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Abstract: Combined heat and power (CHP) plants are known as efficient technologies to reduce
environmental emissions, balance energy costs, and increase total energy efficiency. To obtain a
more efficient system, various optimization methods have been employed, based on numerical,
experimental, parametric, and algorithmic optimization routes. Due to the significance of algorithmic
optimization, as a systematic method for optimizing energy systems, this novel review paper is
focused on the meta-heuristic optimization algorithms, implemented in CHP energy systems. By
considering the applied objective functions, the main sections are divided into single-objective and
multi-objective algorithms. In each case, the units’ combination is briefly detailed, the objective
functions are introduced, and analyses are conducted. The main aim of this paper is to gather a
database for the optimization of CHPs, demonstrate the effect of the applied optimization methods
on the objective functions, and finally, introduce the most efficient methods. The most significant
feature of this paper is that it covers all types of CHP optimization issues including scheduling, sizing,
and designing problems, finding the extent of each optimization issue in the relevant papers in the
last decade. Based on the findings, in the single-objective problems the combined heat and power
economic dispatch (CHPED) issue as a subcategory of the scheduling problems is introduced as
the most paid topic; the designing issue is known as the lowest paid topic. In the multi-objective
problems, working on various types of CHP optimization problems has been conducted with an
almost similar share. The combined heat and power economic emission dispatch (CHPEED) problem
with the most share, and the sizing issue with the lowest share. The CHP designing and sizing
optimization issues could be introduced as topics to work on more in the future. Additionally, the
numerical results of CHPED and CHPEED problems solved by various algorithms are presented and
compared. In this regard, specified test systems are considered.

Keywords: combined heat and power; energy optimization; meta-heuristic; evolutionary algorithms

1. Introduction

The lack of fossil fuel resources and many problems caused by these energy resources
consumption, such as negative environmental impacts and climate change on one side, and
growing energy demands, on the other side, have forced the researchers and engineers in
the relevant fields to provide better alternatives [1]. As a basic solution, the presentation
of efficient energy production systems can have a tremendous impact on reducing energy
consumption, and environmental issues. Combined heat and power (CHP) energy systems,
as highly efficient systems, generate two forms of useful energy: electricity and heat [2]. In
comparison to a traditional power plant, with about 35% electricity generation efficiency,
the overall efficiency of the CHP plant could be over 80%. Since most CHP applications are
for on-site generation, known as distributed generation (DG), these types of technologies
cause the reduction of energy loss and increase efficiency. On the other hand, the recovery
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of the waste heat causes a significant rise in the system efficiency [3]. Generally, CHP
plants have plenty of advantages in terms of reducing primary energy consumption and
improving the economic and environmental specifications of a plant [4].

Since an optimization process is vital for designing any energy system, various studies
have focused on this subject. The optimization of CHP plants has been carried out in many
papers, in different ways. Silveira et al. [5,6] optimized some CHP plants mathematically,
through a thermoeconomic model. In another paper, an efficient stochastic integer linear
programming method was used for the optimal allocating of a CHP plant [7]. An optimal
operation of CHP plants, maximizing the revenue, and minimizing the operating cost, was
obtained through an optimization-based controller using the economic model predictive
control (EMPC) approach [8]. A mathematical optimization model of a biomass-based CHP
plant was presented by Asni et al. [9]. They applied a multi-objective fuzzy strategy in the
presented model. Other mathematical optimization models have also been applied to the
CHP optimization issues [10–12]. The mathematical methods obtain exact solutions of an
optimization problem, but this approach is not practical for some engineering issues. This
is mainly because of the difficulty of harvesting the derivative information analytically. The
meta-heuristic algorithms are appropriate alternatives for CHP optimization. The process
of these methods is the generation of arbitrary initial approximations to the problem,
and the improvement of the generated solutions [13]. In this paper, the application of
the meta-heuristic methods, for the CHP optimization problems, has been studied. The
population-based meta-heuristics, as a large category of these methods, have been reviewed
and divided. The classification is shown in Figure 1.
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Few review papers address the CHP optimization issues. In this area, Abusoglu et al. [14],
reviewed various exergoeconomic optimization models of CHP plants. In another review
study, by Nazari-Heris et al. [15], the application of various meta-heuristic methods, as
the solvers of a determined CHP optimization problem, was presented. The studied
problem was on the CHP economic dispatch systems. Kazda et al. [16] reviewed the
presented models of economic dispatch, and economic and emission dispatch of CHP
plants. In the above-mentioned review papers, mostly the optimal dispatching issues were
considered as the optimization problems. Additionally, exergoeconomic, economic, and
emission issues were considered as the problem objectives; the application of meta-heuristic
methods for CHP optimization was reviewed limitedly. However, in this paper, besides the
dispatching optimization problems, all types of CHP optimization issues, including the
optimal designing, sizing, and scheduling are reviewed, and various objective functions are
covered, such as energy consumption, electrical efficiency, social welfare, primary energy
saving, etc. For investigating the performance of different optimization methods, first,
based on the reviewed papers, the CHP economic dispatch (CHPED) and the CHP economic
emission dispatch (CHPEED) problems are selected as the most considered single-objective
and multi-objective optimization issues, respectively. Then, the numerical results of various
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meta-heuristic algorithms applied to solve these problems are compared. Additionally,
a comprehensive presentation of various optimization models of CHP plants, in the two
forms of single-objective and multi-objective, is presented at the end of each chapter. In this
paper, the population-based meta-heuristics in single-objective optimization are studied in
five sections including evolutionary algorithms (EAs), swarm intelligence-based algorithms
(SI-based), human-based algorithms, physics-based algorithms, and hybrid meta-heuristic
methods. Additionally, for multi-objective optimization, three sections, including the EAs,
SI-based algorithms, and hybrid meta-heuristic methods are presented.

2. Single-Objective Algorithms for CHP Optimization

The issues, which optimize one objective function, are called the single-objective
optimization problems. The process of the algorithms used to solve these issues ends to
maximize or minimize a specific purpose.

2.1. Evolutionary Algorithms

Evolutionary algorithms, which are inspired by evolution in nature, are one of the
subcategories of population-based meta-heuristic algorithms. In evolutionary algorithms,
the search process to find the best solution starts with a randomly-generated population
and continues through evolving the population during consecutive generations [17].

• Genetic Algorithms

The genetic algorithms (GAs) were developed by Holland [18] based on the growth
and decay of living organisms in a natural environment and could be introduced as the
most practical evolutionary algorithms. The GAs have been used in various kinds of
optimization problems and proved themselves as effective methods. For example, the CHP
design optimization problem leads to selecting the optimal design among many alterna-
tives according to design variables, such as isentropic efficiency, temperature, pressure
ratio, etc. In 2010, Ahmadi et al. [19] applied the GA to optimize a typical CHP plant by
minimizing the plant’s total cost, considering the cost of environmental impacts and the
cost of exergy destruction. The optimization caused a 9.80% improvement in the total cost.
They considered compressor isentropic efficiency, compressor pressure ratio, gas turbine
isentropic efficiency, turbine inlet temperature, and combustion chamber inlet temperature
as the design parameters. In another study by Mohammadkhani et al. [20], an optimization
process was carried out via the GA for a diesel engine-based CHP system. The objective
function considered the total cost of the system product and the cost of exergy destruction
and was decreased by 8.02%. These studies showed the importance of the exergoeconomic
analysis in gaining a cost-optimal design. In another designing optimization problem,
Arsalis et al. [21] presented an optimal design of a fuel cell-based micro-CHP, while the net
electrical efficiency of the system was maximized using the genetic algorithm. In another
optimal designing issue, in 2021, Dimri et al. [22] used the GA to achieve the optimal design
of different solar CHP plants. This optimization was based on a thermoeconomic indicator.

Optimal sizing, as another optimization problem in the CHP plants, is vital in terms of
saving energy sources and reducing energy costs. In a study, a quick method for sizing and
determining the amount of equipment in a combined heat and power natural gas pressure
reduction plant was presented; the GA was applied for maximizing the actual annual
benefit [23]. The robust ability of the fit-problem GA was proved by Ferreira et al. [24] by
carrying out a comparison among the performance of the GA, the sequential quadratic
programming (SQP), and the pattern search (PS) method in the optimal sizing of a CHP
plant. The fit-problem GA applied the population size and mutation probability updating
strategies and led to better solutions and a faster convergence rate. In another study,
Yu et al. [25] obtained the optimal capacity of a CHP plant by minimizing the daily energy
costs. They used the maximum rectangle (MR) method and the genetic algorithm. The GA
obtained a lower average energy cost, while higher energy efficiency was obtained by the
MR method. In that case, the MR method was preferred to the GA, because of its full use of
the CHP capacity and its shorter computation time.



Energies 2022, 15, 5977 4 of 34

The combined heat and power economic dispatch (CHPED) issue, as a complicated
highly-constrained optimization problem, has been noticed by researchers in various stud-
ies. This problem achieves the optimum values of the heat and power production, which
causes the minimum point of the system total fuel cost, considering the power and heat
load demands and other constraints. An algorithm called the real coded genetic algorithm
with improved Mühlenbein mutation (RCGA-IMM) was presented by Haghrah et al. [26]
for accelerating and improving the convergence characteristics of the real coded GA in
solving the CHPED problem. They considered the effect of valve point and transmission
loss on the production cost and power production terms. In another CHPED optimization
problem, in 2019, an improved genetic algorithm, using novel crossover and mutation
(IGA-NCM), was presented by Zou et al. [27]. The selection process was excluded from
the GA, to preserve the population diversity as well. Additionally, in another study by
Haghrah et al. [28], a novel real-coded genetic algorithm with the random walk-based
mutation was applied to solve the CHPED problem. They concluded this novel algorithm
could achieve accurate results.

The CHP energy systems could perform in a hybrid way by applying various energy
resources or components alongside the other generation units in a microgrid (MG). In both
cases, the proper dispatching among the resources loads, or different units, which are called
scheduling optimization problems, leads to an optimal energy system. Optimal scheduling
of a solar fossil-fueled CHP plant, combined with a thermal storage and dispatch system,
was carried out by Abdelhady et al. [29]. The schematic of the hybrid CHP is shown
in Figure 2. After minimizing the external utilities, the GA algorithm was employed to
obtain the optimal generated power and distribution of thermal energy among fossil,
solar direct, and solar stored/dispatched resources. The results for January, as a typical
month, are shown in Figure 3. In another scheduling problem, Shang et al. [30] optimized a
storage-integrated generation model of a CHP plant, to minimize fuel consumption, via
the non-dominated sorting genetic algorithm II (NSGA- II). Maleki et al. [31] presented the
optimal scheduling of a grid-connected solar-wind-hydrogen CHP system to minimize the
total cost of the plant by the GA and particle swarm optimization algorithm (PSO). They
found that the GA can achieve better results rather than the PSO.
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• Differential Evolution Algorithms

The differential evolution (DE) algorithm, as a type of evolutionary algorithm, is an
improved combination of the genetic algorithm with the evolutionary programming (EP),
that was first introduced in 1997 [32]. In 2010, Basu [33] applied the DE algorithm to solve
the CHPED problem. It was applied in a test system, composed of four conventional power
generation plants, two CHP systems, and a heat generation unit. For comparison, the
particle swarm optimization (PSO) and EP algorithms were implemented in the test system.
The comparison showed that the DE obtained a lower cost and computation time than
the PSO and EP algorithms. Basu [34], in another study, used the DE algorithm to obtain
optimal planning of the fuel energy consumption of various distributed energy resources
(DER) in a CHP-based microgrid. The planning was performed through two stages,
including optimal sizing and economic scheduling. To improve the performance of the
DE algorithm, various strategies were applied by some researchers. For example, the self-
adaptive DE algorithm (SADE) was presented by Venkatakrishnan et al. [35], to overcome
the long time needed for fine-tuning the parameters in solving the economic dispatch
problems of a grid-connected fuel cell-based CHP. In another study, by Jena et al. [36], the
Gaussian mutation operator was applied in the DE algorithm (DEGM) to improve the
search ability of the DE in solving the CHPED problem. the total cost of the plant, which was
obtained at 9235.1032 $ showed the great ability of this algorithm, compared to the other
methods. An improved version of the DE (IDE), which used a double variation differential
strategy, was applied by Wang et al. [37] in solving a scheduling optimization problem for
an integrated energy system. Additionally, Zou et al. [38] used the DE algorithm based on
migrating variables to solve the CHP dynamic economic dispatch. In a CHPED problem,
the self-adaptive DE algorithm combined with Gaussian–Cauchy mutation was applied by
Chen et al. [39].

• Other Evolutionary Algorithms

In addition to the aforementioned algorithms, there are some other evolutionary
methods, which were applied in the CHP optimization cases. The artificial immune system
(AIS), the hyper-spherical search (HSS), and the stochastic fractal search (SFS) algorithms
are some of these methods. The AIS algorithm was proposed by Basu [40], in 2012, to
solve the CHPED optimization problem. A comparison, which was carried out among
the results of the AIS algorithm and those gained from the PSO and the EP algorithms,
showed the superiority of the AIS, in terms of the obtained cost and speed of the process. In
another optimal scheduling problem, the HSS was implemented in a model of fuel cell-CHP
combined with the battery energy storage [41]. The SFS algorithm, which is inspired by the
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natural phenomenon of growth [42], was applied to the CHPED problem by Alomoush [43].
Using the SFS in a test system consisting of a conventional power generation unit, two CHP
units, and a heat-only generation unit resulted in 9257.07 $ as the total cost of the plant.

According to the above studies, the genetic algorithms can be applied in various types
of single-objective CHP optimization issues. This ability of the GAs to solve a wide range
of optimization problems, such as optimal designing, sizing, and scheduling of CHP plants,
converted them into robust methods. Other kinds of EAs, such as the DE, AIS, and SFS
algorithms can achieve great results, in solving a common scheduling model of the CHPs,
known as the CHPED problem.

2.2. Swarm Intelligence-Based Algorithms as Single-Objective for CHP

The swarm intelligence-based algorithms (SIs), as another category of the population-
based meta-heuristic methods, could be successfully performed in optimization problems.
These kinds of algorithms, inspired by the collective behavior of animals, find the best
solution. The SI-based algorithms have been developed alongside the EAs [44].

• The Particle Swarm Optimization Algorithms

The original version of the particle swarm optimization (PSO) algorithm was intro-
duced by Kennedy and Eberhart [45], in 1995. This algorithm is inspired by the social
interaction of fish schooling and birds flocking. However, the standard version of the PSO
has undergone many changes by some researchers, due to related problems. For example,
a form of the PSO, the time-varying acceleration coefficients particle swarm optimization
(TVAC-PSO), was used to solve the CHPED problem, by Mohammadi-Ivatloo et al. [46].
Additionally, Zeng et al. [47] used the chaotic search strategy, the time-variant accelera-
tion coefficients, and the self-adaptive mutation operator in the PSO algorithm to solve
a combined heat and power dynamic economic dispatch problem. In another CHPED
optimization issue, the Gaussian random variables were added to the velocity term of
the PSO algorithm to calculate the modified velocity and position of the particles in each
iteration. This modified particle swarm optimization (MPSO) algorithm presented by
Basu [48], achieved the global optimum through high population diversity caused by the
Gaussian random variables.

The PSO algorithms have been applied to the problems that address the optimal
scheduling of the CHP-based microgrids. These energy systems usually involve various
types of energy sources, such as wind turbines, photovoltaic plants, cogeneration systems,
and energy storage; some studies in this area considered the stochastic nature of these sys-
tems. Liu et al. [49] applied a multi-team particle swarm optimization (MTPSO) algorithm
to minimize the total operating cost of a CHP-based microgrid. The presented MTPSO
algorithm updated the velocity of each particle, more stably. Since the scheduling problems
are complex nonlinear optimization models, Zeng et al. [50] presented an improved PSO
algorithm, which incorporated a self-adaptive mutation scheme, time-variant parameters,
and efficient constraint handling methods to minimize the total cost of a CHP-based steam
power plant. In another economic dispatch problem of a multiple energy carriers system
consisting of CHP plants, the TVAC-PSO algorithm was applied [51]. The cost-effective
scheduling of three different on-grid hybrid CHP-based energy systems has been also
achieved by applying the modified PSO algorithm [52–54]. Additionally, the adaptive
PSO algorithm was used in a bi-level economic scheduling model of an integrated energy
system, based on the power internet of things [55]. Liu et al. [56] minimized the coal
consumption of a coal-fired CHP plant combined with power-to-heat devices using the
PSO algorithm. They consider operation scheduling of the system to achieve their goal.

To guarantee the reliability and economic efficiency of microgrids (MG), applying and
optimal sizing of the energy storage system (ESS) is necessary. Accordingly, Liu et al. [57]
modeled an off-grid MG, which consists of distributed energy resources, a CHP plant, ESS,
and electric vehicles, and used the PSO to obtain an optimal sizing of the ESS. Following the
works conducted for modifying the PSO algorithms, a novel advanced modified particle
swarm optimization (AMPSO) algorithm was presented by Neyestani et al. [58] to solve
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the CHPED problem. The results obtained by the study showed the superiority of the
AMPSO over the TVAC-PSO algorithm. Another attempt for modifying the PSO method
was carried out by Lashkar-Ara et al. [59]. They applied the self-regulation controls learning
process, which made an improved version of the PSO named the SRPSO method to solve
the CHPED problem. Additionally, an improved PSO algorithm, combined with a mutation
operator, was used for finding the optimal combination and allocation of three types of
CHP plants [60]. It should be stated that in most of the works focused on CHP plant
optimization, these types of energy systems consisted of only one CHP unit. However, in a
novel configuration, a large-scale CHP plant, composed of two CHP units and a thermal
storage tank was modeled, and the PSO algorithm was used for optimization (Figure 4).
The optimization achieved great results in minimizing coal consumption [61]. Additionally,
a CHP plant with multiple CHP units and power-to-heat converters has been modeled and
optimized by applying the PSO algorithm [62].
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• The Cuckoo-inspiration Algorithms

The cuckoo search algorithm (CSA) [63], as an SI-based method, imitates the obligate
brood parasitic behavior of some cuckoo species. In this algorithm, the solutions are
generated via two stages, the Lévy flights, and the alien egg discovery. The CSA showed a
great performance in a strategy, which was applied for optimizing a CHPED problem [64].
This strategy uses the techniques for handling equality constraints. The cuckoo optimization
algorithm (COA), with the same inspiration as the CSA algorithm, was introduced by
Rajabioun [65] in 2011. Mellal et al. [66], used the COA with the penalty function (PFCOA)
for constraint handling in a CHPED problem in 2015. In another study, the COA was
applied in a CHPED issue, considering the valve-point effect, the transmission loss, the
heat-power dual dependency, and the capacity limits [67].

• The Whale Optimization Algorithm

The whale optimization algorithm (WOA), inspired by the social behavior of hump-
back whales, was presented by Mirjalili et al. [68], in 2016. This algorithm was applied
to the common CHPED optimization problem, in 2017 [69]. In another study, in 2019,
Massrur et al. [70] presented a novel optimal model of a grid-connected energy microgrid,
by using the self-adaptive modified WOA (SMWOA). Additionally, an improved WOA
(IWOA), applying the adaptive weights was proposed by Zhu et al. [71] to minimize the
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difference between the required electricity and the actual output from a grid-connected
CHP plant.

• The Group Search Optimizer Algorithm

The group search optimization (GSO) algorithm is inspired by animals’ searching
behavior and their group-living theory. Two strategies inspired by animal foraging be-
havior including searching for food and collective movement toward food resources
were used in this meta-heuristic algorithm. In each generation, three types of members
are considered: the producer as the best member, the scroungers as the other group
members, and the rangers as the remaining members. This algorithm was improved by
Tarafdar-Hagh et al. [72] to better approach the global optimum point of a CHPED prob-
lem. Additionally, the classic GSO was applied in a CHPED problem by Basu [73]. In
2017, a modified version of the GSO (MGSO) was proposed by Davoodi et al. [74]. This
modification was carried out by applying two adaptive scrounger and ranger strategies, to
avoid trapping in poor local optima and give more diversity. The findings of the MGSO
method were compared with those of the cuckoo optimization algorithm [75], and the
MGSO showed a lower total cost than the COA.

• The Bee-Inspired Algorithms

The bee colony optimization (BCO) and the artificial bee colony (ABC) algorithms
are the SI-based methods, inspired by the food foraging action of honeybees. The BCO,
ABC and improved ABC (IABC) algorithms have been applied in the CHPED problems
in [76–78], respectively. The results of implementing these algorithms in a test system
showed a lower minimum cost and computational time of the IABC algorithm than the
ABC and BCO. The test system consisted of two cogeneration units, four conventional
thermal generators, and a heat-only unit. Additionally, the heat and power demands of
the test system were reported as 150 MWth and 600 MWe, respectively [79]. The obtained
results of the BCO, ABC, and IABC are shown in Table 1.

Table 1. The numeric results of the BCO, ABC, and IABC, implemented in a CHPED model *.

Applied Algorithm/Ref. Total Cost (US$) Computation Time (s)

BCO [76] 10,317 5.16
ABC [77] 10,314 4.98
IABC [78] 10,112 2.21

* Consists of four power-only units, two CHP units, and one heat-only unit.

• The Firefly Algorithm

The firefly algorithm (FA) is one of the SI-based algorithms, because of inspiration
from the flash lighting behavior of fireflies to attract potential mates or prey. In 2012, an
adaptive modified firefly algorithm was presented, to minimize the total operating cost of a
CHP-based microgrid [80]. The ability of the FA to solve the CHPED problem was proved
in a study by Yazdani et al. [81], in 2013. Additionally, in a scheduling optimization issue, a
modified version of the FA (MFA) was applied by Bornapour et al. [82] to maximize the
profit of fuel cell CHP-based microgrid with hydrogen storage. The MFA benefited from
the mutation method to preserve the diversity of the population.

• Other Swarm Intelligence-based Algorithms

There are other SI-based algorithms to solve the CHPED optimization issue. For
example, the ant colony search algorithm (ACSA), which imitates the real ants’ behavior
in finding the nearest food sources, was improved and used by Song et al. [83]. The other
SI-based solvers for this issue, such as the difference brain storm optimization algorithm,
the wild goats algorithm, and the modified bat algorithm were presented in [84–86], re-
spectively. In another study, regarding optimal dispatching, the squirrel search algorithm
(SSA) was suggested. That study modeled the solar and wind power sources incorporated
with a CHP [87]. In 2020, the wild goats algorithm was applied by Jafari et al. [88] in an
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energy management approach, considered for a multi-microgrid. As another application of
the SI-based methods, the grey wolf optimization (GWO) algorithm, in combination with
three mutation strategies, was used in an optimal scheduling problem [89]. Additionally,
Mahian et al. [90] achieved the best combination and allocating of a hybrid CHP plant by
the GWO method. They considered minimization of the plant’s total cost for selecting the
proper combination. Additionally, another SI-based algorithm named the marine predators
algorithm was presented by Shaheen et al. [91] to solve the CHPED problem. This algo-
rithm showed great features in terms of efficiency, feasibility, and capability in achieving
the optimal solutions for small, medium and large-scale plants.

The particle swarm optimization algorithms can be introduced as one of the most
useful SI-based methods in solving the single-objective CHP optimization cases. As dis-
cussed before, various improvement strategies have been applied in the PSO process,
by some researchers. The time-varying acceleration coefficients and self-adaptive muta-
tion operators are the most efficient methods in this area. As in other SI-based methods,
the cuckoo-inspiration algorithms, the whale optimization algorithms, the group search
optimizer, the bee-inspired algorithms, and the firefly algorithms can be introduced as
robust methods to solve the single-objective CHP issues. These algorithms, in the classic or
modified forms, have been frequently applied in some CHPED optimization problems.

2.3. Human-Based Algorithms as Single-Objective for CHP

Since the human being has greater social intelligence and fitness ability than the
insect colonies, the human-based algorithms are introduced as a new category of meta-
heuristics [68]. These kinds of meta-heuristics are inspired by the behaviors and char-
acteristics of human beings [92]. The harmony search algorithm (HSA), the teaching
learning-based optimization algorithm (TLBO), the exchange market algorithm (EMA),
and the social cognitive optimization algorithm (SCO) are discussed below.

• The Harmony Search Algorithm

The HSA, which was introduced first time in 2001 [93], determines the optimum value
of the objective function by utilizing the concept of how the perfect state of harmony is
found through an aesthetic estimation. The HSA was applied in the CHPED optimization
issue in [94]. A modified HSA, appropriate for the economic dispatch (ED) problem, named
the EDHS, was also applied in a CHPED problem [95]. The EDHS algorithm as the modi-
fied version of the HSA, achieved a lower minimum cost than the classical HSA. In 2012,
Javadi et al. [96] solved the day-ahead generation scheduling of a CHP, by applying the
HSA. They showed a satisfying performance of this algorithm in terms of effectiveness and
fastness. Javadi et al. [97] solved a CHPED problem, in a comparative study, by applying
the HSA and a mathematical method. The mathematical method had a problem of conver-
gence and difficulty dealing with a huge number of decision parameters and inequality
constraints; while the HSA converged to a good solution and overcame a huge number of
decision parameters. It should be noted that both HSA and mathematical methods obtained
equal values of the plant’s total cost. Additionally, in 2019, Benayed et al. [98] developed an
improved harmony search (IHS) algorithm that generated new solution vectors to enhance
the convergence characteristics and accuracy to solve the CHPED problem. In the same
year, Nazari-Heris et al. [99] used a novel multi-player harmony search (MPHS) method
to solve the CHPED problem. The number of iterations in the MPHS algorithm, WOA,
TVAC-PSO, and the RCGA-IMM is shown in Figure 5. As it is evident from the figure, the
MPHS converges to a lower cost, in a less iteration number.
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• The Teaching Learning-based Optimization Algorithm

The teaching learning-based optimization (TLBO) algorithm was introduced by
Rao et al. [100] by inspiration from the teaching–learning process in the classroom, in
2011. Pattanaik et al. [101] modified this algorithm by adding the Gaussian random vari-
ables and applied it to a CHPED problem, in 2017. In another modification process carried
out by Gong et al. [102], the students’ diversity was increased. This increment caused a
significant reduction in the possibility of premature convergence. This modified TLBO
algorithm was applied to obtain a stochastic-based optimal energy management model for
smart hybrid microgrids.

• Other Human-based Algorithms

The exchange market algorithm (EMA) is a human-based meta-heuristic method,
because of inspiration from the shares trading style among the elite stockholders. This
algorithm was applied to solve the CHPED case by Ghorbani [103] in 2016. As another
human-based solver for the CHP optimization issues, the social cognitive optimization
(SCO) algorithm can be introduced. The SCO, which is inspired by the mankind studying
method [104] was combined with the tent map model, as a new algorithm named the TSCO
for converging the CHPED issue [105]. The computation time of the SCO process was
0.673 s, while it was 0.535 s for the TSCO. So, it could be concluded that the tent map model,
as a chaotic search strategy, would reduce the computation time of the SCO algorithm. Ad-
ditionally, a novel meta-heuristic algorithm was introduced by Srivastava et al. [106], with
inspiration from a game played in India. This algorithm named the Kho-Kho optimization
algorithm accounted as a subcategory of the human-based meta-heuristics and was applied
for a CHPED problem. Another human-based algorithm named heap-based optimizer was
introduced by Ginidi et al. [107] for optimal dispatching of a large-scale CHP system to
minimize the total fuel cost.

2.4. Physics-Based Algorithms as Single-Objective for CHP

The physics-based algorithms are known as another subcategory of the population-
based meta-heuristics, by imitating the physical rules of the universe [68]. The charged
system search algorithm (CSSA), the gravitational search algorithm (GSA), and the heat
transfer search algorithm (HTS) are the physics-based methods that are discussed in this
section. In 2013, Bahmani-Firouzi et al. [108] modified the CSSA by applying a self-adaptive
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learning framework (SALCSSA) to eliminate the probable preconvergence of local optima,
population diversity lost, or slow processing of the CSSA. They used the modified CSSA
to obtain an optimal dynamic economic dispatch of a CHP plant. In confirmation of
another physics-based method in CHP optimization issues, the GSA was presented by
Beigvand et al. [109] for the CHPED problem. The GSA showed a great capability in finding
an optimal point with lower fuel cost and less computation time compared to the GA,
RCGA, EDHS, HSA, PSO, TVAC-PSO, BCO, EP, and DE. Another physics-based method,
the HTS algorithm, was also applied to solve the CHPED problem by Pattanaik et al. [110],
in 2019.

2.5. Hybrid Meta-Heuristic Methods

The hybrid optimization techniques make an important section, in engineering issues.
Combining the different optimization methods causes improvement in their performance
and better designing and coding of optimization problems as well [111]. The hybridizing
process can be conducted in three ways: combining the meta-heuristic algorithms, com-
bining the meta-heuristic algorithms and machine learning programming methods, and
combining the meta-heuristic algorithms and mathematical optimization methods.

• Combining the meta-heuristics methods

Arandian et al. [112] applied a hybrid shuffled frog leaping algorithm for stochastic eco-
nomic locating and sizing a CHP-PV system integrated with energy storage. Beigvand et al. [113]
developed a hybrid algorithm based on the GSA, to solve the CHPED problem. The
presented algorithm was a time-varying acceleration coefficients-gravitational search
algorithm-particle swarm optimization (TVAC-GSA-PSO). In 2018, the hybrid CSA-BA-
ABC algorithm was obtained by combining the bat algorithm (BA) and the ABC algorithm,
based on the chaotic-based self-adaptive (CSA) strategy. This algorithm was used as a
solver for the CHPED problem by Murugan et al. [114]. This algorithm showed good
convergence characteristics, because of inheriting the exploration abilities of the ABC and
exploitation ability of the BA. The performance of the hybrid TVAC-GSA-PSO and hybrid
CSA-BA-ABC algorithms was compared by considering a 48-unit CHP plant, as a particular
test system [109]. This implementation had a total cost of 116,393.4034 $ and 115,770.3910 $,
and the computation time was 6.63 s and 11.3455 s, with the TVAC-GSA-PSO and CSA-BA-
ABC, respectively. Nevertheless, the CSA-BA-ABC showed a lower total cost but consumed
more computation time than the TVAC-GSA-PSO.

To avoid the local optimum points that might take place in the PSO algorithmic
process, three operators were adopted from the DE algorithm. This novel evolutionary
PSO (E-PSO) algorithm was applied by Lorestani et al. [115], for optimal sizing of a CHP
plant, incorporated with renewable energy sources and energy storage. Gu et al. [116]
improved the weak characteristics of the biogeography-based optimization (BBO) algorithm
by hybridizing the BBO and the SA algorithm (SABBO), for the economic dispatching of
CHP plants. In a study carried out in 2019, the performance of the GA, PSO, and PSO-
GA algorithms was compared for optimizing the economic dispatch of a CHP plant. It
was shown that the PSO-GA algorithm obtained the best results [117]. Additionally, in
an optimal scheduling problem, an evolutionary algorithm, the DE, and a swarm-based
algorithm, the bird mating optimization (BMO), were combined by Bornapour et al. [118].
The studied model was a grid-connected microgrid including a fuel-cell CHP, wind turbines,
and photovoltaic modules. In another hybridizing process, Hu et al. [119] used the PSO
algorithm and the GA, simultaneously, for presenting an economic dispatch model of a
wind-solar power-hydrothermal cogeneration system. Nasir et al. [120] used a hybrid FA
and self-regulating PSO algorithm to solve the CHPED problem. They concluded that
this algorithm exploited the strong points of FA and self-regulating PSO simultaneously.
Additionally, a novel hybrid heap-based and jellyfish search algorithm were used by
Ginidi et al. [121] in a CHPED optimization problem. This hybrid algorithm benefited
from the explorative features of the heap-based algorithm and exploitative features of the
jellyfish search algorithm.
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• Combining the meta-heuristics and the machine learning programming

The opposition-based learning (OBL) algorithm, as a novel scheme for machine in-
telligence, is one of the most successful concepts for improving the search abilities of the
population-based optimization algorithms to solve nonlinear problems. In this regard,
some researchers have combined the meta-heuristic algorithms with the OBL technique.
Roy et al. [122] proposed a hybrid algorithm, based on the TLBO, incorporated with the
OBL (OTLBO), for a CHPED problem. Additionally, Niu et al. [123] applied the OBL in the
harmony search algorithm with the arithmetic crossover operation to enhance the diversity
of the solution. The opposition-based group search optimization (OGSO) algorithm (shown
in Figure 6) was applied to a CHPED problem by Basu [124]. As is evident from the figure,
at the first level, the initial members and the opposite members are generated. Then, by
evaluating the fitness of the opposite member, the replacing operation is carried out. In the
next stages, by choosing the relating members, producing and scrounging are performed.
The numeric results showed that the OGSO reached a lower total cost than the obtained
cost of the GSO. It should be noted that the OGSO consumed more computation time than
the GSO. The advantages of the OBL algorithm are the improvement in convergence speed,
the search process, and the achievement of high-quality solutions, through accounting for
the current population and its opposite population at the same time.

Energies 2022, 15, x FOR PEER REVIEW 12 of 37 
 

 

solar power-hydrothermal cogeneration system. Nasir et al. [120] used a hybrid FA and 
self-regulating PSO algorithm to solve the CHPED problem. They concluded that this al-
gorithm exploited the strong points of FA and self-regulating PSO simultaneously. Addi-
tionally, a novel hybrid heap-based and jellyfish search algorithm were used by Ginidi et 
al. [121] in a CHPED optimization problem. This hybrid algorithm benefited from the ex-
plorative features of the heap-based algorithm and exploitative features of the jellyfish 
search algorithm. 
• Combining the meta-heuristics and the machine learning programming 

The opposition-based learning (OBL) algorithm, as a novel scheme for machine in-
telligence, is one of the most successful concepts for improving the search abilities of the 
population-based optimization algorithms to solve nonlinear problems. In this regard, 
some researchers have combined the meta-heuristic algorithms with the OBL technique. 
Roy et al. [122] proposed a hybrid algorithm, based on the TLBO, incorporated with the 
OBL (OTLBO), for a CHPED problem. Additionally, Niu et al. [123] applied the OBL in 
the harmony search algorithm with the arithmetic crossover operation to enhance the di-
versity of the solution. The opposition-based group search optimization (OGSO) algo-
rithm (shown in Figure 6) was applied to a CHPED problem by Basu [124]. As is evident 
from the figure, at the first level, the initial members and the opposite members are gen-
erated. Then, by evaluating the fitness of the opposite member, the replacing operation is 
carried out. In the next stages, by choosing the relating members, producing and scroung-
ing are performed. The numeric results showed that the OGSO reached a lower total cost 
than the obtained cost of the GSO. It should be noted that the OGSO consumed more 
computation time than the GSO. The advantages of the OBL algorithm are the improve-
ment in convergence speed, the search process, and the achievement of high-quality solu-
tions, through accounting for the current population and its opposite population at the 
same time. 

 
Figure 6. The general process of the OGSO algorithm [124].

• Combining the meta-heuristics and the mathematical programming methods

Mathematical programming can improve the ability of meta-heuristic algorithms in a
variety of issues. There are significant numbers of papers in this area. In research work,
by Moradi et al. [125], the uncertainties of a CHP and a boiler optimization model were
considered through a fuzzy programming method. The PSO and the linear program-
ming methods were applied for obtaining the optimal capacities of the presented model.
Hosseini et al. [126] obtained the optimal placing and sizing of CHP plants, by applying the
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PSO algorithm as a solver. Then, they applied the Monte Carlo method for simulating the
effect of the stochastic nature of the power generation system on the optimal solution. As it
could be understood from the literature, the mathematical methods are efficient solvers to
handle the models’ uncertainties. Wu et al. [127] scheduled a CHP-based microgrid using
an improved PSO algorithm combined with the Monte Carlo simulation. Additionally,
an optimization model based on the Stackelberg game was presented by Ma et al. [128]
to manage the energy of a microgrid. The DE algorithm and the nonlinear constrained
programming were chosen to solve this optimization model.

Another hybrid method was applied by Pazouki et al. [129] to achieve the best placing
and sizing of CHP units in multi-carrier energy networks. The mixed integer linear pro-
gramming model and the CPLEX Optimization Studio [130] were used to solve different
scenarios. Then, those with lower profits were eliminated, and the genetic algorithm was
applied to determine the best scenario. In 2017, Elsido et el. [131] proposed a two-level
optimization process for determining the optimal design and scheduling of CHP plants.
As shown in Figure 7, the optimal design of the units was carried out at the first level (the
upper level), by an evolutionary algorithm, while the optimal scheduling was obtained at
the lower level by the commercial mixed integer linear programming (MILP). The total
operating cost (TOC), obtained from the lower level, was transferred to the total annual
cost (TAC) as the objective function. The combination of meta-heuristics and mathematical
methods has been used in the CHPED issues as the significant optimization problems of the
CHP plants. In this field, an integrated technique was applied by Narang et al. [132], and
the civilized swarm optimization (CSO) algorithm was selected as a global search method,
and Powell’s Pattern Search (PPS) was applied as a local search method.
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Some other works have proved the high ability of the mathematical methods in
handling the uncertainties of the considered models. For example, to consider the uncer-
tainties of a CHP plant combined with a wind power plant, a novel chance-constrained
programming model and a two-stage hybrid method based on the SQP and the GA were
introduced [133]. Additionally, solving a non-deterministic optimal scheduling model of a
dual-mode CHP was carried out through the combination of the binary successive approxi-
mation method and the civilized swarm optimization algorithm [134]. In another paper, a
two-level hybrid method, including the PSO and SQP, was applied by Eladl et al. [135] to
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optimize a stochastic model of a power system. The energy system consisted of CHP units,
a photovoltaic module, a wind turbine, and battery energy storage.

Based on the reviewed papers in the field of the hybrid method, the combination of the
meta-heuristic algorithms is usually carried out to overcome the shortcomings of the meth-
ods and obtain a better optimal solution. The usage of the machine learning programming
methods in combination with the meta-heuristics, not only accelerates the optimization
process but also increases the accuracy of the final answer. The opposition-based algorithm
can be introduced as an efficient method in this area. As the third way of combination,
applying mathematical programming alongside the meta-heuristics can overcome the
stochastic characteristics of the optimization models in a good way. Regarding this matter,
the PEM, the fuzzy programming, and the Monte Carlo simulation are accounted for as
effective mathematical methods.

According to the literature, the single-objective CHP optimization issues can be clas-
sified into three main categories, including scheduling, designing, and sizing issues. The
economic dispatching of the CHP plants, known as the CHPED optimization problem, is
presented as a separate category in this paper. This is because of the wide applications
of the CHPED in various studies. Accordingly, the most significant single-objective CHP
optimization problems reported in the literature are presented in four categories including
scheduling, designing, sizing, and economic dispatching, in Tables 2–5, respectively. The
objective function of the CHPED problem is total fuel cost; the relevant column in Table 5
is not provided. Additionally, the column of the energy system is not provided in Table 5
because it is considered a fixed CHPED test system.

Table 2. Single-objective scheduling issues of CHP energy systems.

Applied Algorithm Energy System Objective Function Authors/Ref.

GA Solar-fossil fueled CHP plant combined
with thermal storage and dispatching Minimization of energy cost Abdelhady et al. [29]

NSGA-II Grid-connected CHP-based microgrid Minimization of the total cost Shang et al. [30]

GA Grid-connected hybrid
solar-wind-hydrogen CHP Minimization of total cost Maleki et al. [31]

SADE Grid-connected fuel cell-based CHP Minimization of the total cost Venkatakrishnan et al. [35]

IDE Integrated energy system with CHP,
photovoltaic and energy storage Minimization of the operation cost Wang et al. [37]

MTPSO CHP-based microgrid Minimization of the total operating cost Liu et al. [49]
IPSO CHP-based steam power plant Minimization of the total cost Zeng et al. [50]

PSO Large-scale CHP plant, with two CHP
units and a thermal storage tank Minimization of coal consumption Lai et al. [61]

SMWOA grid-connected CHP-based microgrid Minimization of the day-ahead
operating cost Massrur et al. [70]

MFA fuel cell CHP-based microgrid with
hydrogen storage Maximization of the profit Bornapour et al. [82]

SSA Solar and wind power sources
incorporated with a CHP Minimization of the total cost Basu [87]

Wild Goats CHP-based multi-microgrid Maximization of the profit Jafari et al. [88]
Modified TLBO Smart hybrid microgrids Minimization of the total cost Gong et al. [102]

BMO-DE
Grid-connected microgrid with fuel-cell

CHP, wind turbine, and
photovoltaic modules

Maximization of the profit Bornapour et al. [118]

PSO-GA Wind-solar power-hydrothermal
cogeneration system Minimization of the total cost Hu et al. [119]

Improved PSO with the
Monte Carlo CHP-based microgrid Minimization of the total cost Wu et al. [127]

DE with Nonlinear
Constrained Programming CHP-based microgrid Maximization of the profit Ma et al. [128]

PSO and SQP CHP with photovoltaic, wind turbine,
and battery Maximization of the social welfare Eladl et al. [135]
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Table 3. Single-objective designing issues of CHP energy systems.

Applied Algorithm Energy System Objective Function Authors/Ref.

GA Typical gas-turbine CHP plant Minimization of the total cost Ahmadi et al. [19]
GA diesel engine-based CHP system Minimization of the total cost Mohammadkhani et al. [20]
GA Fuel cell based micro-CHP Maximization of the electrical efficiency Arsalis et al. [21]

Table 4. Single-objective sizing issues of CHP energy systems.

Applied Algorithm Energy System Objective Function Authors/Ref.

Fit-problem GA Gas turbine CHP plant Maximization of the annual worth Ferreira et al. [24]
GA Building-integrated CHP plant Minimization of the daily energy cost Yu et al. [25]

PSO Off-grid MG with CHP, ESS,
and electric vehicles Minimization of the total cost Liu et al. [57]

GWO Hybrid CHP plant Minimization of the total cost Mahian et al. [90]
Hybrid shuffled frog

leaping algorithm
CHP-PV plant integrated

with energy storages Maximization of the profit Arandian et al. [112]

E-PSO CHP plant with renewable energy
and energy storage Minimization of the total annual cost Lorestani et al. [115]

PSO and linear
programming Grid-connected boiler and CHP plants Maximization of the net present value Moradi et al. [125]

PSO and Monte Carlo CHP plants Maximization of the benefit to cost ratio Hosseini et al. [126]
Mixed integer linear

programming and GA
CHP units in multi-carrier

energy networks Maximization of the profit Pazouki et al. [129]

Table 5. Economic dispatching issues of CHP energy systems (CHPED optimization issues).

Authors Applied Algorithm Ref.

Haghrah et al. RCGA-IMM [26]
Zou et al. IGA-NCM [27]

Basu DE [33]
Jena et al. DEGM [36]

Basu AIS [40]
Mohammadi-Ivatloo et al. TVAC-PSO [46]

Zeng et al. IPSO [47]
Basu MPSO [48]

Neyestani et al. AMPSO [58]
Lashkar-Ara et al. SRPSO [59]

Mellal et al. PFCOA [66]
Basu GSO [73]

Davoodi et al. MGSO [74]
Yazdani et al. FA [81]

Song et al. ACSA [83]
Javadi et al. HSA [97]

Benayed et al. IHS [98]
Nazari-Heris et al. MPHS [99]

Pattanaik et al. TLBO [101]
Ghorbani EMA [103]
Sun et al. TSCO [105]

Srivastava et al. Kho-Kho [106]
Bahmani-Firouzi et al. SALCSSA [108]

Beigvand et al. GSA [109]
Pattanaik et al. HTS [110]
Beigvand et al. TVAC-GSA-PSO [113]
Murugan et al. CSA-BA-ABC [114]

Gu et al. SABBO [116]
Nasir et al. FA-PSO [120]
Roy et al. OTLBO [122]

Basu OGSO [124]
Narang et al. CSO and PPS [132]
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The statistical study of the presented optimization issues shows the largest share of the
CHPED problem, among the other optimization cases. As shown in Figure 8, the CHPED
optimization problems, the other CHP scheduling issues, the CHP optimal sizing, and
the optimal designing issues have 53%, 29%, 15%, and 3% of sharing among the studies,
respectively. According to the obtained results, the CHPED problem can be selected, as
the most useful single-objective CHP optimization issue. Thus, in order to pay more
attention to this matter, the numeric results of the CHPED problem solved by different
algorithms, are presented and compared in Table 6. The results are based on a specified test
system composed of a conventional power generation unit, two CHP units, and a heat-only
generation unit. The considered constraints of each presented model are also mentioned
in the table. Presentation of this subject is important, because of the effect of different
constraints on the total cost of the energy system.
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Table 6. The numerical results of implementing different algorithms in a CHPED optimization model *.

Applied Algorithm/Ref. Total Cost (US$) Computation Time (s) Model Constraints

RCGA-IMM [26] 9257.075 NA Heat and power demands, Capacity limits,
Valve point effect, Transmission loss

IGA-NCM [27] 9257.075 NA Heat and power demands, Capacity limits

DEGM [36] 9235.1032 1.0827 Heat and power demands, Capacity limits,
Valve point effect

SFS [43] 9257.07 3.78 Heat and power demands, Capacity limits

TVAC-PSO [46] 9257.07 1.33 Heat and power demands, Capacity limits,
Valve point effect, Transmission loss

SRPSO [59] 9257.07 0.62 Heat and power demands, Capacity limits,
Valve point effect, Transmission loss

CSA [64] 9257.07 0.59 Heat and power demands, Capacity limits,
valve point effect, transmission loss

PFCOA [66] 8440.50 NA Heat and power demands, Capacity limits

GSO [73] 9236.0716 1.3705 Heat and power demands, Capacity limits,
valve point effect

FA [81] 9257.10 NA Heat and power demands, Capacity limits
ACSA [83] 9452.20 NA Heat and power demands, Capacity limits
HSA [94] 9257.07 NA Heat and power demands, Capacity limits
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Table 6. Cont.

Applied Algorithm/Ref. Total Cost (US$) Computation Time (s) Model Constraints

EDHS [95] 8606.07 NA Heat and power demands, Capacity limits
IHS [98] 9179.5 NA Heat and power demands, Capacity limits

EMA [103] 9257.07 0.9846 Heat and power demands, Capacity limits.
Valve-point effect, Transmission loss

TSCO [105] 9257.07 0.535 Heat and power demands, Capacity limits,
transmission loss

SCO [105] 9257.07 0.673 Heat and power demands, Capacity limits,
transmission loss

HTS [110] 9256.95 1.38 Heat and power demands, Capacity limits.
Valve-point effect, Transmission loss

SABBO [116] 9257.1 NA Heat and power demands, Capacity limits

OGSO [124] 9290.5459 1.7309 valve point effect and prohibited operating
zones of conventional thermal generator

GSO [124] 9291.2717 1.5273 valve point effect and prohibited operating
zones of conventional thermal generator

CSO-PPS [132] 9257 0.56
Heat and power demands, Capacity limits,

Valve point effect, prohibited operating zones,
transmission loss

* The CHPED model consists of a power-only unit, two CHP units, and a heat-only unit.

Based on Table 6 the different algorithms obtained a range of costs, from 8440.50 $
to 9452.20 $. The lowest cost belongs to the PFCOA algorithm, while the highest cost
belongs to the ACSA algorithm. The EDHS algorithm has also been an effective solver
in the CHPED problems, by obtaining an 8606.07 $. The run speed of the algorithms to
solve optimization problems is also an important criterion for engineers in this field. In
solving the CHPED problems, the TSCO, CSO-PPS, and CSA algorithms show an excellent
processing speed in comparison with the other algorithms.

3. Multi-Objective Algorithms for CHP Optimization

Since most real-world issues involve the simultaneous optimization of several objec-
tives, multi-objective optimization is applied for optimizing several objective functions,
simultaneously, with a number of inequality or equality constraints. Unlike single-objective
optimization, which obtains one optimal solution, multi-objective optimization gives rise
to a set of optimal solutions. These solutions are known as the pareto-optimal solutions.

3.1. Evolutionary Algorithms

The EAs have been widely used in multi-objective optimization problems because
their natural characteristics are appropriate for these issues.

• Genetic Algorithm

To deal with the characteristics of a multi-objective optimization issue, the non-
dominated sorting procedure as a ranking selection method was applied in the genetic
algorithm that created the non-dominated sorting genetic algorithm (NSGA) [136]. Later,
the NSGA was modified to a faster and more reliable algorithm, as the NSGA- II by us-
ing the crowding distance as a second-order sorting criterion [137]. By applying the
NSGA- II, a multi-objective optimal design of a micro-CHP gas turbine was carried
out by Yazdi et al. [138]. They considered the exergy efficiency, the total production
cost, and the CO2 emission of the plant, as the objective functions. In another work, by
Ganjehkaviri et al. [139] a diesel engine-based CHP was optimally designed considering
the system’s exergy efficiency and the total cost as the objective functions. Additionally,
similar objective functions were defined by Sanaye et al. [140] to optimize a hybrid solid
oxide fuel cell and micro gas turbine CHP plant. Since maximizing the total exergy ef-
ficiency and minimizing the total cost of the system are in contrast with each other, the
pareto frontier was obtained, as shown in Figure 9. Based on the figure, point P shows the
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final optimum point. After obtaining the pareto frontier, in order to select a final optimal
point of the pareto frontier, the technique for order of preference by similarity to the ideal
solution (TOPSIS) method as a decision-maker was applied. In the TOPSIS method, the two
ideal and non-ideal solutions were obtained. The best solution was then selected from the
pareto frontier based on the geometric shortest distance and longest distance from the ideal
point and non-ideal point, respectively. The NSGA- II was also applied in a multi-objective
optimization process for an integrated energy system consisting of biomass gasification, a
solid oxide fuel cell, and a micro gas turbine CHP [141].
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Following the research works in the multi-objective optimal designing of CHPs, a
fuel cell based micro CHP plant was optimized and the best trade-off between the total
cost and the net electrical efficiency of a CHP plant was achieved as the pareto frontier by
Haghighat-Mamaghani et al. [142]. In another multi-objective optimal designing issue, in
2016, a gas turbine-based CHP cycle integrated with low-energy buildings was simulated
and optimized by a genetic-based algorithm [143]. In another optimal designing problem
solved by the NSGA- II, Lee et al. [144] targeted the minimization of total cost and total
environmental impacts of a wastewater treatment plant integrated with a CHP plant.
The efficiency of the components, the temperature differences in the heat exchangers,
and the pressure ratio of the compressor and the gas turbine were the design variables.
Additionally, a combination of the CHP and heat pump (CHP-HP) was optimally designed
for the purpose of primary energy saving, CO2 emission reduction and annual expense
saving by Li et al. [145]. The optimal values for these objective functions were obtained as
23.24%, 35.13% and 21.93%, respectively. In another work, two types of geothermal-fueled
CHP plants were proposed and modeled by Ebadollahi et al. [146]. The modeling was
carried out based on three objective functions including energy and exergy efficiencies and
the total production cost of the plants. After optimizing by the GA, the best design solution
was obtained by weighing each function. The multi-objective optimal design was also
studied in [147,148] for various models of highly efficient combinations of CHP plants that
were solved by the NSGA-II. The robustness of the GA was proved in a comparative study
among the GA, bee colony and searching algorithms. The GA reached 0.0754 $/kWh of
generation cost, 39.42% energy efficiency, and 85.42% exergy efficiency for a CHP plant [149].
Costa et al. [150] presented a model of a syngas engine-based CHP plant and optimized it
by the GA to achieve a high-efficiency and low-emission design. In another optimal design
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issue, Kazemiani-Najafabadi et al. [151] considered the rate of carbon emissions, exergy
efficiency, and payback period as the objective functions and applied the GA to solve the
problem. The multi-objective GA was used by Li et al. [152] in the optimization process of
cogeneration proton exchange membrane fuel cell. Three objectives were considered in this
study including system efficiency, power density, and oxygen distribution uniformity on
the cathode catalyst layer. Mehregan et al. [153] applied the GA to optimize a CHP plant
with two prime movers. The objective functions were minimizing the fuel consumption
and plant emissions and maximizing the efficiency of the system.

The combined heat and power economic emission dispatch (CHPEED), as another
multi-objective optimization issue, determines a plant’s power and heat production; while
the system’s production cost and emission level could be optimized simultaneously. In
such matters, the power and heat demand and the other constraints must be met. The
NSGA-II was applied to solve the CHPEED model, by Basu [154], in 2013. The heat-
power feasible operation region of the CHP unit is shown in Figure 10. Implementing
the NSGA-II in a test system [79] consisting of four thermal generators, two CHP units,
and a heat-only unit obtained 13,433.19 $, and 25.8262 Kg, as the best tradeoff between
minimum total cost and total emission of the plant. In another paper, the multi-objective
optimal dispatching was obtained by Eladl et al. [155] for an energy hub, including various
components, such as renewable energy resources, and a CHP plant. In the problem that
aimed at the maximization of social welfare and the minimization of CO2 emissions, a
penalty factor was used to convert the emission values to emission cost and change the
problem into a single-objective one.
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As another kind of CHP multi-objective issue, an optimal planning problem of a CHP-
based microgrid was solved by Zidan et al. [156,157]. Two objective functions, including
the total cost and the carbon dioxide emissions were considered and minimized, based
on the genetic algorithm. In this planning issue, the best rating of the power and heat
generation from each unit of the microgrid was obtained for four considered configurations
of the microgrid and the best combination was selected. Assaf et al. [158] obtained the
optimal sizing of a PV-CHP plant with a hot water storage tank to satisfy three objective
functions. The decision variables in this problem were the power generation of the PV
plant, electrolyzer, and fuel cell, the capacity of the hydrogen tank, the volume of the
hot water storage tank, and the area of the solar collector. In another CHP sizing issue,
Pujihatma et al. [159] compared the performance of the NSGA-II method with the goal
attainment algorithm, as a deterministic method. The presented CHP system was fueled by
petroleum gas and wet gas, in field gas utilization matter. The two methods gave an almost
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similar pareto front, according to the three objective functions, including the total fuel cost,
the gas turbine reliability, and the pipeline integrity.

• Other Evolutionary Algorithms

The DE algorithm can be adapted as a solver for bi-objective economic emission load
dispatch (EELD) problems. In an optimal scheduling issue, for a CHP-based microgrid,
with economic and environmental purposes, the DE algorithm was used by Basu [160]. The
DE algorithm showed faster processing than the PSO algorithm. The EELD problem for a
CHP plant, known as the CHPEED issue was solved by Alomoush [161]. This optimization
issue applied the SFS algorithm and the fuzzy satisfying method as a decision maker
for selecting the best solution from the pareto set. Alomoush [162] also used different
meta-heuristic methods to solve the economic and emission dispatching of a CHP-based
microgrid. The SFS algorithm obtained the best compromise solution. In another work,
Sun et al. [163] applied the indicator and crowding distance-based evolutionary algorithm
(IDBEA) to achieve the best results for the CHPEED issue. In this study, the SFS method
achieved the lower minimum cost, while the IDBEA obtained the lower emission level.
Fan et al. [164] applied the sunflower optimization algorithm in a multi-objective optimal
sizing problem of fuel cell-based CHP plants with three different types of heat pumps.

Based on the mentioned papers, the genetic algorithms as the largest group of EAs,
apply the fitting strategies for multi-objective CHP optimization issues, in a good way.
The NSGA-II is a good example in this area, which obtains high-quality solutions for CHP
problems. Two other evolutionary algorithms, the DE and the SFS are effective methods in
solving CHP matters, with more than one objective function. It should be noted that the
EAs were mostly applied in the optimal designing problems of the CHP plant.

3.2. Swarm Intelligence-Based Algorithms

As the good performance of the swarm intelligence-based algorithms was discussed
in the “single-objective” chapter, these methods could be successfully performed in the
multi-objective optimization issues, as well.

• Particle Swarm Optimization Algorithm

The PSO algorithm was used by Zhao et al. [165] in an optimal designing problem
to achieve the maximum values of exergy and electrical efficiencies. So, the mathematical
model of a CHP plant, based on compressed air energy storage and a humid air turbine
was formulated. The combination of the binary PSO and PSO methods was presented by
Anand et al. [166] to solve a scheduling problem. This combined algorithm was presented
to consider the unit status and explore some solutions for the multi-objective scheduling of a
dual-mode CHP plant (Figure 11). Optimal scheduling of a dual-mode CHP plant was also
solved by the binary PSO combined with the priority list method (PL) [167]. In a scheduling
issue, Zeng et al. [168] used the demand response program (DRP) to model an MG. Then,
they used an adaptive PSO algorithm to minimize the cost and emission of the MG. In
a comparative study as a bi-objective optimal design of a CHP plant, the PSO showed a
better convergence time than the GA [169]. In another design issue, the optimal design
variables of a CHP plant composed of a supercritical CO2 recompression Bryton cycle and
an absorption heat pump were determined by the PSO algorithm [170]. In another study,
the optimal locating and sizing of a CHP plant was obtained by Naderipour et al. [171], in
a two-stage optimization process by the PSO. This process considered the minimization
of the power loss, minimization of the energy not-supplied, and improvement of the
voltage profile. In a comparative study by Nondy et al. [172], four metaheuristic algorithms
including the PSO, the GA, the simulated annealing (SA), and the HS were applied in the
thermoenvironomic optimization of a gas turbine-based CHP plant. In this research, the
PSO algorithm showed the best performance.
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• Grey Wolf Optimization Algorithm

Jayakumar et al. [173,174] showed the good performance of the GWO algorithm in
obtaining feasible and high quality solutions for the multi-objective dispatch of a CHP. They
also modeled the CHPEED problem, considering both static and dynamic load conditions,
and applied the GWO for this purpose [175]. The obtained results from this study were
exactly similar to [174]. In another paper, a novel version of the GWO was developed
by modifying the direction of the wolves, and utilization of the non-dominated sorting
and crowded distance calculation. This algorithm was applied to solve the economic and
environmental dispatch of the CHP plants [176].

• Other SI-based Algorithms

There are some other SI-based methods that are appropriate for solving the multi-
objective CHP optimization cases. The FA method is one of these methods that was
improved by adding the mutation operator into the optimization process to keep the
population diversity. This improved FA was used by Bornapour et al. [177] to optimize a
stochastic scheduling model of a CHP-based microgrid. Additionally, the fuzzy method
was applied to select the best compromise solution, considering three objectives (Figure 12).
In another study, He et al. [178] applied the multi-objective bacterial colony chemotaxis
algorithm (MOBCC), for the economic and environmental scheduling of a CHP-based
microgrid. In this optimization process, the TOPSIS method was used to determine the
final solution. Yang et al. [179] presented an improved version of the SI-based collective
animal behavior (ICAB) algorithm that utilized the chaos theory and the Levy flight method.
The ICAB algorithm obtained the optimal design for a fuel cell-based CHP plant. Regarding
the other applications of the SI-based methods in the CHP multi-objective issues, the WOA
combined with the chaos theory can be introduced. This algorithm was applied in an
economic and environmental dispatching problem of a wind turbine-CHP plant [180].
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Another SI-based algorithm to solve the multi-objective optimization problem of CHP
systems was presented by Cao et al. [181], in 2021. This multi-objective method was the Bat
optimization algorithm that was used to optimize an innovative biomass gasifier system
for combined heat and power production. This algorithm showed better results than the
conventional multi-objective optimization methods. The total product cost and annual
emission were reduced significantly after the optimization process.
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It is understood from the literature that the SI-based methods have been highly
applied in optimal scheduling issues. The PSO algorithm has been mostly applied in these
kinds of optimization issues, but less in designing and sizing optimization issues. The
GWO algorithm can be introduced as the second widely-used SI-based algorithm in multi-
objective issues. This algorithm is a suitable solver for multi-objective scheduling problems.
The firefly, BCC, collective animal behavior, and the whale optimization algorithms are the
other useful methods for the multi-objective CHP issues.

3.3. Hybrid Metaheuristics Methods

A calculation algorithm was coupled with a multi-objective genetic algorithm to
obtain the optimal configuration of a CHP plant [182]. As another mathematical method,
considering the stochastic characteristics of CHP models, Shaabani et al. [183] applied the
Monte Carlo method in combination with the TVAC-PSO. A calculation algorithm was
coupled with a genetic algorithm, to obtain the optimal sizing of an on-grid CHP system.
The optimization considered the maximum value for the primary energy saving, and the
minimum value for the payback period [184].

As another type of the hybrid method, the combination of the meta-heuristics can
be introduced. Azizipanah-Abarghooee et al. [185] proposed a hybrid method, that bene-
fited from the characteristics of the modified Cuckoo search algorithm and the differential
evolution (MCSA-DE). This hybrid method optimized a stochastic scheduling model of
CHP-thermal-wind-photovoltaic units, based on chance-constrained programming. An-
other combination of meta-heuristic algorithms was presented by Dolatabadi et al. [186] to
eliminate some flaws of the weighted vertices-based optimizer (WVO) algorithm. This com-
bination was made by implementing the PSO algorithm. The WVO-PSO was implemented
in a CHPEED problem. Nourianfar et al. [187] applied the TVAC-PSO algorithm in combi-
nation with the non-dominated sorting method, alongside the EMA, in a hybrid route. This
hybrid algorithm obtained the economic and environmental dispatching of the CHP plant,
in two static and dynamic modes. The combination of the NSGA- II and multi-objective
PSO algorithms (NSGA II-MOPSO) was presented to solve a CHPEED model in [188]. By
comparing the results of the NSGA II-MOPSO with those of the WVO-PSO, the WVO-PSO
algorithm could be introduced as a better hybrid algorithm for the CHPEED issues. As
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previously discussed, the chaotic opposition-based learning strategy could improve the
performance of the meta-heuristic algorithms. Regarding this issue, Sundaram [189] im-
plemented this machine intelligence method in a multi-objective multi-verse optimization
(MMVO) algorithm, to solve the CHPEED problem. A hybrid multi-objective algorithm
as the combination of GWO algorithm and artificial neural network was proposed by
Mushavarati et al. [190] to optimize a cogeneration biomass gasification plant. The GWO
algorithm was applied to maximize the exergy efficiency and minimize the overall cost. On
the other hand, the artificial neural network was used to improve the processing speed and
decrease computational time.

3.4. Other Multi-Objective Meta-Heuristic Algorithms

The self-adaptive charged system search algorithm (SACSS) as a physics-based solver
was used for optimal locating and sizing of a stochastic model of a fuel cell CHP plant.
This model, which formulated random values of the input variables, was converted to
some deterministic problems through some scenario-based methods [191]. As the other
meta-heuristic methods to solve the CHPEED optimization issues, the multi-objective line-
up competition algorithm (MLCA) was presented by Shi et al. [192] and the θ-dominance
based evolutionary algorithm (θ-DEA) was proposed by Li et al. [193]. The MLCA
and θ-DEA showed good performance in obtaining low emission levels in the CHP
system. Pourghasem et al. [194] used the EMA to solve the stochastic dynamic reli-
able economic emission dispatching model of a renewable CHP-based microgrid. The
weighted sum and fuzzy methods were selected for determining the final optimal solu-
tion. Keyhanasl et al. [195] proposed the modified TLBO algorithm to achieve the optimal
energy flow of an integrated energy system that caused the minimization of operational
energy cost, electrical losses and power flow imbalances.

Tables 7–10 present the multi-objective optimization models of the CHPs, studied
in the literature, in four categories. The classification is similar to the single-objective
chapter and includes the scheduling, designing, sizing, and CHPEED issues. Although
the CHPEED is a subcategory of the scheduling issues, due to its high application in
multi-objective CHP optimization studies it has been considered as a separate category
in this paper.

Table 7. Multi-objective scheduling issues of CHP energy systems.

Applied Algorithm Energy System Objective Functions Authors/Ref.

GA Energy hub including
renewable energy and CHP

Maximization the social welfare,
minimizing the CO2 emission Eladl et al. [155]

DE CHP-based microgrid Minimization the total cost and
total emission Basu et al. [160]

Binary PSO Dual-mode CHP plant Maximizing the profit, minimizing
the emissions Anand et al. [166]

Adaptive PSO CHP-based microgrid Minimization of the cost
and emission Zeng et al. [168]

FA CHP-based microgrid Maximizing the profit, minimizing
the total emission Bornapour et al. [177]

MOBCC CHP-based microgrid Minimizing the economic and
environmental costs He et al. [178]

MCSA-DE
CHP-thermal-wind-

photovoltaic
units

Minimizing the cost, maximizing the
probability of meeting the target cost Azizipanah-abarghooee [185]

EMA renewable CHP-based
microgrid

Minimizing the total cost and
emission level of the plant Pourghasem et al. [194]

Modified TLBO Integrated energy system Minimizing the energy cost, electrical
loss and power flow imbalances Keyhanasl et al. [195]
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Table 8. Multi-objective designing issues of CHP energy systems.

Applied Algorithm Energy System Objective Functions Authors/Ref.

NSGA- II Micro-CHP gas turbine
Maximization of the exergy efficiency,

minimization of the total production cost,
and the CO2 emission

Yazdi et al. [138]

GA Diesel engine-based CHP Maximization of the exergy efficiency,
minimization of the total cost Ganjehkaviri et al. [139]

GA Hybrid solid oxide fuel cell and
micro gas turbine CHP

Maximization of the exergy efficiency,
minimization of the total cost Sanaye et al. [140]

GA High temperature proton exchange
membrane fuel cell-based CHP

Minimization of the total cost,
maximization of the net

electrical efficiency
Haghighat-Mamaghani et al. [142]

NSGA-II Wastewater treatment plant,
integrated with a CHP plant

Minimization of the total cost and total
environmental impacts Lee et al. [144]

GA CHP-HP
Maximization of the primary energy
saving and annual expense saving,
minimization of the CO2 emission

Li et al. [145]

GA Geothermal-fueled CHP plants
Maximization of the energetic and

exergetic efficiencies, minimization of the
total production cost

Ebadollahi et al. [146]

GA Gas turbine-based CHP
Maximization of exergy efficiency,
minimization of carbon emissions,
minimization of payback period

Kazemiani-Najafabadi [151]

PSO
CHP, based on compressed air

energy storage and humid
air turbine

Maximization of the exergy and
electrical efficiencies Zhao et al. [165]

ICAB Fuel cell-based CHP
Maximization of the electrical efficiency

and the electrical
power generation

Yang et al. [179]

Table 9. Multi-objective sizing issues of CHP energy systems.

Applied Algorithm Energy System Objective Functions Authors/Ref.

GA CHP-based microgrid Minimization of the total cost, and carbon
dioxide emission Zidan et al. [156,157]

GA PV-CHP plant, with hot water
storage tank

Maximization of the system reliability,
minimization of the energy cost Assaf et al. [158]

NSGA-II Petroleum gas and wet
gas-fueled CHP

Minimization of the fuel cost,
maximization of the gas turbine reliability,

and pipeline integrity
Pujihatma et al. [159]

Sunflower
Optimization Fuel cell-based CHP

Minimization of the combined yearly
maintenance and capital costs,
maximization of the hydrogen

energy consumption

Fan et al. [154]

PSO CHP-based microgrid
Minimization of the power loss, the

energy not-supplied, improvement of the
voltage profile

Naderipour et al. [171]

SACSS Fuel cell-based CHP Minimization of the total cost, emissions,
and voltage deviation Niknam et al. [191]

Table 10. Economic emission dispatching issues of CHP energy systems (CHPEED optimization issues).

Authors Applied Algorithm Ref.

Basu NSGA-II [154]
Alomoush SFS [161]
Sun et al. IDBEA [163]

Jayakumar et al. GWO [173–175]
Shaabani et al. Monte Carlo-TVAC-PSO [183]

Dolatabadi et al. WVO-PSO [186]
Nourianfar et al. TVAC-PSO-EMA [187]

Sundaram NSGA II-MOPSO [188]
Sundaram OBL-MMVO [189]
Shi et al. MLCA [192]
Li et al. θ-DEA [193]
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The statistical study of the presented multi-objective optimization issues, in four
categories, shows the largest share of the CHPEED problem, among the other optimization
matters. As it is shown in Figure 13, the CHPEED, other scheduling problems, designing,
and sizing issues have 32%, 27%, 24%, and 17% of sharing, respectively. According to the
obtained results, the CHPEED problems can be selected as the most useful multi-objective
CHP optimization problem. Thus, in order to pay more attention to this significant issue,
the numerical results of the CHPEED solved by different algorithms are presented and
compared in Table 11. The results are based on a specified test system composed of four
power-only units, two CHP units, and a heat-only unit. The considered constraints of each
presented model are also mentioned in the table.
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Table 11. The numerical results of implementing different algorithms in a CHPEED optimization model *.

Applied Algorithm/Ref. Total Cost (US$) Total Emission (kg) Computation Time (s) Model Constraints

NSGA-II [154] 13,433.19 25.8262 9.7188 Heat and power demands, Capacity limits,
Transmission loss

SFS [161] 10,111.06 21.5524 3.23 Heat and power demands, Capacity limits,
Transmission loss

IDBEA [163] 12,957.2 17.3 2.0 Heat and power demands, Capacity limits,
Valve point effect, Transmission loss

GWO [173] 10,111.0549 Not Mentioned 6.6

Heat and power demands, Capacity limits,
Feasible operating regions of CHPs,

prohibited operating zones of
thermal generators

GWO [174] 12,402.90 17.4093 5.2618
Heat and power demands, Capacity limits,

Valve-point effects, Transmission loss,
Ramp-rate limits, Spinning reserve

GWO [175] 12,402.90 17.4093 5.2618
Heat and power demands, Capacity limits,

Valve-point effects, Transmission loss,
Ramp-rate limits, Spinning reserve

Monte Carlo method
with TVAC-PSO [183] 10,244.0022 50.0453 NA Heat and power demands, Capacity limits

WVO-PSO [186] 10,067.83 49.0832 NA Heat and power demands, Capacity limits

NSGA II-MOPSO [188] 10,102 51.594 123.12
Heat and power demands, Capacity limits,

Valve point effect, Transmission loss,
Feasible operating region of the CHPs

MLCA [192] 12,451.38 11.1 NA Heat and power demands, Capacity limits,
Valve point effect, Transmission loss

θ-DEA [193] 13,282.9 9.7 NA
Heat and power demands, Capacity limits,

Valve point effect, Transmission loss,
Ramp rate limits

* The model consists of four power-only units, two CHP units, and a heat-only unit.
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Based on Table 11, the reviewed algorithms applied to solve the CHPEED issues
obtained a range of costs from 10,067.83 $ to 13,433.19 $. The lowest cost belongs to the
WVO-PSO, while the highest cost has been obtained by the NSGA-II. It should be noted
that the WVO-PSO algorithm did not perform well in terms of minimizing the emission
level. A range of emission amounts has been obtained by different algorithms from 9.7 kg to
51.594 kg. The lowest emission level was obtained by the θ-DEA, and the highest emission
level was achieved by the NSGA II-MOPSO. As it is evident from the results, the NSGA-II
cannot be an ideal method for solving the CHPEED problems. The MLCA algorithm can
be introduced, as one of the best methods for solving the CHPEED optimization problems.
The best trade-off between the economic and environmental results was obtained by the
MLCA; 12,451.38 $ and 11.1 kg as the total cost and total emission of the plant, respectively.

4. Concluding Remarks and Suggestions for Future Works

In this paper, a comprehensive review has been carried out, on various CHP opti-
mization issues, solved by meta-heuristic algorithms. The main difference between this
paper and previous related studies is the covering all types of CHP optimization problems
including scheduling, designing, and sizing issues. This review study covers various CHP
optimization models, such as the single-objective and multi-objective models. Different
meta-heuristic routes have been discussed to solve the presented models and compared
with each other in terms of the quality of the obtained solutions and the processing speed
of the methods. According to a statistical analysis carried out in this paper, the CHPED and
CHPEED optimization issues were selected as the most useful CHP optimization routes. In
this paper, the application of different algorithms in various optimization problems was
discussed. Based on these findings, the genetic algorithm, as the most useful evolution-
ary method is appropriate for solving single-objective CHP issues. Among the swarm
intelligence-based methods, the PSO algorithm is appropriate for single-objective CHP
issues. Additionally, it should be noted that the time-varying acceleration coefficients and
self-adaptive mutation operators are the most efficient modifying strategies for the PSO
algorithm in solving single-objective problems. On the other hand, to solve multi-objective
CHP problems, the NSGA-II is the most useful evolutionary method. Another finding
about the application of different algorithms in various optimization problems is the high
application of the EAs in the multi-objective CHP design issues versus the high application
of the PSO algorithms in the multi-objective CHP scheduling issues. Additionally, the
hybrid mathematical-metaheuristic methods are known as the great solvers for stochastic
CHP optimization models; the PEM and Monte Carlo methods are the most efficient math-
ematical methods. The PFCOA and The EDHS algorithms. The significant conclusions of
this study are as follows:

• In the single-objective problems, the CHPED issue as a subcategory of the scheduling
problems is introduced as the most paid topic.

• In the single-objective problems, the designing issue is known as the lowest paid topic.
• In the multi-objective problems, working on various types of CHP optimization

problems has been conducted with an almost similar share. The CHPEED problem
with the most share, and the sizing issue with the lowest share.

• Introducing the CHPEED problem, as one of the most useful multi-objective CHP
optimization models.

Based on the studies, the research gaps in CHP optimization are the designing and
sizing optimization problems. Working more on these topics could be suggested for
future works.
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CHP Combined Heat and Power SSA Squirrel Search Algorithm
DG Distributed Generation GWO Grey Wolf Optimization
EMPC Economic Model Predictive Control HSA Harmony Search Algorithm
CHPED Combined Heat and Power Economic Dispatch TLBO Teaching Learning-based Optimization
CHPEED Combined Heat and Power Economic Emission Dispatch EMA Exchange Market Algorithm
EAs Evolutionary Algorithms SCO Social Cognitive Optimization
SI-based algorithms Swarm Intelligence-based algorithms ED Economic Dispatch
GAs Genetic Algorithms EDHS Economic Dispatch Harmony Search
SQP Sequential Quadratic Programming IHS Improved Harmony Search
PS Pattern Search MPHS Multi-Player Harmony Search
MR Maximum Rectangle TSCO Tent Map Social Cognitive Optimization
SARGA Self-adaptive Real-coded Genetic Algorithm CSSA Charged System Search Algorithm
RCGA Real Coded Genetic Algorithm GSA Gravitational Search Algorithm
RCGA-IMM Real Coded Genetic Algorithm with Improved HTS Heat Transfer Search

Mühlenbein Mutation
IGA-NCM Improved Genetic Algorithm using Novel SALCSSA Self-Adaptive Learning Charged System Search Algorithm

Crossover and Mutation
MG Microgrid SA Simulated Annealing
NSGA- II Non-dominated Sorting Genetic Algorithm II PV Photovoltaic
DE Differential Evolution TVAC-GSA-PSO Time Varying Acceleration Coefficients-Gravitational

Search Algorithm- Particle Swarm Optimization
EP Evolutionary Programming CSA-BA-ABC Chaotic based Self Adaptive-Bat Algorithm-Artificial

Bee Colony
PSO Particle Swarm Optimization E-PSO Evolutionary Particle Swarm Optimization
DER Distributed Energy Resources BBO Biogeography-based Optimization
SADE Self-Adaptive Differential Evolution SABBO Simulated Annealing with Biogeography-based

Optimization
DEGM Differential Evolution with Gaussian Mutation BMO Bird Mating Optimization
IDE Improved Differential Evolution OBL Opposition-based Learning
AIS Artificial Immune System OGSO Opposition-based Group Search Optimization
HSS Hyper-Spherical Search PEM Point Estimate Method
SFS Stochastic Fractal Search DED Dynamic Economic Dispatch
SPSO Selective PSO MILP Mixed Integer Linear Programing
TVAC-PSO Time-Varying Acceleration Coefficients Particle Swarm

Optimization
TOC Total Operating Cost

MPSO Modified Particle Swarm Optimization TAC Total Annual Cost
MTPSO Multi-Team Particle Swarm Optimization CSO Civilized Swarm Optimization
ESS Energy Storage System PPS Powell’s Pattern Search
AMPSO Advanced Modified Particle Swarm Optimization TOPSIS Technique for Order of Preference by Similarity to

Ideal Solution
SRPSO Self-Regulation Particle Swarm Optimization CHP-HP Combined Heat and Power and Heat Pump
CSA Cuckoo Search Algorithm EELD Economic Emission Load Dispatch
ECSA Effective Cuckoo Search Algorithm IDBEA Indicator and crowding Distance-based Evolutionary

Algorithm
PFCOA Penalty Function Cuckoo Optimization Algorithm PL Priority List
WOA Whale Optimization Algorithm DRP Demand Response Program
IWOA Improved Whale Optimization Algorithm MOBCC Multi-Objective Bacterial Colony Chemotaxis
GSO Group Search Optimization ICAB Improved Collective Animal Behavior
MGSO Modified Group Search Optimization SBSO Self-adaptive Bee Swarm Optimization
BCO Bee Colony Optimization MCSA-DE Modified Cuckoo Search Algorithm and Differential

Evolution
ABC Artificial Bee Colony WVO Weighted Vertices-based Optimizer
IABC Improved Artificial Bee Colony MOPOS Multi-Objective Particle Swarm Optimization
FA Firefly Algorithm MMVO Multi-objective Multi-Verse Optimization
MFA Modified Firefly Algorithm SACSS Self-Adaptive Charged System Search
ACSA Ant Colony Search Algorithm MLCA Multi-objective Line-up Competition Algorithm

θ-DEA θ-Dominance based Evolutionary Algorithm
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