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Abstract: Converting municipal solid waste (MSW) into valuable feedstocks, such as refuse-derived
fuel (RDF), is a sustainable method according to the concept of waste management hierarchy. A
heterogeneous composition with a good calorific value and lower emissions allows RDF to be
used for energy recovery purposes. We have earlier analyzed the generation and thermochemical
characteristics of the MSW produced in Kazakhstan. This work aims to study the combustion
characteristics in terms of emissions and ash composition to evaluate the possibility of RDF co-firing
with Ekibastuz coal. In particular, RDF is blended with high ash bituminous coal (Ekibastuz coal)
and co-fired in the laboratory scale bubbling fluidized bed reactor (BFB) at a bed temperature of
850 ◦C. The co-firing tests of RDF to coal samples were conducted under various proportions to
analyze flue gas compositions. Experiments were carried in the presence of bed material (sand),
and the fuel particles were fed in batch mode into the hot riser. The BFB reactor had a height of
760 mm and internal diameter of 48 mm. The gaseous products in the flue gas were analyzed by
FTIR spectrometry (Gasmet Dx4000). Ash composition was examined by XRD, XRF, SEM, and PSD.
The results showed that a high RDF content decreased SO2 emissions to 28 ppm, while it negatively
affected NOx release to 1400 ppm, owing to excess air. The emissions of gases from different blended
samples and mineral transformations were investigated and discussed in this study.

Keywords: Ekibastuz coal; refuse-derived fuel; bubbling fluidized bed; residual ash

1. Introduction

Waste-to-energy (WtE) technologies have great importance in the world of unconscious
consumption of goods and their production. The aim of the WtE technology aligns well
with the waste management hierarchy and enables to reduce municipal solid waste volumes
while providing energy. Although these technologies are still developing, there are four
main thermochemical conversion technologies for waste treatment, that is, waste-to-energy,
gasification, pyrolysis, and plasma treatment [1]. Each of these technologies requires
different processes and operating modes, resulting in different products and byproducts.
Pyrolysis and gasification are typically used to retrieve chemicals from a wide range of
wastes, while waste to energy is a viable option to obtain the energetic value of wastes.
The importance of energy recovery has been highlighted earlier in several studies [1–5].
Gaziantep, the sixth largest city in Turkey, for example, has been using landfill gas in gas
engines, which supplies 1.25% of the total power demand of the city [1]. Tsai et al. [4]
also reported mitigation of CO2 emission at around 1.9 Mt and the economic benefits at
around USD 150 mln from selling electricity after the construction of MSW incineration
facilities in Taiwan. Hossain et al. [2] analyzed data for Bangladesh and reported that MSW
incineration facilities and landfill gas recovery technologies have generated 186.4 MWh/day
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of electricity. Zsigraiova et al. [3] also suggested that the application of MSW incineration
would be an alternative solution to generate power of 3.3–4.7 MW with 5540–6650 m3/day
of drinkable water in island communities. A recent study showed that RDF could be
used as alternative fuel while reducing 2155.3 × 106 Kt CO2/year [6]. Although waste
incineration could generate harmful flue gases and heavy metal compounds, it still can be
an environmentally friendly technology if proper cleaning systems, control of emissions,
and ash disposal technology are provided. Several waste incineration technologies are
commercially available including grate furnace, rotary kiln, and fluidized bed [7]. Fluidized
bed technology has been used for the conversion of a wide range of solid fuels and has
advantages over grate furnace as it allows to operate under blended solid fuels such as RDF
with coal or biomass with coal [7]. Most grate incinerators create a cross-current mode of
contact, which causes a noxious odor of the emitted gases [8]. However, this can be easily
handled in fluidized bed incinerators thanks to the presence of high gas velocities and good
mixing conditions. Moreover, fluidized bed technology has a simple construction, which
allows flexible use of any fuel type with comparatively significant combustion efficiency at
a lower temperature [9].

In Kazakhstan, public utility companies perform the separation of recyclables such
as plastics, cardboards, batteries, and electronic wastes in most cities. However, sanitary
landfilling remains as the main method of MSW disposal [10]. Currently, the total volume
of accumulated MSW in Kazakhstan has exceeded 100 million tons [11]. According to the
Association of Environmental Organizations of Kazakhstan, the country annually generates
about 4–6 million tons of MSW, with a recycling rate of 18.3% [11,12]. Based on data from
2018, the generation of MSW was 1300 tons/day in the capital city, Nur-Sultan. Detailed
data on MSW composition from Nur-Sultan city were obtained during several sampling
campaigns and can be found in our earlier work [13–15].

As investigated by Abylkhani et al. [16], the potential for RDF extraction from MSW
can reach up to 10 wt.%. Thus, the production of RDF from MSW is highly beneficial
considering its high calorific value and ease of storage and transportation. There are a
number of studies on RDF composition [17–20]. Abylkhani et al. [16] revealed that the
moisture content of solid RDF in MSW of Nur-Sultan city was lower in comparison with the
literature data; however, the RDF fraction showed calorific values of around 20–23 MJ/kg,
which allow its potential usage in WtE technologies. Considering the high calorific values,
co-firing RDF with the high ash bituminous coal in existing power plants is an attractive
option to subdue emissions and economic issues. Wan et al. carried out co-firing of RDF
with bituminous coal in a circulating fluidized bed (CFB) and reported a decrease in SOx
and NOx emissions with an increasing RDF fraction in the feedstock [21]. Similar results
were also observed by Wei et al. [22]. However, in their analysis, the concentration of
HCl increased with increasing RDF fractions. Another study by Isaac and Bada [23] with
TGA-based combustion showed that a blend of RDF with coal decreases the ignition and
combustion temperature of volatile matters. Several such studies have summarized that co-
combustion of RDF with solid fuels could be extremely effective as it lowers the formation
of corrosive deposits and lessens the toxicity of emissions compared with pure combustion
of RDF [24,25]. Ghani et al. observed a co-combustion efficiency of 90%, in the presence of
70% coal fraction [26]. Several co-firing studies were also conducted by All-Russia Thermal
Engineering Institute [27]. The authors have observed that compounds contained in the
biomass ash tend to capture SO2 produced mainly from coal. Thus, this feature even
allows co-firing technology in CFB to outweigh the demand for limestone that has been
traditionally used to capture SO2 too.

The formation of solid by-products from co-firing of RDF, in particular, bottom and fly
ash residues, is another environmental issue, and requires better knowledge for safe dis-
posal. It has been found that the presence of aluminum and silica compounds in the ash, al-
kali, and alkali-earth metal compounds can cause slagging and corrosion problems [28–30].
The study by Maj et al. has shown that corrosion spots contain chlorine and alkaline metals
after co-firing of RDF with coal [31]. Sciubidlo et al. presented the ash characteristics of
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40% of RDF fraction within the coal and observed the presence of quartz, anhydrite, illite,
iron oxide, and magnetite [32]. Another recent publication determined ash with more than
8000 µg/kg of mercury, captured from flue gases [33]. Therefore, it is necessary to obtain
more relevant information on ash characterization and fusion after co-firing RDF with coal.

Kazakhstan set waste management as one of the goals to hit total decarbonization in
2060. However, it is important to mention that Ekibastuz coal currently covers all heat and
power needs of the north, central, and south parts of the country and some parts of Russia.
Unfortunately, at present, there is no information on the conversion of Ekibastuz coal with
RDF samples in fluidized bed, produced in Kazakhstan. Therefore, this study discusses
the combustion characteristics and formation of by-products from co-firing of RDF with
bituminous Ekibastuz coal.

2. Materials and Methods
2.1. Fuels Samples and Bed Materials

RDF fractions were collected from the MSW landfill of Nur-Sultan city during 2019.
The sampling procedure was reported in our earlier work [16]. After the separation of
recyclables, the second step of sorting was performed to collect smaller sizes of MSW
fractions including mixed paper, mixed plastic, textile, and wood. The constituents and
composition of the RDF sample were as follows: mixed paper 37.8%, mixed plastic 53.3%,
textile 8.9%, and traces of wood [14]. The collected fractions of mixed paper, plastic, and
textiles were further treated in the garden shredder followed by a further size reduction
step in a knife mill to obtain homogenized particles with sizes between 400 and 1600 µm.
The treated RDF samples are shown in Figure 1. Pellets of RDF samples were prepared in
an agricultural granulator (Agrotechservice-12, Kazakhstan).
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Figure 1. Pretreated RDF samples and their fractions before the experiment.

Coal samples were originally from the Ekibastuz coal mine in the north region of
Kazakhstan and were delivered from the combined heat and power plant of Nur-Sultan
city. The chemical characteristics of the RDF and Ekibastuz coal are presented in Table 1.
The coal used in the experiments was sieved and particle sizes of 400–800 µm were used for
the tests. Proximate analysis of samples was carried out according to the ASTM standard
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(D1762-84). Elemental analysis was performed by a CHNS analyzer (Vario Micro Cube,
Elementar). The calorific values of the samples were determined in a bomb calorimeter
with weights of samples ranging between 0.3 and 1.0 g. Silica sand with a mean particle
size of 275 µm was used as bed material for the bubbling bed reactor with a total weight
of 400 g.

Table 1. Proximate analysis, ultimate analysis, and calorific values of the samples [14].

Proximate (wt%, as Received) RDF Plastic Paper Textile Coal

Moisture 1.5 0.8 2.6 1.2 2.1
Volatile matter 86.7 87.3 85.7 86.7 19.9

Ash 8.2 8.7 8.5 4.0 38.5
Fixed carbon 3.6 3.2 3.2 8.1 39.3

Ultimate (wt%, and dry ash-free)
Carbon 66.5 83.5 46.8 47.8 61.2

Hydrogen 9.9 13.0 6.4 6.1 3.5
Nitrogen 0.6 0.5 0.6 1.3 2.1

Sulfur 0.2 0.3 0.1 0.2 0.7
Oxygen * 22.8 2.7 46.1 44.6 32.4

Gross Calorific value (MJ/kg) ** 23.4 32.6 16.4 20.1 19.37
* by difference; ** measured by bomb calorimeter.

2.2. Experimental Setup

Experiments were conducted in a lab-scale bubbling fluidized bed (BFB) reactor as
illustrated in Figure 2. The BFB set-up was heated electrically (Nabertherm, Lilienthal,
Germany) and consisted of vertical tubes, a fuel feeding part, a gas supply system, pressure
controllers, a metallic filter with stainless steel mesh for capturing fly ash, and an exit gas
analysis system (Gasmet Dx4000).
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The riser of the fluidized bed was made of inner and outer stainless-steel tubes. The
height of the inner tube was 760 mm and its inner diameter (ID) was 48 mm, while the
outer tube had a height of 1000 mm and inner diameter of 89 mm. The distributor plate was
made of stainless steel (316) mesh with two layers placed at the bottom of the inner tube
and clamped with an open cap. Primary air entered the bed from the bottom of the reactor.
Secondary air was used for pneumatic transportation of a batch of solid fuel samples. The
fuel feeding was managed mechanically by feeding the batch from the top of the riser. The
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secondary stream of air was essential, considering the low density of RDF, which prevented
the gravity-based flow of the RDF samples into the dense zone of the bed. The products
emitted from the combustion chamber were captured in the metallic filter. Exit gases were
measured by an FTIR analyzer at a constant temperature of 180 ◦C.

2.3. Experimental Procedure

The operating conditions of the experiments are given in Table 2. Experiments were
conducted at the bed temperature of 850 ◦C and atmospheric pressure. At typical fluidizing
conditions, the volumetric flow rate of the primary air was at 3.5 L/min at 850 ◦C (corre-
sponding to Umf ~ 0.0645 m/s) and the secondary air was maintained at 3.0 L/min. In
addition to combustions with pure coal and RDF, experiments were performed for samples
containing a 1:1 and 1:9 weight ratio of RDF to coal. Bottom ash and fly ash samples with
RDF to coal ratio of 1:1 (denoted as BA-1 or FA-1) and samples with a ratio of 1:9 (denoted
as BA-9 or FA-9) were collected after each experiment.

Table 2. Experimental conditions used for co-combustion of RDF with coal.

Parameters RDF RDF/Coal Blend I RDF/Coal Blend II Coal

Particle size (mm) 1–2.5 1–2.5/0.4–0.8 1–2.5/0.4–0.8 0.4–0.8
Temperature fluctuation during feeding (◦C) 7–12 6–10 6–10 3–5

Pressure drop (kPa) 1.5 1.2 1.2 1.0
RDF/coal blend ratio - 1:1 (50%) 1:9 (10%) -
Weight of sample (g) 1–1.5

Furnace temperature (◦C) 850
Minimum fluidizing velocity (m/s) 0.0645

Primary air flow rate (L/min) 3.5
Secondary air flow rate (L/min) 3.0

The pressure drop across the bed, measured by a U-tube manometer, was maintained
steady within 1.0–1.5 kPa during the experiments. The reaction of solid fuels with air
was also detected by an increase in the bed temperature of 5–10 ◦C. The particle size
distribution of the ash samples was analyzed by a Malvern laser size analyzer (Mastersizer
3000, Malvern Panalytical Ltd., Malvern, UK). The chemical composition of the ash was
further investigated by X-ray fluorescence (Panalytical Epsilon 4). The crystallinity of
ash samples was determined by X-ray diffractometer (XRD) (Rigaku SmartLab, Rigaku,
Tokyo, Japan) with Cu Kα radiation at a scan rate of 0.05◦/s from 5◦ to 90◦ on a 2θ scale.
Weight loss characteristics of ash samples were obtained by thermal gravimetrical analysis
(TGA) (Perkin Elmer STA 6000, PerkinElmer, Waltham, MA, USA). Thermogravimetric
experiments were carried out at the heating rate of 20 ◦C/min starting from a room
temperature to 900 ◦C in air. Ash morphology was further evaluated by scanning electron
microscopy (SEM, JEOL JSM-IT200LA). Before analysis, ash samples were covered with
gold particles to enhance electric conductivity.

3. Results and Discussion
3.1. Exit Gas Measurements

The gas analyzer measured the concentrations of CO, HCl, NOx, and SO2 on the basis
of part per million (ppm), while O2 and CO2 were provided on a volume basis. Figure S1
shows the formation of CO2, CO, and O2 during the batch feeding of the fuels (coal, RDF,
and two mixtures at 10% and 50% RDF). The results reveal that CO and CO2 compositions
were approximately ~5000 ppm and ~21% for the coal combustion. In contrast, in the case
of RDF combustion, the CO and CO2 emissions were ~25,000 ppm and ~15%, respectively.
Interestingly, in the case of 10% RDF fuel, the CO2 composition was ~7% and CO was
~12,000 ppm on average, whereas 50% RDF fuel showed 7% CO2 and ~42,000 ppm of CO.
One of the reasons for the increase in CO emissions could be the comparatively larger size of
RDF, which caused a low combustion efficiency. Figure 3 shows the average concentrations
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of flue gas compositions (peak values) from several batch experiments. A linear change in
the concentration of SO2 can be observed with the addition of RDF. Emission of NOx, on the
other hand, showed significant fluctuations in concentrations and a drop in the combustion
in RDF and coal samples with a ratio of 1:9, i.e., at 10% RDF fraction. The concentration of
HCl is low compared with other emissions and remained approximately constant.
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The first step in co-firing of RDF and coal could be described as follows:

RDF/coal→ volatiles + char (1)

Considering the non-homogeneous nature of RDF samples, which contain paper,
plastic, textile, and wood, the following scheme could be suggested:

Wood→ C6H12O6 (2)

Mixed paper→ C6H12O6 (3)

Mixed plastic→ (C2H4)n + (C2H3Cl)n + (C10H8O4)n (4)

Textile→ (C6H10O5)n + [C6H7O2(OH)(OCOCH3)2]n + (C10H8O4)n (5)

Cellulose is the main component along with polyethylene, polyvinylchloride, polyether,
and other artificial derivatives of cellulose in RDF. Consequently, the composition of
volatiles is dominated by the production of hydrocarbons, followed by the high production
of CO. The production of CO and CO2 can be presented in the following scheme [34]:

C + 0.5 O2 → 0.5 (C − O2)m → C(O)m → C(O)1 (+C)→ CO and CO2 (6)

RDF has a higher content of volatile matter in comparison with coal, which leads to
a sharp release of volatiles and high CO concentrations. In addition, another reason for
the high CO concentration could be a longer hold-up time (residence time 5.89 s) of char
particles in the freeboard region. A release of nitrogen in coal can occur via devolatilization
or can remain in the char. There are over 250 possible reaction mechanisms that present the
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formation of N-containing products [8]. The fuel-N conversion reactions, which typically
lead to thermal NOx formation, can be described by Zeldovich mechanisms [34].

Nitrogen itself was in a low concentration in either RDF or coal. However, the forma-
tion of NOx increased as the RDF co-firing ratio increased. Wan et al. [21] reported that
an increase in the RDF ratio did not significantly affect the NOx emission. In particular,
Wan et al. performed co-firing of bituminous coal with RDFs, containing only papers, in a
circulating fluidized bed reactor. The authors report a decrease in SO2 concentration from
~180 ppm to ~160 ppm with increasing RDF content from 0 to 30%. NO2, on the other hand,
remained constant ~80 ppm. There was other evidence showing no notable decrease in
NOx emissions [25]. From our observation, the generation of a high amount of NOx can be
evidence of less NO reduction owing to a lower amount of coal and, consequently, the char
content [21]. More interestingly, the co-firing of coal with RDF leads to a reduction in SO2
concentrations, particularly due to the low sulfur content in RDFs. The concentration of
SO2 was recorded as 650 ppm in coal combustion, while RDF combustion showed more
than 20-times lower value of 28 ppm (Figure 3). In the tests with an RDF/coal blend of 1:1
ratio, the SO2 concentration decreased to 193 ppm. Importantly, even with the addition of
10% RDF, the SO2 concentration decreased to 602 ppm, which is lower than the combustion
of pure coal.

The content of chlorine was higher in coal in comparison with RDF. However, there
was no significant change in the release of HCl during all of the experiments. Blended
samples fluctuated at around 19–25 ppm. In comparison, during pure coal and pure RDF
combustion, HCl was determined to be 28 ppm and 21 ppm, respectively.

3.2. Ash Analysis with TGA

The thermogravimetric curves of bottom and fly ashes are shown in Figure 4a–f,
respectively. The first detected peaks between 100 and 150 ◦C are related to moisture. It
was seen that a major weight loss occurred between 250 and 600 ◦C in all samples, which
relates to the burn-out of residual carbons and oxidation of leftover organic substances. An
intense weight loss was observed in the samples of fly ashes in comparison with bottom
ashes. Moreover, TG curves of fly ash residues (Figure 4d–f) showed peaks characterized
by exothermic reaction. Both peaks could be attributed to unburnt carbon and mineral
decomposition in the ash samples. Residual bottom ash samples have resulted in different
thermal behavior compared with the fly ash samples. The bottom ash of RDF samples
showed significantly lower losses as compared with others. According to PSD data, bottom
ash has a higher volume density, which could cause around 10% of weight loss. The residue
at 900 ◦C was about 90% of the original sample weight.

3.3. Characterization of Ashes

Figure 5 illustrates the results of particle size distribution (PSD) analysis of the bottom
ash (BA) and fly ash (FA) samples obtained after the experiments. The particle size distribu-
tions of bottom ash samples were larger than the fly ash samples because fly ash particles
go through attrition from the dense zone. The median particle sizes (D50) of the bottom ash
samples BA, BA-1, and BA-9 were 216 µm, 76.1 µm, and 64.4 µm, respectively, which were
significantly larger than those of the FA, FA-1, and FA-9 samples (12.7 µm, 8.84 µm, and
11.3 µm, respectively).

The results of the XRF analysis are presented in Figure S2 (Supplementary Materials).
It was observed that silica, aluminum, calcium, and iron oxides were the main dominant
compounds in the samples of bottom and fly ashes. In addition, other compounds such as
magnesium, chromium, titanium, and sulfur oxides, as well as traces of potassium, phos-
phorus, and manganese oxides, were also present. It is noteworthy that all samples have a
notable content of CaO. Particularly, a higher content of CaO was found in fly ash residues
in comparison with bottom ash. Based on ASTM C618-19, the fly ash samples from all tests
were classified as class F, which indicates the presence of pozzolanic characteristics of the
fly ash. It is obvious that calcium-containing compounds devolatilize during combustion
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and the oxide of calcium forms after the decomposition of middle-stage compounds [29].
The presence of S and Cl components indicates that there was vaporization of sulfate and
chloride compounds as well. Particularly, it is obvious that the fly ash samples showed
some signs of forming Cl- and S-containing gaseous compounds.
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Figure 5. Particle size distribution of the (a) bottom ash (BA, BA-1, and BA-9) and (b) fly ash (FA,
FA-1, and FA-9). The median particle sizes of bottom ash were 216 µm, 76.1 µm, and 64.4 µm,
respectively, which were significantly larger than those of the fly ash, at 12.7 µm, 8.84 µm, and
11.3 µm, respectively.

Bottom ash samples contain mainly non-volatile elements (Al2O3, SiO2, and Fe2O3),
whereas all variations of compounds (TiO2 and Cr2O3) were trapped by fly ash samples. It
was found that, in the samples of BA-9, the concentrations of sulfur, aluminum, and silica
oxides are higher owing to an initially larger coal content. Conversely, the formation of
iron and calcium oxides was low in BA-9 residuals. The results corresponded with XRD
results, which showed the presence of SiO2, Fe2O3, and silicates of alumino-calcium. It was
further observed that a higher RDF fraction in the sample leads to a higher concentration
of iron and calcium oxides in the bottom and fly ash samples.

Data from XRD spectrograms were further analyzed by X’Pert HighScore Plus software.
The examinations showed the aluminosilicate glass phase (quartz, mullite) with iron oxides
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being the most abundant components in the bottom and fly ash samples. In contrast to
this, the fly ash samples showed the presence of sulfates and non-silicate minerals such as
calcium oxide. This could be explained by the formation of non-mineral inorganic elements
from RDF.

Figure 6 shows SEM images of bottom and fly ashes after RDF co-firing with Ekibastuz
coal in different ratios. Moreover, EDX analyses have also been carried out to determine
the localization of elements on the surfaces (Figure S3 in Supplementary Materials). The
microscopic observations of the bottom ash residues showed larger particles compared
with fly ash residues. It was observed that the bottom ash samples have a tendency towards
the formation of spherical particles as the ratio of RDF increases in the fuel. As shown in
Figure 6C, the sample with a high coal content reveals sharp and irregular-shaped residues.
SEM images also illustrate that the bottom ash residues are particles made of porous layers,
creating a dense morphology (Figure 6A–C).
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Figure 6. SEM observations of BA, BA-1, and BA-9 (A–C) and FA, FA-1, and FA-9 (D–F) indicating
the porous nature of the fly ash.

The fly ash residues appeared as a blend of irregular fine particles. The fly ash parti-
cles shown in Figure 6D,E have an abundant pore structure. Particularly, in Figure 6F, the
particle is spherical with a hollow inside. The formation of different surface morphologies
of bottom ash and fly ash could be related to coal maceral composition as well as RDF
composition. It is known that Ekibastuz coal belongs to the vitrinite-inertinite classifica-
tion [35]. The presence of abundant porous morphologies indicates that RDF underwent
volatilization and solid–liquid phase transitions. Moreover, it is more likely that the ash
particle shown in Figure 6C,F is derived from vitrinite, as this fraction of Ekibastuz coal
has a high fluidity property.

The EDX results show that the main elements were O, Al, Si, and Ca on the surfaces of
BA and FA samples. It can be seen from Figure S3 (Supplementary Materials) that calcium
is a more abundant element compared with other alkaline metals. However, small grains
on the FA samples’ surface showed the presence of K, Cl, Al, Si, and O. The data presented
also indicate the presence of chlorine in fly ash residue. Another interesting observation is
the higher concentration of calcium in RDF bottom and fly ash samples. It can be described
by the low concentration of calcium in Ekibastuz coal. To compare fly ash with bottom
ash, it was observed that fine particles were usual in the samples of fly ash, which was
consistent with the results of the particle size distribution analysis. This observation could
be explained by the occurrence of agglomeration and fusion phenomena. Overall, the fine
and brittle structure of fly ash shows that it had undergone a severe combustion process.
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4. Conclusions

This study characterized the co-combustion of RDF and bituminous coal (from the
Ekibastuz region) in the laboratory scale bubbling fluidized bed reactor. Several findings
could be highlighted below:

(i) A higher RDF content decreased SO2 emissions, while it negatively affected NOx
release, which could be due to the presence of excess air;

(ii) The concentration of HCl remained constant in our experiments. However, the content
of chlorides may vary according to RDF compositions;

(iii) The produced fly ash characteristics have shown the category of class F based on
ASTM C618-19 standard, which means that the generated ash products may have
pozzolanic activities and can be used in construction industries;

(iv) The chemical composition of ash residues showed the presence of CaO along with
aluminosilicates.

However, further research is needed on a pilot scale to explore RDF’s combustion
behavior in co-firing. In addition, evaluation of the corrosion rate in the CHP plant to
lessen corrosion damage needs further investigation.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/en15165785/s1. Figure S1. Time-evolution of emissions of CO2,
CO and O2 during batch feeding of fuel at different RDF fractions a—coal; b—RDF; c—RDF:coal at
10% RDF (1:9); d—RDF: coal at 50% RDF (1:1). Figure S2. Chemical composition of bottom and fly
ash residues based on XRF analysis. Figure S3. EDX results of BA, BA-1, BA-9 (A–C) and FA, FA-1,
FA-9 (D–F).
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