficient of AI following the tailoring process
is −0.2370, which is largely consistent with the benchmark regression while significant at
the 1% level, indicating that the results of the benchmark regression are robust to outliers.

Table 7. Robustness test.

Variables

Reconstructing the
Dependent Variable

Adding Dimensional
Time Trend Terms Drop Outliners

Sulfur Dioxide
Emission Intensity CEI CEI

(1) (2) (3)

ln ETR −0.1587 *** −0.2437 *** −0.2370 ***
(0.0463) (0.0334) (0.0340)

latitude ∗ year 1.8579 ***
(0.3827)

Controls YES YES YES
Observations 1597 1614 1614

Adjusted R-squared 0.4183 0.6860 0.6872
Year FE YES YES YES

Province FE YES YES YES
t-statistics based on standard errors clustered at the city level are reported beneath each coefficient estimate.
Significance levels are indicated by *, **, and *** for 10%, 5%, and 1%.

5. Mechanism Test

This paper’s empirical study demonstrates that the application of AI can reduce
urban carbon emissions economically and statistically. The results are still significant after
excluding endogeneity issues with instrumental variables. Reconstructing the explanatory
variables and accounting for outliers verified the robustness of the baseline regressions.
The following section of this research will investigate the potential mechanisms by which
AI reduces carbon.
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5.1. Industrial Structure Effect

AI plays a significant role in the new industrialization process and can promote the
upgrading of traditional manufacturing industries [40], thereby enhancing production effi-
ciency, economic efficiency, and total factor productivity. Artificial intelligence redistributes
labor, capital, and other factors of production in the manufacturing industry via algorithm,
which entails the needs of the service nature of artificial intelligence. On the other hand,
AI technologies with big data and machine learning as tools transform traditional service
industries such as finance, law, education, logistics, and new service industries such as
Internet and health, opening up various application scenarios of “AI+service industry” and
promoting the rapid development of service industries [41,42]. Therefore, AI may change
the industrial structure by promoting the development of tertiary industries such as the
service industry, which will have the effect of reducing emissions.

We use the ratio of tertiary industry to GDP as the dependent variable and the level of
AI development as the independent variable for regression to examine the optimization
effect of AI on industrial institutions. The results in column (1) of Table 8 indicate that AI
has a positive effect on industrial structure optimization, which implies that AI reduces
carbon emission by promoting industrial structure upgrading.

Table 8. Mechanism test: industrial structure effect.

Variables
Industrial
Structure

Information
Infrastructure

Number of Green
Inventions
Applied for

That Year

Number of Green
Utility Models

Applied for
That Year

(1) (2) (3) (4)

ln ETR 0.7469 *** 0.4490 *** 0.8477 *** 0.7375 ***
(0.2721) (0.0591) (0.0603) (0.0518)

Controls YES YES YES YES
Observations 1628 1629 1595 1603

Adjusted
R-squared 0.7457 0.5675 0.6053 0.6748

Year FE YES YES YES YES
Province FE YES YES YES YES
F statistics 338.1 194.5 202.4 203.3

t-statistics based on standard errors clustered at the city level are reported beneath each coefficient estimate.
Significance levels are indicated by *, **, *** for 10%, 5%, and 1%.

5.2. Information Infrastructures

As a byproduct of the Internet era, the application of artificial intelligence not only
promotes traditional information infrastructures such as optical fiber, but also stimulates
new information infrastructures such as data centers and supercomputers, which is environ-
mentally friendly. Meanwhile, it accelerates information and knowledge dissemination, and
encourages businesses to invest in information technology, thereby lowering carbon emissions.

This research uses four information infrastructure-related indicators to measure the
level of infrastructure development, namely: the number of Internet users per 100 people,
the proportion of computer service and software employees in urban employment, the
total number of telecommunication services per capita, and the number of cell phone users
per 100 people. All these data are also obtained from the China Urban Statistical Yearbook.
This study employs principal component analysis (PCA) to standardize and downscale the
above indicators, and then produces the complete information infrastructure index as a
proxy variable for digital infrastructure, denoted by In f .

In column (2) of Table 8, the regression of AI on information infrastructure provides a
significant coefficient of 0.449 at the 1% level. This suggests that there is a large positive
correlation between the growth of AI and the information infrastructure, and that fostering
AI promotes information infrastructure.
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5.3. Green Technology Innovation Effect

Carbon emission intensity is the carbon emission per unit of GDP, which is a concept
about efficiency and therefore pertains to technological innovation. The higher the techno-
logical innovation capacity of cities, the more it can lead to low-carbon technologies and
environmental technologies, which curb carbon emissions. Can artificial intelligence, with
big data and machine learning at its core, continually advance green technology innovation,
therefore reducing the carbon intensity of industrial development?

Patent inventions are the output of R&D activities, which can directly reflect the
level of urban innovation. To verify the effect of AI on green technology innovation, this
paper uses the number of green inventions applied in the current year and the number of
green utility models applied in the current year as proxy variables for green technology
innovation. Green patents are obtained by eliminating non-green technology invention
patents from the international green patent classification code.

The estimated coefficients in column (3) of Table 8 are significant at the 1% level,
indicating that AI drives urban green technology innovation. The artificial intelligence
technology is sufficiently universal to be linked with the green innovation business [43].
Based on the massive data and computing of artificial intelligence, the green technology
innovation process can discover more innovation paths, and overlay at a faster rate, thereby
improving green technology innovation, and reducing carbon emissions.

The improvement of information infrastructure level entails the enhancement of infor-
mation network accessibility, and as a result of marginally decreasing network costs, it effec-
tively reduces the information transmission cost of technological innovation mediated by
the network and improves the flow of innovation factors and diverse information between
regions. Information technology is continuously releasing technology spillover bonus in
the industrial sector, which has a direct effect on raising urban green technology level,
thereby giving a possible path for reducing carbon emission during industrial expansion.

6. Discussion and Conclusions

Artificial intelligence is a cutting-edge technology leading a new round of technical
revolution and industrial transformation. A widespread application of AI in our economic
activities invigorates economic growth. Despite the worldwide consensus on low-carbon
production, the influence of artificial intelligence on carbon emissions has not yet been
thoroughly investigated.This article empirically examines the impact of AI on reducing
carbon emissions by creating a two-way fixed-effects model with a panel of 270 prefecture-
level cities from 2011 to 2017. We show that (1) AI considerably reduces carbon emissions,
as every 1% advance in artificial intelligence development will result in a 0.0024 reduction
in carbon intensity. After regression of instrumental variables and a series of robustness
tests, the conclusions still hold.(2) The effect of AI on carbon emission is heterogeneous.
The effect of AI on carbon emission reduction is more significant in mega- and supercities,
and cities with better infrastructure and a high technology level; conversely, the effect of
AI on carbon emission reduction is not significant in small and medium cities, or cities
with poor infrastructure and a low technology level. (3) The mechanism of AI reducing
carbon emission is optimizing industrial structure, enhancing information infrastructure,
and enhancing green technological innovation.

In order to reach the carbon peak and carbon-neutral goals as quickly as possible, to
maximize the role of artificial intelligence in dealing with climate change, and to expedite
the decoupling of China’s economic growth from carbon emissions, this paper presents
the following proposals. (1) Increase the use of artificial intelligence in manufacturing and
daily life. Since carbon emissions are ubiquitous across all human activities and have a
substantial impact on global climate change, the application of new technologies is one
of the keys to mitigating climate change. AI technology, as an adaptive new technology,
can significantly reduce carbon emissions from economic operations. The versatility of AI
technologies enables their widespread application in combating climate change. (2) Provide
more guidelines for the application of AI technologies. The impact of AI technologies on
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carbon reduction at the city level varies depending on city size, infrastructure development,
and technological advancement. AI technologies should be applied first in places with
superior infrastructure and technology, as these conditions are the most favorable to AI
implementation. It also enables the AI technology’s carbon reduction effect to be extended
to more businesses and individuals, which will have a greater influence on reducing carbon
emissions. (3) Pay close attention to the use of artificial intelligence technology in the
development of green technologies. In terms of climate change, the significance of artificial
intelligence technology is not only enhancing the efficiency of energy consumption in
manufacturing activities to minimize carbon emissions, but also fostering the development
of green technologies. The massive data mining and high-speed computing capabilities of
artificial intelligence technology will considerably enhance the efficacy of green technology
innovation and give additional opportunities for its development. In this light, the applica-
tion of artificial intelligence in the sphere of technological innovation will be more crucial
for reducing carbon emissions.

This research has some limitations and can be improved in the following ways: first,
this study employs proxy variables to explain the general amount of AI growth; however,
the measures of AI may vary among sectors. Using more diversified and precise AI
explanatory factors for various economic activities will allow for more in-depth research.
Second, due to the availability of data, this study calculates the exposure of industrial robots
at the city level using the total number of employees of listed firms in city subindustries.
The credibility of this study’s findings would be strengthened by the availability of precise
employment data for each city subsector. Lastly, the COVID-19 pandemic has expedited
the digitization of productive life, hence expanding AI applications. How would non-
technical external events, such as the pandemic outbreak, affect the carbon reduction effect
of artificial intelligence technologies? To respond, additional study is required.
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