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Abstract: With the increase of energy demand, energy wasteful behavior is inevitable. To reduce
energy waste, it is crucial to understand users’ electricity consumption habits and detect abnormal
usage behavior in a timely manner. This study proposes a high-dimensional energy consumption
anomaly detection method based on deep learning. The method uses high-dimensional energy
consumption related data to predict users’ electricity consumption in real time and for anomaly
detection. The test results of the method on a publicly available dataset show that it can effectively
detect abnormal electricity usage behavior of users. The results show that the method is useful in
establishing a real-time anomaly detection system in buildings, helping building managers to identify
abnormal electricity usage by users. In addition, users can also use the system to understand their
electricity usage and reduce energy waste.

Keywords: deep learning; anomaly detection; time series analysis; high-dimensional energy consumption

1. Introduction

Energy is essential for people’s social life and scientific and technological development.
With social development and technological innovation, the demands of society for energy
are increasing. Of these, commercial and residential buildings account for a significant
proportion of energy consumption. With buildings accounting for approximately 40%
of energy consumption, 36% of energy-related greenhouse gas emissions, and 80% of
the energy consumed by citizens for heating, cooling, and domestic hot water in Europe,
buildings are the largest single consumer of energy in Europe [1]. In addition, commercial
and residential buildings are major contributors to global carbon emissions. Energy for
buildings is mainly derived from the burning of coal, oil, and natural gas. The use of fossil
fuels increases carbon dioxide emissions, contributes to climate warming, and leads to
accelerated environmental degradation. In the current form of energy, reducing energy
consumption has become a goal that we have to achieve.

For commercial and residential buildings, energy consumption is concentrated in air
conditioning, lighting systems, and various modern appliances. As the quality of life has
improved, people’s electricity needs have become more diverse. The increasing variety
of modern appliances used in life and the consequent increase in the use of electrical
equipment has increased the share of energy consumption in buildings year on year. Final
energy use in buildings increased from 118 EJ in 2010 to almost 130 EJ in 2019 at an average
annual rate of 1%. The fastest-increasing end uses of energy in buildings—for space cooling,
appliances, and electric plug-loads—drive buildings sector electricity demand growth.
While electricity made up one-third of building energy use in 2020, fossil fuel use has also
increased at a marginal annual average growth rate of 0.7% since 2010 [2]. It is therefore
particularly important to understand the electricity consumption of buildings to reduce CO2
emissions and energy consumption. To analyze the electricity consumption of a building,
detailed building electricity and environmental data need to be obtained. Usually, data are
obtained by installing appropriate sensors at various locations in the building. However, in
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practice, this traditional detection method is easily rejected by users because it violates the
privacy of others. In addition, distributed installations are more expensive, cumbersome to
count, and do not allow building managers easy access to analytical data. The advent of
smart meters has adequately addressed the problems of the traditional approach. Smart
meters use fewer sensors, can record electricity consumption at hourly or even shorter
intervals, and have more than just a billing function. Instead of collecting data on-site,
managers can obtain the corresponding energy consumption data in real-time through
wireless signal transmission, facilitating energy consumption statistics and analysis [3].

Since abnormal power consumption behavior results in higher electricity consumption
and wasted energy, identifying abnormal power consumption behavior of users from the
obtained energy consumption data allows for more efficient use of electricity [4,5]. There
are many reasons for abnormal electricity consumption by end-users, for example, damage
to equipment, wasteful behavior by end-users (forgetting to switch off the equipment after
use or using incorrectly configured equipment), electricity theft attacks [6,7]. As a result,
end-users can check their electrical equipment in terms of abnormal electrical behavior
and develop good electrical habits. The method of finding patterns in the data that do
not conform to expected or normal behavior is generally referred to as anomaly detection.
Identifying abnormal energy consumption increases by specific end users should be seen
as a way of early warning to reduce energy waste in buildings [8].

The methods for anomaly detection can be classified into distance-based methods,
density-based methods, dimensionality reduction-based methods, and deep learning-
based methods.

Among the distance-based methods, the K-Nearest Neighbor (KNN) algorithm is one
of the more popular methods. This algorithm calculates the average distance between
each sample point and its nearest K samples in turn and then uses the calculated distance
for anomaly detection [9,10]. The distance-based approach, although effective in some
cases, performs better with a priori knowledge of the anomaly duration and the number
of anomalies.

The density-based approach is to investigate the density of each power consumption
pattern and its neighbors. Among them, the local density cluster-based outlier factor
(LDCOF) applies the concept of local density in assigning anomaly scores. Refs. [11,12]
used the density-based spatial clustering of applications with noise (DBSCAN) method
to detect anomalous power consumption in the wind farm environment. However, the
density-based approach cannot take into account time correlation and is therefore not
applicable to multivariate time series data.

The method based on dimensionality reduction can be used as a classification method
that removes irrelevant power patterns and redundancies, possessing a low computational
cost [13]. Principal component analysis (PCA) is a multivariate data analysis method
that preserves as much as possible the relationships between data extracted from process
measurements and reduces the dimensionality of a large number of raw data [14]. However,
methods based on dimensionality reduction are only valid for highly correlated data and
require that the data follow a multivariate Gaussian distribution [15].

In recent years, deep learning-based methods have been widely used, and work on
anomaly detection of time series data has increased significantly [16].

First, convolutional neural networks (CNNs) have proven their effectiveness in dif-
ferent research applications and have superior performance in detecting time series data
anomalies compared to artificial neural network (ANN) algorithms. In [17], the authors
propose a new anomaly detection technique, FuseAD, which utilizes a statistical ARIMA
(Autoregressive Integrated Moving Average model) and convolutional neural network
(CNN) based approach to fusing them in a residual manner. The results obtained show
that this fusion-based technique can achieve the best of both by combining their strengths
and complementing their weaknesses. In addition, deep CNNs can accurately identify the
non-periodicity of electricity theft and the periodicity of normal electricity consumption
based on two-dimensional (2D) electricity consumption data, solving the problem of low
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accuracy when detecting electricity theft [18]. In [19], the authors use convolutional neural
networks for feature extraction and then use random forest algorithms to detect electricity
theft to help utilities solve the problem of inefficient electricity detection and irregular
energy consumption.

On the other side, Recurrent Neural Networks (RNN) also have excellent performance
in time series data prediction, especially LSTM (Long Short-Term Memory) networks.
As in [20], the authors use deep learning algorithms to remove seasonality and trends
from data for better anomaly detection, helping electric utilities to minimize the impact of
uncaptured errors in their daily work. Meanwhile, in [21], the authors propose a power
consumption prediction and anomaly detection algorithm based on LSTM neural network,
which focuses on seasonal and monthly trends, resulting in a significant improvement
in power theft identification. Ref. [22] predicted the system energy consumption using
pattern decomposition based on the LSTM algorithm and detected abnormal system energy
consumption by Grubbs test using the difference between the predicted and actual values,
which effectively reduced the energy waste during the system operation. In [23], the
authors combined OC-SVM (one class-support vector machine) and SVDD (support vector
data description), based on the generic structure of LSTM, with modified formulas to
achieve efficient anomaly detection, especially for time series data, capable of handling
variable length data sequences.

For the problems of traditional machine learning methods that do not apply to multi-
ple variables, require prior knowledge, and require data to follow a multivariate Gaussian
distribution, we follow the successful prospects of deep learning-based anomaly detection
methods by combining CNN, Bi-LSTM (Bidirectional Long ShortTerm Memory), and at-
tention mechanisms with a 3σ criterion to propose a new energy consumption anomaly
detection method. CNN can extract higher-order features from the input data. Bi-LSTM
network has the advantage of acquiring contextual information of time series data com-
pared to the LSTM network, which combines information in both forward and backward
directions. In addition, attention mechanisms have been very successful in the fields of
machine translation and image description generation. We use it to assign different weights
to different hidden units of the neural network to make the hidden layer focus more on the
key information in the sequence data.

The method applies CNN, Bi-LSTM, and attention mechanism to the prediction model
mines the contextual information in historical high-dimensional energy consumption data
and the contribution of different feature dimensions to the prediction results, and then uses
the 3σ criterion to make energy consumption outlier judgments.

Therefore, this study develops a method to identify abnormal power consumption
behavior of customers in real-time using high-dimensional energy consumption data
through experiments. The experimental data includes electricity consumption as well
as several environmental parameters that affect electricity consumption. The aim is to
detect abnormal user energy consumption behavior in real-time based on high-dimensional
energy consumption data. Therefore, the results of this research have potential application
in an IoT-based energy management system. In addition, the results of this research are
not only applicable to the detection of anomalies in electricity consumption but also have
potential applications in the detection of anomalies based on other sensor data. The main
contributions of this work can be summarized as follows:

1. A deep learning based HDEC-AD (High Dimensional Energy Consumption) method
for identifying abnormal energy consumption behavior of users;

2. The method is divided into two stages. The first stage is the prediction stage, where
the power at the next moment is predicted from the high-dimensional power-related
data collected in real time. The second stage is the anomalous pattern detection
stage, where the predicted values are compared with the actual values and the predic-
tion error is calculated and defined as an anomalous activity when it exceeds 3SDs
(standard deviations);
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3. Anomaly detection helps to build managers understanding users’ daily electricity
consumption patterns so they can plan reasonable electricity demand, while users can
analyze electricity costs from the anomaly results and thus reduce energy waste.

The rest of the paper is structured as follows: In Section 2, we describe the materials
and methods. In Section 3, we perform relevant experimental tests and analysis of the
results. In Section 4, we provide a discussion. In Section 5, we summarize the full paper
and provide an outlook for the future.

2. Materials and Methods

In this section, we explain the various components of the model. Among them, the
main body of the prediction model consists of CNN, Bi-LSTM, an attention mechanism,
which is used to predict the value of the next time point in a given time series. The predicted
values are further passed to the anomaly detection module, which will determine whether
the data point is anomalous or not.

This experiment is implemented using the Keras deep learning library, running on
the Google TensorFlow framework [24,25]. The hardware uses RTX 2060super for GPU
acceleration and AMD Ryzen 7 3700X for the CPU.

As shown in Figure 1, the HDEC-AD proposed includes a prediction model. The
model uses high-dimensional data related to the energy consumption of 144 sets of users
with a time interval of 10 min to predict the electricity consumption at the next moment.
The prediction results are evaluated using Mean Absolute Percentage Error (MAPE) and
Mean Absolute Error (MAE) to assess accuracy.

Figure 1. Process of model training for energy consumption forecasting.

As shown in Figure 2, abnormal user energy consumption behavior is then identified
by monitoring the difference between predicted consumption and actual consumption. The
difference between the predicted consumption and the actual consumption is calculated,
and, if it is greater than three times the standard deviation of the actual consumption
for the previous 144 moments, then the electricity consumption is identified as abnor-
mal and the next 24 h containing that moment are considered as abnormal electricity
consumption periods.
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Figure 2. Process of anomaly detection.

2.1. Convolutional Layer

Convolutional neural networks have representational learning capabilities and are
capable of extracting higher-order features from the input information. The convolution
layer consists of several feature filters, which are used to compute different feature map-
pings. Each neuron in the convolution layer connects a local region in the previous layer,
and the convolutional result is obtained by summing the input features by doing matrix
element multiplication and superimposing the amount of deviation. The ReLU activation
function is then applied to the convolution result. As shown in Equation (1), the output of
the convolutional layer can be expressed as:

yconv(X f1
l ) = δ(

Fl

∑
fl=1

W f1
l ∗ X f1

l + b f1
l ), (1)

where δ is the activation function, ∗ is the convolution operation, X f1
l is the input of the

f -th feature filter, and both W f1
l and b f1

l are learnable parameters in the f -th feature filter.

2.2. Dropout Layer

In deep learning, models are prone to overfitting when there are too many parameters.
Overfitting is a common problem with much deep learning and even machine learning
algorithms, as evidenced by high prediction accuracy on the training set and a significant
drop in accuracy on the test set. The basic idea of Dropout is shown in the figure. During
training, each neuron is retained with probability p (stop working with probability 1− p),
and each forward propagation retains a different neuron, which allows the model to be
less dependent on certain local features and has better generalization performance. During
testing, each parameter is also multiplied by p to ensure the same output expectation.

2.3. Bi-LSTM

Traditional (feed-forward) neural networks assume that the data are independent in
time. However, this assumption does not apply to continuous time-series data. Therefore,
for time series data, recurrent neural networks (RNNs) are commonly used. Recurrent
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Neural Network (RNN) is a class of recursive neural network that takes sequence data as
input, recursion in the direction of sequence evolution, and all nodes (recurrent units) are
connected in a chain. However, in the case of Long Term Dependencies, RNNs modeling
sequential data will face the problem of gradient disappearance. Therefore, long and short-
term memory networks are used to solve this problem. The LSTM model is composed
of an input xt at moment t, a cell state Ct, a temporary cell state C̃t, a hidden state ht, an
oblivion gate ft, a memory gate it, and an output gate ot. The computational process of
the LSTM can be summarized by forgetting information in the cell state and remembering
new information so that information useful for subsequent moments of computation is
passed on, while useless information is discarded, and the hidden state ht is output at each
time step, where forgetting, memory, and output are controlled by the forgetting gate ft,
the memory gate it, and the output gate ot, calculated from the implicit state ht−1 at the
previous moment and the current input of xt. The overall framework and the memory
updates for each time step t are calculated as follows [26]:

ft = σ(W f · [ht−1, xt] + b f ) (2)

ft = σ(W f · [ht−1, xt] + b f ) (3)

it = σ(Wi · [ht−1, xt] + bi) (4)

C̃t = tanh(WC · [ht−1, xt] + bC) (5)

Ct = ft ∗ Ct−1 + it ∗ C̃t (6)

ot = σ(Wo · [ht−1, xt] + bo) (7)

ht = ot ∗ tanh(Ct) (8)

In the previous equation, it, ft,ot, Ct, and ht denote input gates, oblivion gates, output
gates, storage cells, and hidden states, respectively, and ∗ denotes the product of elements.
The other parameters are the weight matrices to be learned, shared between all time steps.

LSTMs can better capture dependencies over longer distances, but cannot integrate
temporal information about the future, so bi-directional long and short-term memory
neural networks (Bi-LSTMs) were chosen to solve this problem. The Bi-LSTM consists of
a forward LSTM and a backward LSTM. The input sequence is fed into the two LSTM
neural networks in forward and reverse order respectively for feature extraction, and the
two output vectors (i.e., the extracted feature vectors) are stitched together to form the final
feature representation. The model design concept of the Bi-LSTM is to make the feature
data obtained at the moment t have information between the past and the future at the
same time.

2.4. Attention Mechanisms

The introduction of an attention mechanism allows for better capturing of information
about the entire sequence, selectively focusing on the state of the relevant vectors. The
attention model takes the output of the Bi-LSTM as input, places a weight αts on each
moment, αts is determined by the similarity between the current vector state ht and all
vector states h̄ = (h1,h2,. . . ,hs), and outputs a series of contextual vectors ct with the same
length [27]. The calculation of the weights and context vectors can be calculated as shown
in Equations (9) and (10):

αts =
exp(score(ht, h̄s))

∑S
s′=1 exp(score(ht, h̄s′))

(9)

ct = ∑
s

αts h̄s (10)

where αts is a weight on each moment, ct is a series of contextual vectors, ht is the current
vector state, and h̄ are all vector states.
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2.5. Flatten and Dense Layers

In the last part of the model, a Flatten layer is used to ‘flatten’ the input, i.e., to make
the multidimensional input one-dimensional for the transition to the fully connected layer,
and Flatten does not affect the size of the batch. Finally, the fully connected layer uses a
sigmoid activation function with a one-dimensional output result.

2.6. Anomaly Detection

We assess the trend in electricity consumption over time by using the standard devi-
ation, setting a threshold value of 3σ above the predicted value, where σ is the standard
deviation of electricity consumption on the day before the actual moment [28]. A value
higher than the threshold for predicted electricity consumption at the actual moment indi-
cates an abnormal state. σ and Ythreshold are calculated as shown in Equations (11) and (12):

σ =

√
∑n

i=1(xi − x̄)2

n
(11)

Ythreshold =
_
Y +3σ (12)

where σ is the standard deviation, Ythreshold is the threshold,
_
Y is the predicted value, xi is

the electricity consumption, x̄ is the average electricity consumption, and n is the number
of samples.

3. Experimental Results
3.1. Data Set and Pre-Processing

This experiment uses a UCI (University of California, Irvine, CA, USA) appliances
energy prediction data set. In total, the UCI (University of California, Irvine) appliances
energy prediction dataset recorded data for houses from 11 January 2016, 5:00 p.m. to
27 May 2016, 6:00 p.m. The read interval of the data was 10 min, and the total number of
samples was 19,735. The house temperature and humidity conditions were monitored with
a ZigBee wireless sensor network. Each wireless node transmitted the temperature and
humidity conditions around 3.3 min. Then, the read interval of the data was 10 min. The
energy data were logged every 10 min with m-bus energy meters. Weather from the nearest
airport weather station (Chievres Airport, Chievres, Belgium) was downloaded from a
public data set from Reliable Prognosis (rp5.ru) and merged with the experimental data sets
using the date and time column. Two random variables have been included in the data set
for testing the regression models and to filter out non-predictive attributes (parameters).

In the data pre-processing step, we select eight features in the dataset as raw data,
which include energy use, energy use of light fixtures, temperature, pressure, Humidity,
Wind speed, Visibility, and dewpoint. After comparison tests, it can be seen from Tables 1–6
that the method of using the first 80% of the original data as the training set and the last
20% as the test set makes the MAE and MAPE smaller. Therefore, we choose that data
split ratio. The time range for the training set is 11 January 2016, 5:00 p.m. to 1 May 2016,
7:50 a.m., and the time range for the test set is 1 May 2016, 8:00 a.m. to 27 May 2016,
6:00 p.m. Then, we need to convert different types of data to the same specification and
“nondimensionalize” the data to speed up the model solving. Therefore, we normalize all
the training set features by first centering the data on the minimum and then scaling them
by the range (difference between the maximum and the minimum), with convergence in the
interval [0, 1]. The window length K = 144 means 144 time steps to generate a sample, and
the step length (step) S = 1 means the window slides one time step to generate a sample.

Selection of hyperparameters based on hyperparameter studies, common settings,
or through experimentation, batch size 64 was used. For the high-dimensional energy
consumption data in this experiment, the Adam optimizer converges faster, and the con-
vergence process is more stable. Optimization was performed using the Adam optimizer.
The learning rate was 0.01. CNN has 128 units. Bi-LSTM has 128 units, 64 in each direction.
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In practical applications, missing data and outliers may occur in sensor acquisition
data. For missing data cases, consider the mean value fill approach. If the null value is a
numeric attribute, use the average of the values taken by the attribute in all other objects to
fill the missing attribute value; if the null value is a non-numeric attribute, use the value
with the highest frequency of the attribute in all other objects to fill the missing attribute
value. For outliers, you can treat the outlier as a missing value and use the average value
fill method to handle it.

The performance of our model improves as the size of the dataset increases. A larger
dataset can better capture the electricity consumption habits of users, and accordingly, the
model training time will be longer. If the dataset is too small, it will not be able to capture
the user’s electricity consumption habits well and the model will be less applicable.

Table 1. Evaluation of model performance with different data division ratio with lstmunits set to 64
and epochs set to 20.

Division Ratio MAE MAPE Training Time

9:1 25.40 18.83% 2250 s
8:2 23.10 18.55% 2008 s
7:3 24.59 21.77% 1697 s
6:4 28.22 22.08% 1474 s

Table 2. Evaluation of model performance with different data division ratio with lstmunits set to 64
and epochs set to 10.

Division Ratio MAE MAPE Training Time

9:1 25.08 19.40% 1234 s
8:2 24.55 19.93% 1048 s
7:3 25.25 20.55% 991 s
6:4 25.89 20.56% 815 s

Table 3. Evaluation of model performance with different data division ratio with lstmunits set to 128
and epochs set to 20.

Division Ratio MAE MAPE Training Time

9:1 27.42 19.83% 4680 s
8:2 24.64 19.66% 3915 s
7:3 27.34 21.63% 3930 s
6:4 28.75 21.35% 3391 s

Table 4. Evaluation of model performance with different data division ratio with lstmunits set to 128
and epochs set to 10.

Division Ratio MAE MAPE Training Time

9:1 28.31 23.63% 2610 s
8:2 26.23 24.02% 2310 s
7:3 25.88 22.61% 2009 s
6:4 30.37 23.25% 1711 s

Table 5. Evaluation of model performance with different data division ratio with lstmunits set to 32
and epochs set to 20.

Division Ratio MAE MAPE Training Time

9:1 26.62 21.01% 1713 s
8:2 23.99 18.77% 1413 s
7:3 23.91 19.63% 1298 s
6:4 26.67 20.90% 1098 s
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Table 6. Evaluation of model performance with different data division ratio with lstmunits set to 32
and epochs set to 10.

Division Ratio MAE MAPE Training Time

9:1 28.22 20.56% 748 s
8:2 24.19 20.35% 749 s
7:3 24.71 20.65% 690 s
6:4 26.52 22.77% 579 s

3.2. Results

Table 7 compares the results achieved on the UCI dataset for the GRU, LSTM, and
Bi-LSTM neural network structures. As can be seen from Table 1, the MAE decreased
from 27.28, 26.45 to 23.10 and the MAPE decreased from 21.96%, 21.27% to 18.55% using
Bi-LSTM compared to LSTM and GRU, which is satisfactory. These facts show that training
with Bi-LSTM is superior to GRU and LSTM.

Table 7. Evaluation of the performance of different RNN models.

Model MAE MAPE

CNN, LSTM, and Attention 27.28 21.96%
CNN, GRU, and Attention 26.45 21.27%

CNN, Bi-LSTM, and Attention 23.10 18.55%

Table 8 shows the results of the ablation experiments, where this experimental method
was compared to the network without the attention mechanism, the MAE decreased
from 28.31 to 23.10, and the MAPE decreased from 22.23% to 18.55%. For the network
without CNN, MAE decreased from 26.22 to 23.10, and MAPE decreased from 20.49 to
18.55%. In addition, the MAE and MAPE of the network without the attention mechanism
were smaller than those of the network without the CNN, indicating that the attention
mechanism appears to be more important than the CNN in this prediction model.

Table 8. Results of ablation experiments.

Model MAE MAPE

CNN and Bi-LSTM 28.31 22.23%
Bi-LSTM and attention 26.22 20.49%

CNN, Bi-LSTM, and Attention 23.10 18.55%

Figures 3 and 4 are examples of a normal electricity usage pattern detection, from
which it is clear that the real-time threshold curve follows the true trend of the sequence,
indicating that the resulting model can effectively reflect the user’s electricity usage habits.
In addition, the real power consumption curve in the figure does not exceed the threshold
range, indicating that the user’s power consumption is within the normal usage range.

Figure 5 shows the sequence of curves where anomalous consumption patterns occur,
with actual values significantly greater than the threshold at the markers in the graph. As
the model uses past electricity consumption behavior as a guide, the model attempts to
predict electricity consumption in the same way as past predictions. When the actual value
is greater than the threshold, the system detects abnormal energy consumption behavior in
real-time and can record it. In addition, the method can accurately distinguish between
normal and abnormal consumption behavior.
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Figure 3. Example of the first group of normal energy consumption behavior: (a) electricity con-
sumption on 1 May; (b) electricity consumption on 2 May; (c) electricity consumption on 3 May;
(d) electricity consumption on 4 May; (e) electricity consumption on 5 May; (f) electricity consumption
on 6 May; (g) electricity consumption on 8 May; (h) electricity consumption on 9 May; (i) electricity
consumption on 10 May.
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Figure 4. Example of the second group of normal energy consumption behavior: (a) electricity
consumption on 13 May; (b) electricity consumption on 14 May; (c) electricity consumption on
15 May; (d) electricity consumption on 16 May; (e) electricity consumption on 17 May; (f) electricity
consumption on 18 May; (g) electricity consumption on 22 May; (h) electricity consumption on
23 May; (i) electricity consumption on 24 May.
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Figure 5. Example of abnormal energy consumption behavior: (a) electricity consumption on
7 May; (b) electricity consumption on 12 May; (c) electricity consumption on 21 May; (d) electricity
consumption on 26 May.

4. Discussion

Compared with traditional approaches to energy consumption prediction detection
using machine learning methods, our method can predict customers’ electricity consump-
tion information from high-dimensional energy consumption history data without a priori
knowledge and can detect customers’ electricity consumption anomalies in real-time. As
for the method of energy consumption anomaly detection using LSTM networks, our
method combines the features of CNN, Bi-LSTM, and an attention mechanism, and has
the advantage of obtaining contextual information on time series data. It will consider the
impact of different time dimensions in the input sequence on the energy consumption and
make the hidden layer more focused on the key information in the sequence data.

The main objective is to use high-dimensional energy consumption data to identify
abnormal electricity consumption behavior of users. However, there are corresponding
limitations, such as the need to obtain the user’s historical energy consumption information
in advance to train the model as a way to capture the user’s electricity consumption habits
and to obtain a day’s worth of energy consumption information first at the time of use.
Secondly, the system is not well placed to point out a user’s high energy consumption
behavior if the user’s past electricity habits are poor, and their electricity consumption is
high. In addition, the practical implementation of the system depends on the availability,
privacy constraints, and computing power of the data streams concerning the different
user profiles.

After our neural network model is developed and deployed, the data distribution
will change for various reasons, and then the model needs to be updated. We use the old
model as the base model, combine the old data with the new data, and re-train the model
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to update the model. The model update interval will be changed according to the actual
situation, usually once every six months.

The COVID-19 pandemic and the energy crisis are anomalies that will lead to changes
in customers’ electricity consumption habits. Since our approach uses historical energy
consumption-related data to build the model, past models will become unreliable. To deal
with this anomaly, the best solution is to update the model to reduce the error.

5. Conclusions

In this study, a high-dimensional energy consumption anomaly detection method
based on CNN, Bi-LSTM, and attention mechanism is proposed.

The experimental results show that the model obtained by training with historical
high-dimensional energy consumption information can effectively reflect the electricity
consumption behavior of users. In addition, comparisons in the ablation experiments fully
illustrate that the combination of CNN, Bi-LSTM, and attention mechanisms has a better
performance compared to using isolated components. In anomaly detection, the resulting
model was trained to identify abnormal electricity usage behavior of users in real time.
Therefore, it confirms the suitability of the model for anomaly detection.

At the same time, the research helps to establish a real-time anomaly detection system
in buildings, through which building managers can plan energy consumption rationally
and identify abnormal electricity usage by users. In addition, users can use the system to
understand their electricity consumption and reduce energy waste.

In practical applications, information on various parameters required for model train-
ing and prediction can be obtained by reading from various sensors installed in the building.
These data are transmitted through IoT devices to the cloud for calculation and storage. In
addition, due to the development of IoT and communication technologies, our approach
is highly applicable by simply training and deploying models in the cloud and sending
the energy consumption anomaly detection results to individual building managers and
users through the network. In terms of cost, the main cost is the purchase and installation
of IoT devices. Since this study uses an open source system, the software licensing cost is
effectively reduced.

There are two directions for future research. The first is to continue to improve model
accuracy and reduce prediction errors so that the model can better analyze users’ electricity
consumption behavioral habits; the second is that customers’ electricity consumption
habits may change over time and the applicability of the model decreases, so addressing
conceptual drift is a priority in future work.
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