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Abstract: Impending emission regulations of diesel engines for construction machineries would
regulate nitrogen oxide emissions strictly in cold operating conditions. The urea-based selective
catalytic reduction (urea-SCR) system coupled with the electrically heated catalyst (EHC) has been
considered as a potential measure to meet the strict emission regulations by promoting evaporation
and thermal decomposition of urea–water solution in cold operating conditions. Analyzing the
thermal conditions in the EHC is crucial for the optimized operation and control of EHC-based
urea-SCR systems under various engine operating conditions. In the current study, we introduce a
simple one-dimensional analysis scheme to characterize the surface temperature distribution in the
EHC based on energy conservation and the theories of forced internal convection. Since the EHC
has a complicated internal structure with fine flow cells inside it, a flow cell in the EHC is extracted
for the one-dimensional heat transfer analysis. EHC operation parameters such as exhaust gas flow
rate and supplied electric power to the EHC are scaled to be applied for the flow cell analysis. The
adequacy of the analysis scheme is then validated by surface temperature measurement results at the
EHC outlet. The validation results showed over 95% prediction accuracy of the 1D analysis scheme
in the operating conditions of a heavy-duty diesel engine. Based on proven reliability, the effects
of geometric and operation parameters on the surface temperature distribution in the EHC were
analyzed and discussed using the analysis results.

Keywords: selective catalytic reduction (SCR); electrically heated catalyst (EHC); surface temperature;
convective heat transfer; forced internal convection; 1D modeling

1. Introduction

The reduction in exhaust gas emissions has become a critical issue in diesel engines
due to environmental problems around the globe. Strict emission regulations are, therefore,
imposed on diesel engines by many countries for passenger cars, trucks, marine machiner-
ies, and construction machineries. Particularly for construction machineries, in Europe and
the U.S., Post Stage-V and Tier 5 regulations will be phased in, which would restrict NOx
emissions strictly in cold operating conditions [1,2].

The urea-SCR system is one of the most popular after-treatment systems for the NOx
reduction in diesel engines [3,4]. It injects the urea–water solution (normally composed of
32.5% urea and 67.5% water) into the exhaust gas and induces the evaporation and thermal
decomposition of the urea–water solution by the thermal energy of the exhaust gas that
forms ammonia (NH3), as shown in Equation (1).

CO(NH2)2 + H2O→ CO2 + 2NH3 (1)
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The ammonia can be used as the reduction agent of NOx so that the final emis-
sion products through the tailpipe can be nitrogen (N2) and water (H2O), as shown in
Equations (2) and (3).

4NO + 4NH3 + O2 → 4N2 + 6H2O (2)

6NO2 + 8NH3 → 7N2 + 12H2O (3)

The evaporation and decomposition performance of the urea–water solution is affected
by the atomization of urea–water sprays [4–6]. In conventional urea-SCR systems, advanced
injection strategies and mixers have been widely employed to promote the atomization
and local homogeneity of urea–water sprays [4–8]. On the other hand, the exhaust gas tem-
perature is another critical factor affecting the evaporation and decomposition performance
of urea–water sprays, which becomes inferior in cold operating conditions [9,10].

The EHC has been introduced as a measure to increase the operating temperatures of
three-way catalysts (TWCs) in gasoline engines during the cold start [11–13]. It has also
been applied to diesel oxidation catalysts (DOC) and urea-SCR systems to enhance the
evaporation and decomposition performance of the urea–water solution, particularly in
cold start conditions by increasing the exhaust gas temperature [14–17]. The evaporation
and decomposition performance can be further enhanced by injecting the urea–water
solution directly into the heater in the EHC so that the thermal energy of the heater can
be used.

Considerable previous studies have investigated the chemical processes and temper-
ature regimes associated with the evaporation, thermal decomposition, and undesired
deposit formation of urea–water sprays for urea-SCR systems [18–27]. The evaporation
of urea–water droplets can be initiated at 373 K, which is the saturation temperature of
the water at the atmospheric pressure. The droplet evaporation time can become shorter
upon the increase in surrounding gas temperature and the decrease in urea–water droplet
size [18–21]. The thermal decomposition of urea can be initiated at a temperature over
410 K and forms the biuret and cyanuric acid in order based on the progress of decom-
position [18–24]. The completion temperature of urea decomposition varies based on the
residence time of the feed gas stream. For example, the complete thermal decomposition
of urea can be achieved at the temperature of around 623 K when the residence time of
the feed gas stream is 0.1 s [24]. The formation of urea deposits is governed by the wall
film temperature and urea concentration of the urea–water solution. The composition
of urea deposits varies with the wall film temperature based on the progress of thermal
decomposition [25–27].

The results of previous fundamental studies can be referred to for the optimized
design and control of EHC-based urea-SCR systems in various operating conditions such
as exhaust gas temperature and flow rate, and electric power supplied to the heater. To
accomplish the complete evaporation and decomposition of urea–water solution without
the formation of a urea deposit, the thermal conditions in the EHC such as surface temper-
ature and exhaust gas temperature distribution should be characterized first so that the
accumulated knowledge of previous studies can be linked and used for the optimization of
EHC-based urea-SCR systems. Particularly for the urea-SCR system adopting the direct
injection of a urea–water solution to the EHC, the surface temperature distribution of the
EHC becomes the most critical factor that must be characterized.

Figure 1 illustrates the structure of the EHC-based urea-SCR system which injects
the urea–water solution directly into the heater. The EHC has a circular outer shape and
contains a bundle of thin corrugated heater foils. The heater foils are rolled and stacked
to maximize the effective area of heat transfer between the heater and exhaust gas which
forms the fine flow cells inside the EHC. The size and structure of flow cells determine
the flow conditions and convective heat transfer between the heater surface and exhaust
gas, which in turn determine the heater surface temperature and outflowing exhaust gas
temperature. It is a quite difficult task to characterize the heat transfer characteristics in
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the EHC in various geometric and operating conditions due to the complicated internal
structure of the EHC.
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Figure 1. Illustration of EHC-based diesel urea-SCR system.

Applying the three-dimensional (3D) computational fluid dynamics (CFD) can be
considered to perform this kind of flow and heat transfer analysis in the EHC, but there
are some challenges to applying the CFD. First, CFD is time-consuming and expensive,
particularly for the flow analysis in complicated fine structures, since it requires extremely
small grid sizes to resolve the physical phenomena. Second, it is difficult to select and
combine the proper models since too many parameters are engaged in the models, so the
verification and calibration of model prediction results are troublesome. Last, it is difficult
to investigate the effects of various geometric and operation parameters in a systematic
and efficient way, which is needed for the model-based design and control of the EHC.
In that sense, simplified one-dimensional (1D) theoretical models can be suitable for that
purpose if the prediction accuracy of the models is acceptable. The 1D modeling works
have been performed previously for the EHC system coupled with a three-way catalyst
(TWC) in gasoline engines [11–13]. However, the studies mostly focused on the analysis
of the catalyst temperature distribution inside the TWC, not in the EHC. The EHC has
been regarded merely as a heat source for the TWC. Up to now, little attention has been
paid to analyzing the thermal conditions in the EHC, which exert a critical impact on the
evaporation and thermal decomposition of urea–water droplets, particularly in EHC-based
urea-SCR systems adopting the direct injection of a urea–water solution to the EHC.

The current study introduces a 1D analysis scheme to characterize the heater surface
temperature distribution in the EHC in various EHC geometric and operating conditions
such as the flow cell diameter and length of the EHC, electrical power supply to the EHC,
and exhaust gas temperature and flow rate in the EHC inlet. The energy conservation
and conventional theories of forced internal convection are employed as base models for
the 1D analysis with assumptions of steady-state operation, uniform heat flux from the
heater to the exhaust gas, negligible thermal resistance of the heater, and constant fluid
properties [28,29]. To implement the analytical approaches to the EHC with complicated
structures, a tiny flow cell in the EHC is extracted for the analysis. The analyzed surface
temperature results at the EHC outlet are compared with the measurement results to
validate the adequacy of the analysis platform and the accuracy of prediction results.
Then, the effects of various geometric parameters and operating conditions on the surface
temperature distribution in the EHC are analyzed and discussed. The originality of the
current study lies in the introduction of an analysis scheme to characterize the thermal
conditions inside the EHC in a systematic and efficient way, and the analysis and discussion
of the effects of geometric and operation parameters on the thermal conditions in the EHC
that have not been thoroughly investigated in previous studies.
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2. Theory and Analysis
2.1. Structure of EHC in Urea-SCR System

The picture of EHC applied in this study is presented in Figure 2. Two types of heater
foils having different curvature radii are applied so that the foils can be laminated with
the formation of tiny flow cells in the EHC. In general, the EHC is installed in front of the
SCR and heats up the exhaust gas. The urea–water solution is also injected directly into the
heater so that the thermal energy in the heater can be transferred through the heater surface
for the promotion of urea–water evaporation and thermal decomposition. The EHC has an
outer diameter (DEHC) and is covered by the EHC housing. Each flow cell in the EHC has
a cross-sectional perimetric length (blue dotted line). The equivalent diameter of a circle
having the same perimetric length is defined as Dcell . The applied geometrical dimensions
of the EHC for the 1D analysis and measurement are presented in the following sections.
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2.2. 1D Analysis Models and Scheme

As mentioned in the Introduction, the application of 3D CFD is not effective in ana-
lyzing the effects of various geometric and operation parameters in a systematic way or
accommodating the results to the model-based design and control. As an alternative, a 1D
analysis scheme is introduced in the current study by extracting a flow cell in the EHC. The
1D analysis is based on energy conservation and the theories of forced internal convective
heat transfer [28,29].

Figure 3 presents the conceptual illustration and parameters governing the flow and
surface temperature distribution of a flow cell in the EHC. In the diagram,

.
mg,cell and

.
Qcell

denote the mass flow rate of the gas flow to the cell and the heat transfer rate from the
heater to the gas flow. Tg,i and Tg,o denote the cross-section-averaged gas temperature
at the EHC inlet and outlet, and Tg(x) denotes the exhaust gas temperature at a certain
distance from the EHC inlet (x). In a similar fashion, Ts,i and Ts,o denote the heater surface
temperature at the EHC inlet and outlet. Dcell and Lcell are geometric parameters, denoting
the diameter and length of the flow cell.

The system is assumed to be operated in a steady state. Four-stroke diesel engines
have intake, compression, power, and exhaust stroke in an engine cycle, and the exhaust
gas flows the EHC only during the exhaust stroke [28]. However, the engines have a few
cylinders (normally four) which experience the exhaust stroke in turn. Thus, the exhaust
gas would flow the EHC near continuously so that the flow conditions can be regarded as
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a steady state. Based on energy conservation, the total heat transfer rate to the gas (
.

Qcell)
can be expressed as Equation (4) with the assumption of constant specific heat, where cp,g
denotes the constant pressure specific heat of the gas [28].

.
Qcell =

.
mg,cellcp,g(Tg,o − Tg,i) (4)

The heat flux into the gas (
.
qcell) is defined as Equation (5), which can be assumed to be

uniform throughout the cell.
.
qcell =

.
Qcell

πDcell Lcell
(5)
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flow cell for the 1D analysis.

This assumption can be adequate based on the steady-state consideration because
the heat generated by the heater foil is spatially uniform and the heater foil thickness is
sufficiently thin (around 0.1 mm) so that the conductive thermal resistance is sufficiently
small to apply the lumped capacitance approach [29]. Thus, the generated heat can be
regarded as all transferred to the exhaust gas through the upper and lower surfaces of the
heater foil. The actual heat transfer rate and heat flux from the heater to the gas in a flow
cell against the total electric power supplied to the EHC can be obtained using a scaling
method in the following section.

The heat transfer rate (d
.

Q) to a differential control volume (dotted region in Figure 3)
can be expressed as Equation (6).

d
.

Q =
.
qcellπDcelldx

=
.

mg,cellcp,g
[
(Tg(x) + dTg)− Tg(x)

]
=

.
mg,cellcp,gdTg(x)

(6)

Then, Tg(x) can be expressed as Equation (7) by solving the differential equation in
Equation (6) with the boundary condition: Tg(x) is Tg,i at x = 0.

Tg(x) =
.
qcellπDcell

.
mg,cellcp,g

x + Tg,i (7)

On the other hand, the heater surface temperature at x locations (Ts(x)) can be ex-
pressed as Equation (8) based on Newton’s cooling law, where hg(x) denotes the convective
heat transfer coefficient at different x locations.

Ts(x) =
.
qcell

hg(x)
+ Tg(x) (8)

By putting the Tg(x) in Equation (7) to Equation (8), Ts(x) can be expressed in the
form of Equation (9).

Ts(x) =
.
qcellπDcell

.
mg,cellcp,g

x +

.
qcell

hg(x)
+ Tg,i (9)



Energies 2022, 15, 6406 6 of 16

Equation (9) is a traditional equation of forced internal convection of circular tubes
with a constant heat flux [29]. Although the equation itself is not novel, the critical research
issue raised here is how to implement this traditional equation to the specific cases of
the EHC.

In the practical operation of EHC in diesel engines, the known factors are the volu-
metric flow rate of the exhaust gas and electrical power supply to entire EHC (

.
Vg,EHC and

.
QEHC), not those to individual flow cells.

.
Vg,EHC is proportional to the engine displace-

ment volume and speed. The gas mass flow rate to the EHC (
.

mg,EHC) can be obtained by

multiplying the exhaust gas density (ρg) to
.

Vg,EHC. Then,
.

mg,cell can be obtained based on
the known factors using Equations (10)–(12) with the assumption of constant ρg and cp,g.

.
mEHC = ρg AEHCUg (10)

.
mcell = ρg AcellUg (11)

.
mcell =

Acell
AEHC

.
mEHC (12)

where AEHC and Acell denote the cross-sectional flow area of entire EHC and flow cell,
respectively. Ug denotes the gas flow velocity in the EHC inlet. Then, the

.
Qcell can also be

obtained in a similar fashion using Equations (13)–(15).

.
QEHC =

.
mg,EHCcp,g(Tg,o − Tg,i) (13)

.
Qcell =

.
mg,cellcp,g(Tg,o − Tg,i) (14)

.
Qcell =

.
mg,cell
.

mg,EHC

.
QEHC =

Acell
AEHC

.
QEHC (15)

2.3. Applied Conditions and Analysis

Table 1 presents the applied conditions of the 1D analysis and corresponding Reynolds
numbers (ReD) and thermal entrance lengths (x f d,t) of the flow in the flow cell. The applied
EHC diameter (DEHC) for the calculation is 119 mm. The flow cell diameters and lengths
vary from 1 to 2.7 mm and from 20 to 100 mm, respectively. The applied gas flow rates
(

.
VEHC = AEHCUg) are 400, 800, and 1400 L/min, which are chosen based on the practical

exhaust gas flow rates of a heavy-duty (4L) diesel engine. The exhaust gas temperatures
in the EHC inlet are ranged from 373 K to 573 K by referring to the gas temperature
measurement data of the target engine in front of the SCR in cold and normal operating
conditions. The supplied heater powers are set to a maximum of 2 kW to limit the power
consumption by the heater to be less than 3% of the engine power output. As shown in
Table 1, the ReD corresponding to the given gas temperature and flow rate conditions
range from 13 to 211 (much lower than the critical value of 2300 for laminar to turbulence
flow transition), indicating that the flow conditions in the EHC flow cells are laminar. In
laminar flow conditions, the length of the thermal entrance region, in which the flow is not
thermally fully developed, can be estimated based on Equation (16) [29].

x f d,t = 0.05DcellReDPr (16)

where Pr denotes Prandtl number of the exhaust gas and ReD is defined as ReD = UgDcell/νg,
where νg denotes the kinematic viscosity of the exhaust gas in the EHC inlet. x f d,t corre-
sponding to the analysis conditions ranges from 0.4 mm to 20.3 mm (see Table 1).
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Table 1. Analysis conditions.

EHC diameter (DEHC, mm) 119

Flow cell diameter (Dcell , mm) 1, 2, 2.7

Flow cell length (Lcell , mm) 20, 50, 100

Gas flow rate (
.

VEHC, L/min) 400, 800, 1200

EHC inlet gas temperature (Tg,i, K) 373~573

Heater power supply (
.

QEHC, kW) 0~2.0

Reynolds number (ReD)

Min.: 13
(@Dcell = 1.0 mm,

.
VEHC = 400 L/min and Tg,i = 573 K)

Max.: 211
(@Dcell = 2.7 mm,

.
VEHC = 1200 L/min and Tg,i = 373 K)

Thermal entrance length (x f d,t, mm)

Min.: 0.4
(@Dcell = 1 mm,

.
VEHC = 400 L/min and Tg,i = 573 K)

Max.: 20.3
(@Dcell = 2.7 mm,

.
VEHC = 1200 L/min and Tg,i = 373 K)

To obtain the heater surface temperature distribution in the EHC using Equation (9),
hg(x) should be known through the entire EHC region. The results of the Nusselt number
(NuD) presented in literature are used to obtain the hg(x) in the thermal entrance region
and the fully developed region. Here, NuD is a non-dimensional number denoting the
ratio of convective to conductive heat transfer, defined as in Equation (17).

NuD =
hgDcell

kg
(17)

where kg denotes the thermal conductivity of the exhaust gas. The results of NuD in the
thermal entrance region are brought from a reference, which obtained the NuD by the
mathematical analysis of the nondimensionalized energy conservation equation in the
laminar flow and constant heat flux conditions of circular tubes [30]. Figure 4 shows the
estimated results of NuD presented in the reference as a function of characteristic distance
from the EHC inlet (x+), which is defined as in Equation (18).

x+ =
2x/Dcell
ReDPr

(18)

As shown in Figure 4, the NuD is infinite at x = 0. As the x increases, the NuD
decreases in the thermal entrance region and converges to a constant value of 4.36 in the
thermally fully developed region. This constant NuD in the fully developed region is also
obtained by the control volume analysis of the differential energy equation in the circular
tubes [29]. Based on the information of NuD(x) in the literature, the hg(x) in the thermal
entrance region can be obtained and used for the calculation of local surface temperature
distribution in the EHC using Equation (9). Since the hg(x) cannot be defined at x = 0,
the heater surface temperature in the EHC inlet (Ts,i) is obtained using the NuD result at
x+ = 0.002 in the following.

2.4. Potential Error Sources

The errors of 1D analysis results can occur from the undesired heat losses from the
EHC to surroundings.

The heat losses from the EHC to the surroundings can occur because of convective
and radiative heat transfer from the EHC housing to the surrounding air (

.
Qha,conv and
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.
Qha,rad). The net heat energy supplied to the EHC (

.
QEHC,net) then can be estimated using

Equation (19).

.
QEHC,net =

.
QEHC −

.
Qha,conv −

.
Qha,rad

=
.

QEHC − hha Ahs(Ths − Ta)− εhaσAhs(Ths
4 − Ta

4)
(19)

where hha, εha, Ahs, and Ths denote the convective heat transfer coefficient between the
EHC housing and air and the emissivity, surface area, and temperature of EHC housing
at its outer surface, respectively. However, in the current analysis, the heat losses are
not considered for the calculation because the Ths is sufficiently low due to the high
thermal resistance of the housing material and the existence of an air gap (an effective
insulator) between the heater and housing. The adequacy of this simplification is discussed
by the measurement results of EHC surface temperature and model validation in the
following sections.
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3. Measurements

Experiments were performed to measure the heater surface temperature distribution
at the EHC outlet (Ts,o), and a picture of the experimental setup is presented in Figure 5a.
Simulated exhaust gases were generated by the ultra-lean combustion of liquified petroleum
gas (LPG). The LPG was used for the generation of exhaust gas to control the exhaust gas
flow rate and temperature with more ease because with the premixed combustion, it is
easier to control those parameters. The premixed LPG combustion was performed in a
constant volume chamber to control those parameters by varying the supplying flow rates
and equivalence ratio of the LPG–air mixture in the chamber. The exhaust gas temperatures
were measured in front of the EHC using a thermocouple. The heater surface temperature
distributions were measured in the EHC outlet using an infrared (IR) camera (FLIR Systems
Co., Ltd., Wilsonville, OR, USA, THermaCAM S65) after the surface temperature reaches a
steady-state condition. Unfortunately, the surface temperature distribution at the EHC inlet
is not measurable because the EHC inlet is invisible due to the existence of an exhaust pipe.
The temperature measurement results of the IR camera at four locations of the EHC outlet
(black cross-marks in Figure 5b) were averaged to obtain the representative temperature
result at each condition.
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Figure 5. Picture of experimental setup for the measurement of heater surface temperature at the
EHC outlet (a) and the locations of temperature measurement (b).

Table 2 shows the measurement conditions of heater surface temperature at the EHC
outlet. The measurement variables are

.
QEHC,

.
VEHC, and Tg,i. Due to the control difficulties

of
.

VEHC and Tg,i from the simulated exhaust gases, the measurements were performed in
limited conditions. The Dcell and Lcell of the EHC used for the measurement were 2.7 mm
and 20 mm, respectively. The Lcell of 20 mm was chosen to estimate the validity of model
prediction results in the marginal condition in which the effect of x f d,t might appear (see
x f d,t for each condition in Table 2). The data are used for the model validation, and the
results are presented in the following section.

Table 2. Measurement conditions of surface temperature at the EHC outlet.

Dcell
(mm)

Lcell
(mm)

.
QEHC
(kW)

.
VEHC

(L/min)
Tg,i
(K) ReD

xfd,t
(mm)

2.7 20

0.04
0.17
0.38
0.67
1.00
1.47
2.00

800
513 61.4 5.8

533 57.6 5.4

1400
445 182 17.2

501 149 14.0

The local average and deviation results of Ts,o measured using the IR camera are
presented in Figure 6. The results show that the local deviation of Ts,o is a maximum of
8.64% in the measurement conditions, which demonstrates the local uniformity of Ts,o. This
near-uniform surface temperature distribution can be from the uniform heat generation
of the heater and the negligible stray heat transfer from the EHC to the surroundings. It
implies that the current analysis scheme and model simplifications are adequate.
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Figure 6. Local average and deviation results of Ts,o measured using IR camera.

4. Results and Discussion

In this section, the adequacy of 1D prediction results is discussed first by comparing
them with the measurement results. Then, the effects of EHC geometric (Dcell and Lcell) and
operation parameters (

.
VEHC, Tg,i and

.
QEHC) on Ts distribution in the EHC are presented

and discussed based on the 1D analysis results.

4.1. Validation of 1D Analysis Results

Figure 7 compares the prediction and measurement results of Ts,o in the conditions
given in Table 2. The error rates of the prediction results are also presented. For the
simplicity of 1D model analysis, the properties of exhaust gases are assumed as those of
air since the properties of simulated exhaust gases are quite close to those of air in the
ultra-lean combustion conditions (maximum 3%, 8%, and 7% difference in Pr, k, and ρ in
given flow conditions).
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Figure 7. Comparison of predicted and measured surface temperature results at the EHC outlet (Ts,o)
under various exhaust gas flow rates (

.
VEHC) and temperatures (Tg,i), and supplied heater powers

(
.

QEHC): (a)
.

VEHC = 800 L/min, (b)
.

VEHC = 1400 L/min (Dcell = 2.7 mm, Lcell = 20 mm).

The results show that, in general, the predicted Ts,o from the 1D model matches quite
well with the measurement results, but the error rate increases with the increase in

.
QEHC,

especially at the high flow rate condition (see Figure 7b). The increased error at the high
.

QEHC condition can result from the increased heat loss to the surroundings due to the
higher temperature of the EHC and housing. However, the error rates in the applied
conditions are limited to a maximum of 5%, which indicates that the 1D analysis scheme
suggested in the current study has over 95% reliability in the operating conditions of the
4L class heavy-duty diesel engine. This reliability would increase further for the smaller
engines in which exhaust gas flow rates and maximum applicable heater powers are lower.

4.2. Effects of EHC Geometric Parameters on Surface Temperature Distributions

Based on the proven reliability, the effects of EHC geometric parameters such as
Dcell and Lcell on the surface temperature distribution are discussed based on the 1D
analysis results.

Figure 8a presents the effect of Dcell on the surface temperature distribution in
the EHC. The results in a fixed condition of the other parameters (

.
VEHC = 800 L/min,

Tg,i = 473 K,
.

QEHC = 2 kW, Lcell = 50 mm) are only presented here since the results trend of
Dcell effect appears equivalent regardless of the condition. The results show that Dcell does
not affect the slope of the surface temperature with x in the fully developed condition. As
shown in Equation (9), the slope of Ts(x) is linearly dependent on

.
qcell Dcell/

.
mg,cell .

.
mg,cell

has a linear relationship with Acell , which is proportional to the square of Dcell . Based on
Equation (5),

.
qcell is proportional to Dcell because

.
Qcell is proportional to the square of Dcell ,

as shown in Equation (15). Thus, the slope of Ts(x) in Equation (9) becomes independent
of Dcell . On the other hand, Ts-intercept in Equation (9) increases upon the increase in Dcell
since

.
qcell is proportional to Dcell . As a result, the larger Dcell causes a higher Ts(x) in the

fully developed region. However, the increase in Ts(x) is only around 40 K even with a
nearly 3 times larger Dcell . The effect of Dcell on Ts,i is insignificant due to the substantially
high hg in the inlet (x ∼= 0), although the

.
qcell increases linearly upon the increase in Dcell

(see Equation (9)).
Figure 8b presents the effect of Lcell on the surface temperature distribution in the

EHC. Only the results in a fixed condition of the other parameters (
.

VEHC = 800 L/min,
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Tg,i = 473 K,
.

QEHC = 2 kW, Dcell = 2.7 mm) are presented. The results show that the slope of
Ts(x) decreases with the increase in Lcell because the

.
qcell , the only factor affecting the slope

in Equation (9), is inversely proportional to Lcell , as shown in Equation (5). The decrease in
the slope and

.
qcell causes the lower Ts at longer Lcell in all regions of the EHC. Again, the

effect of Lcell on Ts,i is insignificant due to the substantially high hg in the inlet (x ∼= 0).
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Figure 8. Effect of flow cell diameter (Dcell) and length (Lcell) on the surface temperature distribution
in the EHC: (a) effect of Dcell , (b) effect of Lcell .

Overall, the effect of Lcell appears to be much more critical on the surface tempera-
ture distribution compared to that of Dcell . The most relevant factor associated with this
result trend is

.
qcell , which represents the heat generation potential of the heater material.

The results indicate that reducing the Lcell can be effective to increase the heater surface
temperature in the fixed

.
QEHC and

.
VEHC conditions. However, it should be confirmed

when applying the short Lcell if the heater material has sufficient durability against the high
heat load.

4.3. Effects of Operation Parameters on Surface Temperature Distributions

The effects of operation parameters such as
.

VEHC, Tg,i, and
.

QEHC on surface tempera-
ture distribution in the EHC are investigated for the EHC with Dcell of 2.7 mm and Lcell
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of 20 mm. Figure 9a presents the effect of
.

VEHC and
.

QEHC on Ts,i and Ts,o in the fixed
Tg,i of 523 K. The Ts,i is not varying with

.
VEHC because the Ts-intercept in Equation (9)

is independent of
.

VEHC. On the other hand, the Ts,o decreases with the increase in
.

VEHC

because the slope in Equation (9) is inversely proportional to
.

VEHC (or
.

mEHC). The larger
.

QEHC causes the higher Ts,i and Ts,o, but the degree of increase appears much larger for
Ts,o. Figure 9b presents the effect of Tg,i and

.
QEHC on Ts,i and Ts,o in the fixed

.
VEHC of

800 L/min. The higher Tg,i increases both Ts,i and Ts,o, and the increase rate against
.

QEHC
appears almost identical for Ts,o regardless of Tg,i. This is because the Tg,i is placed in the

Ts-intercept and does not affect the slope itself in Equation (9). The effect of
.

QEHC appears
in a similar fashion to that in Figure 9a.
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Figure 9. Effect of flow rate (
.

VEHC) and temperature (Tg,i) of exhaust gas and heater power (
.

QEHC)
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.
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.
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An interesting point to discuss here is that the increase in Ts,i is not as significant as
that of Ts,o in all conditions. Even with the application of maximum allowable heater power
(2 kW), the increase rate of Ts,i is only limited to 8.5% in its maximum. It indicates that the
impingement location and jet-wall interaction of urea–water injection in the EHC should
be carefully designed not to place the large portion of urea–water droplets near the EHC
inlet in which the evaporation of urea–water solution would be inferior, and the possibility
of urea deposit formation would be high.

4.4. Discussion

In the above sections, the 1D analysis scheme characterizing the surface and exhaust
gas temperature distribution in the EHC is introduced, which is based on energy conser-
vation and conventional theories of forced internal convection. Novel approaches have
been applied to extract the tiny flow cell in the EHC for the analysis and scale the gas
flow rate and heater power to the flow cell based on known operation factors. Although
some assumptions and simplifications are applied in the 1D analysis, the validation results
show a high prediction accuracy in the operation conditions of the 4L diesel engine. The
prediction accuracy of this analysis scheme would be further guaranteed for the smaller
size engines. Even for the larger size engines, the analysis scheme can be used, but the effect
of different flow conditions should be considered because the flow rate (

.
VEHC) can become

higher and the flow cell diameter (Dcell) can become larger. In that case, the flow condition
can be changed to turbulent due to the larger ReD. Even in the turbulent flow conditions,
the same analysis scheme can be applied, but the hg(x) should be newly defined. The
Dittus–Boelter equation presented in Equation (20) or the other correlations can be used to
define the NuD in the turbulent flow conditions [31,32].

NuD = 0.023ReD
0.8Pr0.4 (20)

The 1D analysis scheme can analyze the effect of various geometric and operation
parameters on the thermal conditions in the EHC in a systematic and efficient way. The
operation map can be built shortly based on the 1D analysis scheme that can be used to
determine the optimized

.
QEHC condition in various operating conditions to accomplish

the complete evaporation and decomposition of the urea–water solution, and to avoid the
formation of urea deposit. For that purpose, the 1D analysis scheme can also be coupled
with the prediction models of evaporation and decomposition of the urea–water solution,
and urea deposit formation.

5. Conclusions

In this study, a 1D analysis scheme based on the energy conservation and theories
of forced internal convection was introduced to characterize the surface temperature
distribution in the electrically heated catalyst (EHC) for urea-based selective catalytic
converter (SCR) systems. A fine flow cell in the EHC was extracted for the 1D heat
transfer analysis with some assumptions and simplifications. The gas flow rate and heater
power supply to the flow cell were scaled based on information of those to the entire
EHC region. The 1D prediction results were validated using the surface temperature
measurement results at the EHC outlet in simulated conditions of a heavy-duty diesel
engine. Based on the proven reliability of 1D prediction results, the effects of various EHC
geometric and operation parameters on the surface temperature distribution in the EHC
were analyzed and discussed. The key findings and discussion points of the current study
are summarized below.

1. The flows in the flow cell were found to be laminar in given EHC operating and
geometric conditions. The measurement results showed near-uniform surface tem-
perature distributions at the EHC outlet (maximum 8.64% local deviation), which
demonstrated the adequacy of the current analysis scheme extracting a fine flow cell
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in the EHC for the analysis. The prediction results showed over 95% accuracy in the
given engine conditions.

2. The 1D analysis results showed that the surface temperature increased with the
enlarged flow cell diameter and the reduced EHC length in the fixed gas flow rate and
heater power conditions of the EHC. The increase in the EHC heater power caused
the higher surface temperature in both the EHC inlet and outlet, but the temperature
increase rate was much less in the EHC inlet. Increasing the exhaust gas flow rate
reduced the surface temperature while increasing the exhaust gas temperature caused
a higher EHC surface temperature.

The main contribution of this work is the introduction of an analysis scheme to
characterize the thermal conditions inside the EHC in a systematic and efficient way. The
current analysis scheme showed high prediction accuracy in the operating conditions of a
heavy-duty diesel engine, and its application can be extended to larger size engines that
would have turbulent flows in the EHC.
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