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Abstract: Wind-driven turbines utilizing the doubly-fed induction generators aligned with the
progressed IEC 61400 series standards have engrossed specific consideration as of their benefits,
such as adjustable speed, consistent frequency mode of operation, self-governing competencies
for voltage and frequency control, active and reactive power controls, and maximum power point
tracking approach at the place of shared connection. Such resource combinations into the existing
smart grid system cause open-ended problems regarding the security and reliability of power system
dynamics, which needs attention. There is a prospect of advancing the art of wind turbine-operated
doubly-fed induction generator control systems. This section assesses the smart grid-integrated
power system dynamics, characteristics, and causes of instabilities. These instabilities are unclear
in the wind and nonlinear load predictions, leading to a provisional load-rejection response. Here,
machine learning computations and transfer functions measure physical inertia and control system
design’s association with power, voltage, and frequency response. The finding of the review in the
paper indicates that artificial intelligence-based machine and deep learning predictive diagnosis
fields have gained prominence because of their low cost, less infrastructure, reduced diagnostic time,
and high level of accuracy. The machine and deep learning methodologies studied in this paper
can be utilized and extended to the smart grid-integrated power context to create a framework for
developing practical and accurate diagnostic tools to enhance the power system’s accuracy and
stability, software requirements, and deployment strategies.

Keywords: wind energy; renewable energy sources; power electronic control system; doubly-fed
induction generators; smart grid; machine learning; deep learning; wind turbine standards

1. Introduction

Recently, the growing energy demand across the globe has been battling to the extent
of extensive exploitation of fossil fuels. The world energy stance statistics in 2021 indicate a
steady increase in electricity demand in Social, Technological, and Environmental Pathways
(STEPs), seeing a global increase in which the future of coal-generated power seems close to
obsolete [1]. Renewable energies are optimistically accepted, with the desired rise of green
energy generation to above 45% in 2030 from under 30% in 2020. The added advanced level
in the Non-Zero Emission (NZE) would double the electricity desire growth of renewable
energy to 60% linked within the STEPs. [1]. Statistics of the International Renewable Energy
Agency (IRENA) in 2021 supported the world energy outlook. The statistics indicate that
2802 GW of electricity generation was produced worldwide in 2020, added by 732.4 GW of
electricity from wind harvesting, as revealed in Figure 1 [2]. With increased wind energy’s
ingress into the smart grid, more attention to the influence of integrated wind-generated
power on the electrical system stability in many industrial applications for electricity-based
operations is required [3].
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Figure 1. Installed wind power capacity globally [2]. 

Numerous variable speed wind turbines use doubly-fed induction generators 
(DFIGs). DFIGs are practically engaged with bi-directional electronic power controllers to 
prolong the rotor speed above the synchronous speed to advance the power system sta-
bilization [4,5]. However, as the percentage of DFIGs in smart power grid upsurges, there 
is a requisite for DFIGs to subsidize stabilization further, and thus the perspective of 
DFIGs to do even more, needs further analysis [5]. The conventional DFIGs’ control meth-
odologies are discussed in the literature to provide some forms of the voltage and fre-
quency regulation capability from DFIGs using coordinated rotor side and grid side con-
trol methods [6–10], de-loaded control methods [11–14], and inertia control methods [15–
19]. Research scholars in [20] have established that the grid-integrated DFIG suffers from 
loading torque oscillations on the drive chain. The causes of induced drive torque oscilla-
tions are the random wind direction and speed variation, the incompatibility of control 
units and machine operating parameters by DFIG magnetizing level changes, operating 
temperature, and mechanical conditions. 

The authors in [21,22] described that the smart grid-integrated DFIG could not de-
liver contributions to frequency regulations. Poor frequency response results from the 
DFIG’s rotor linking with the electrical power system by AC/DC/AC power electronic 
converters. The power controllers utilize the PI, PD, or PID controllers, which require 
more controlling units due to the complex computations, uncertain machine parameters, 
and model nonlinearity [23], which has an unbalanced output at variable generation. The 
decoupled characteristics of actual output power and grid frequency cannot dampen the 
grid frequency expedition by absorbing or releasing the kinetic energy. Moreover, the 
MPPT control methods [24–27] using the tip speed ratio, hill-climb search algorithm, back-
stepping control law, and sliding mode of the DFIGs have no reserved capacity to increase 
their output power when it is needed. 

Implementing machine and deep learning methodologies can improve the challenges 
associated with smart grid-integrated wind power system stability. These methodologies 
can help to build affordable, accessible, and highly accurate diagnostic tools to handle 
complicated optimization difficulties [28,29] such as variable wind speed [30], non-linear 
load variations, power dispatch, and load control at the point of coupling [31]. Machine 
and deep learning methodologies use data to generate intelligent systems that can hold 
tasks entailing humanoid intellectual [32]. The research scholars in [33] outline the signif-
icant contests and technical breaches in implementing ML methodologies such as ANN 
in wind-driven turbines as a low computation process. The accuracy of the AI approach 
has a positive edge. However, the lack of interpretability is the main barrier to machine  

learning in its extensive recognition of sensitive applications [34]. Hence, the Euro-
pean Union proposed the guidelines in 2016 on having the right to obtain an explanation 
for the individual system affected by algorithms [34,35]. A dataset mining method consists 
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Numerous variable speed wind turbines use doubly-fed induction generators (DFIGs).
DFIGs are practically engaged with bi-directional electronic power controllers to prolong the
rotor speed above the synchronous speed to advance the power system stabilization [4,5].
However, as the percentage of DFIGs in smart power grid upsurges, there is a requisite for
DFIGs to subsidize stabilization further, and thus the perspective of DFIGs to do even more,
needs further analysis [5]. The conventional DFIGs’ control methodologies are discussed
in the literature to provide some forms of the voltage and frequency regulation capability
from DFIGs using coordinated rotor side and grid side control methods [6–10], de-loaded
control methods [11–14], and inertia control methods [15–19]. Research scholars in [20] have
established that the grid-integrated DFIG suffers from loading torque oscillations on the
drive chain. The causes of induced drive torque oscillations are the random wind direction
and speed variation, the incompatibility of control units and machine operating parameters
by DFIG magnetizing level changes, operating temperature, and mechanical conditions.

The authors in [21,22] described that the smart grid-integrated DFIG could not de-
liver contributions to frequency regulations. Poor frequency response results from the
DFIG’s rotor linking with the electrical power system by AC/DC/AC power electronic
converters. The power controllers utilize the PI, PD, or PID controllers, which require
more controlling units due to the complex computations, uncertain machine parameters,
and model nonlinearity [23], which has an unbalanced output at variable generation. The
decoupled characteristics of actual output power and grid frequency cannot dampen the
grid frequency expedition by absorbing or releasing the kinetic energy. Moreover, the
MPPT control methods [24–27] using the tip speed ratio, hill-climb search algorithm, back-
stepping control law, and sliding mode of the DFIGs have no reserved capacity to increase
their output power when it is needed.

Implementing machine and deep learning methodologies can improve the challenges
associated with smart grid-integrated wind power system stability. These methodologies
can help to build affordable, accessible, and highly accurate diagnostic tools to handle
complicated optimization difficulties [28,29] such as variable wind speed [30], non-linear
load variations, power dispatch, and load control at the point of coupling [31]. Machine and
deep learning methodologies use data to generate intelligent systems that can hold tasks
entailing humanoid intellectual [32]. The research scholars in [33] outline the significant
contests and technical breaches in implementing ML methodologies such as ANN in wind-
driven turbines as a low computation process. The accuracy of the AI approach has a
positive edge. However, the lack of interpretability is the main barrier to machine.

Learning in its extensive recognition of sensitive applications [34]. Hence, the Euro-
pean Union proposed the guidelines in 2016 on having the right to obtain an explanation for
the individual system affected by algorithms [34,35]. A dataset mining method consists of
K-means grouping using the classified samples of the dataset of climatological conditions,
and historic power information, and the capturing neural network is used to predict short
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wind energy. Moreover, the dataset grouping effectively guides the grid power dispatch
and enhances wind farms’ production planning [36].

A fuzzy control and neural network AI system in [23,37] has shown an advantage in
better speed regulation, less settling time, and overshooting response of an induction motor
speed control. The better speed control response in inhibiting time speed is consistent with
the expected standards enhancing the error-based numerical tools and performance indices
over a PI control system.

Several AI techniques, such as fuzzy logic (FL), machine/deep learning, expert systems
(ES), neural networks (NN), robotics, genetic algorithm (GA), and natural language, have
recently been applied extensively in the power electronic converters and induction motor
drives’ system. In the grid-integrated renewable energies control utilization, AI techniques
mirror operators’ intellectual functionalities conducted by computers to accomplish self-
healing competencies [38]. In the natural world, wind speed is unstable and inconsistent.
The oscillating nature of the renewable sources that are highly dependent on the weather
conditions [39] is one of the significant aspects to be considered as a drawback. To accurately
forecast wind power production, machine and deep learning computational procedures
such as ANN, CNN, ANFIS, and FNN can be implemented to abstract random wind
speed dataset characteristics [40], allowing us to funnel down to desirable forecasts. These
factors help to organize the application of AI methodologies in the wind energy field with
maximized power point tracking [41] and reduced lapses of the anticipated dataset being
as feasible as possible [42]. Lower-frequency oscillations triggered by grid-integrated wind-
driven turbines intimidate the steadiness of the complete electrical power structure. Hence,
a strengthening-based electrical power system stabilizer can rapidly regulate the control
variables online and dampen the lower-frequency oscillation under a time-dependent wind
speed setup [43].

Among the tools of artificial intelligence, the machine and deep learning neural
networks, i.e., ANN, CNN, ANFIS, etc., and unsupervised learning neural networks are
evident in having a dominant outcome on power electronics control dominion [44]. The
research scholars in [45–47] provided a comprehensive overview of AI executions for
power electronics’ converter systems, entailing their distinct life-process stages, design,
and control system as well as a conversation about their dependability. However, the
paper does not debate the IEC 61400 standard alignment to assess the accomplishment
of the power system stabilities [48,49]. The wind-driven turbine certification institution
performs a general assessment of the system using electrical simulation methodologies of
IEC 61400-27 to ensure that the evaluation outcomes align with the intended safety and
dependability [50]. Study [51] outlines the integrated power grid distribution challenges
and their prospective resolutions by revising the existing run-through and outlining the
potential advancements in controlling electrical power distributed intelligence.

The research scholars in [38] analyzed that the customary optimization and control
methodologies in innovative grid systems restrict the data processing. Hence, the re-
search scholars suggested applying black-box nature AI processes to load predicting, grid
steadiness evaluation, and safety complications to enrich the availability and resilience
of intelligent power grid arrangements. The authors in [52] suggested an added compre-
hensive overview by focusing on cumulative difficulties and uncertainties in electrical
power systems. Authors argued that using the reinforcement learning algorithms and
their applications would enhance the possible control and optimization solutions. The
authors in [53] focused on developing challenges and prospects for the voltage control
system in intelligent grids, highlighting guidelines for the synchronization of electrical
power transmission system operatives and distribution operatives.

This paper review intends to provide an inclusive assessment of the AI methodologies
in Section 1 as an introduction to enable the systems that intend to model the smart grid-
integrated DFIG control systems with intellect. Therefore, Section 1 essentially provides
accurate and fast-acting computationally diagnostic tools that can be: (1) readily available
and accessible, (2) cost-effective, (3) have a prompt processing time, and (4) increased
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throughput; thereby reducing the high dependency on conventional control processes,
which includes corrective control systems, applications, algorithms, techniques, and critical
performance measures.

Though the other review papers have focused on these machines and deep learning
methodologies, however, a complete appraisal and investigation have not been accessible
thus far. Section 2 of the review paper summarizes and narrates the power system stability
challenges confined to IEC 61400 standards. Section 3 of this paper assesses the overall
arrangement of AI methodologies. It narrates the frameworks studied, AI applications,
and methods used in the DFIG control implementation ease, merging speed, training time,
sensitivity, and modeling time, which are vital variables in studying AI methodologies.
Thus, Section 4 intends to debate these variables and their significance in the DFIG control
system based on power electronic converters. Section 4.5 of the paper assesses the wind-
driven energy transformation system of the numerous AI modeling methodologies. This
section comprises drives and justification, informative multilevel association, and database
privacy, and the fast-tracking AI at light speed. Lastly, Sections 5 and 6 provide a conclusive
proposal for the future extension of the works on AI methodologies and applications in the
DFIG-based wind turbine’s power converter control systems.

The authors intend to extensively narrate the power system’s technical challenges,
particularly, the stability issues associated with the integration of the renewable energy
(RE) system, confined to IEC 64100 standards in the next section. In addition, the authors
also reviewed the dynamic models of REs for stability studies as well as the grid codes
for REs integration into the system. Finally, the next section summarizes the research out-
comes about the technical resolutions to overwhelm the power system stability challenges
regarding the REs and the grid system amalgamation.

2. Power System Stability Challenges Confined to IEC 64100 Standards

Smart grid system stability is the capability of an electrical system, for an assumed
primary operating state, to recover a state of operational stability after being exposed to
physical disruption, with most system variables restricted so that almost the complete
system remains integrated [54,55]. The increased operations of the wind-integrated energy
impact power stability is defined as an established variable explaining the power supply
properties supplied to the customers in normal operational circumstances. Hence, it is
essential to analyze the performance of a grid-integrated wind turbine-driven DFIG to
maintain the grid code standards and power system stability. Research scholars reviewed
the dynamic performance of the integrated DFIG systems and the associated challenges
in [54–58] to establish the safe and efficient procedure of power systems.

Here, the phrase power supply standards are explained as variables of the power
supply as distributed to the end-user in normal operational circumstances in terms of
frequency, voltage, active and reactive power, current, and interarea oscillations [59]. The
adaptable speed wind turbines equipped with DFIG use power electronics converters to
control their specific reactive power. However, due to the limited capacity of the PWM
converters [60–63], the grid voltage control obligation is beyond the ability of DFIG. The
restricted PWM inverter’s capacity impacts the grid voltage stability. From the DFIG control
scheme perception, the authors in [64–66] presented the frequency controller established on
direct power control (DPC) applied in a standard converter-fed synchronous machine and
a variable speed pump station (VSPS) system with a prominence on converter topology
learning. Researchers in [65] suggested the grid frequency stability study for suppressing
the effect of wind farm power fluctuations using a stator voltage field-oriented control (FOC)
and an H-bridge cascaded multilevel converter. Further, the power filtering algorithm
solution control methodology was suggested in [67] to control the deviances of the grid
frequency initiated by wind power variations. However, in the previous papers, a DPC
strategy-based VSPS system for reducing wind power variation influence on grid frequency
and AC voltage steadiness based on the phasor method has not been fully answered.
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The research scholars in [55] suggested a wind speed prediction framework centered
on a gated recurrent unit (GRU) network under the deep learning framework of the Google-
Tensor (GT) flow. This methodology improvises wind speed prediction accuracy to reduce
wind power fluctuations, thereby confirming the steady-state of power systems. Here, the
time series-based wind speed data are modeled dynamically, and the network parameters
are trained by the time to reverse the error propagation algorithm [55]. The ambient
variables, such as temperature, humidity, and air pressure, have improved the wind speed
accuracy. The suggested framework has higher prediction accuracy than the autoregressive
moving average (ARMA) and long short-term memory (LSTM) models. Researchers
suggested and developed a reliable synchronized control method, including a wind-driven
turbine connected to DFIG and an energy storage system (ESS) [56]. The researchers
encountered flattening wind power (WP) variations, shaving crests, empowering power
schedule planning, and permitting low-voltage ride-through (LVRT) objectives. The study
indicated that the higher ESS setup cost has process scale restrictions for charging and
discharging [56]. Researchers utilized the proposed synchronized fuzzy logic-based LVRT
methodology to anticipate the altered operational circumstances of a wind turbine (WT)
and an ESS. They assessed the actual reference powers of a WT and an ESS by reviewing
the rotor speed and state of charge in the fuzzy logic control computational algorithm. The
usefulness of the suggested methodology is certified by achieving the effective LVRT set-up
operation in power energy management between the WT and ESS and even improving the
DC bus voltage regulation [56]. The methodology proposed by the authors in the paper [57]
presented a voltage steadiness valuation, and maximum reactive power provision from
wind-driven power plants is a kind of similar approach to the study conducted in previous
article. The authors in [57] proposed two feasible voltage steadiness directories calculated
and established on the probabilistic risk of growth and decline of wind-driven power
at a prospective moment. The worst-case scenario value amongst the two guidelines is
applied as the forecast of the voltage stability index at the candid moment, established on
current system variables [57]. The authors explained the success of the suggested method in
forecasting the proximity of the power system voltage failure along with the case revisions
and time-series simulation methods. The authors indicated that the introduced method is
standard for any adjustable renewable energy source. The suggested way can give system
operators new perceptions of setting up remedial procedures to inhibit voltage failure in
electrical power systems with a higher portion of renewable energy generations [57].

The service model proposed by the researchers [58] explains that modern grid codes
need grid-integrated wind-driven turbines to maintain the capability of the positive and
negative sequence reactive current. The association of the positive and negative sequence
current confirms the wind-driven turbine’s operating safety to asymmetrical grid fail-
ure [58]. The researchers have established that the voltage-driven model delivers the
most refined electrical AC power superiority at the cost of a higher DC link bus rippling.
Current-generation and double-sequential regulators provide comparatively low DC link
bus rippling and reasonably more minor consequences on power superiority. The de-
preciation approach of the higher-bandwidth DC link bus ripple operates fine in low
power grid impedance surroundings. Still, it is incredibly inappropriate, including in high
impedance microgrid surroundings and at lower switching frequencies [58]. This research
also proposes that the authorization processes assumed by G5/4, P29, and IEEE 1547 are
theoretically unacceptable to overpower all uses and circumstances [58].

The researchers proposed various computational methodologies, particle swarm op-
timization (PSO), multi-verse optimizer (MVO), fuzzy control logic, and neural network
(NN) in [68] for wind turbine generators (WTGs) control systems. Researchers specified
a requirement for logically fine-tuning the PI control unit using a heuristic methodology
for the DFIG rotor side converter, without stressing a power electronic semiconductor
device, unlike the findings in [69]. The authors in [68] recognized that the enhanced PI
variable tuning increases the depletion of the overcurrent and fluctuations in the rotor
circuit and evades the blocking of the RSC, hence accomplishing a constant operation of the
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WTGs during the grid failure and subsiding the generator speed after the failure initiation.
Therefore, a stable power system is achieved [68].

The extreme load demand attempts to impede the generation units resulting in con-
trolling voltage, active power, and a further drop in the power supply frequency. The
researchers and specialists are actively operational together for electrical power supply
superiority advancement through reactive power compensators and dynamic filters on the
power supply wing and disciplining end customers for contaminating the power supply
grid [70]. To ensure the consistent and follow certification of the power supply superiority
features of wind-driven turbines, the International Electro-technical Commission (IEC)
worked to enable power supply superiority in 1996 [71]. Subsequently, IEC Standard
61400-21, as part of the IEC 61400 standards for testing and assessing power supply quality
features of grid-integrated wind power energy converters, was developed by IEC- technical
committee 88. Nowadays, most wind-driven turbine industrialists supply power quality
feature data accordingly [72]. These credentials are vital for power system utilities to
assess the grid-connected power supply quality and grid code matters of wind-driven
turbines [73,74]. The necessity of power supply superiority in the wind-integrated systems
and associated concerns are stressed in Section 2.1, Section 2.2, Section 2.3, Section 2.4,
Section 2.5.

2.1. Voltage Fluctuations

The IEC 61000-3-7 standard was developed as the base of flickering assessment,
possessing rules and recommendations for emission restrictions for variable non-linear
loads in medium voltage and high voltage systems [59,72,74–77]. The guidelines provided
on the practical encounters by researchers in [75] suggest that the effect on wind power
quality issues due to the voltage dips and flicker can reduce the life cycle of nearly delicate
electronics and the electrical apparatus at PCC. The extreme load demand, startup of wind
turbines, variable wind speed, and system faults causes the power quality abnormalities in
the grid-integrated renewable energies system voltage.

The research scholars in [75] established that the shorter-period voltage flicker serious-
ness and longer-period extremity assess the flickering voltage extent. The intermittent volt-
age variations with smaller scale frequencies lower than about 30–35 Hz mostly comprise
the voltage flickering. Moreover, the flickering emissions observed from constant-speed
wind-driven turbines are more than the varying-speed wind-driven turbines. The sudden
reduction of the voltage problem with the power system quality and wind-driven turbine
generating set-up are calculated following the applicable rule in IEC 61400-3-7 standard,
“Assessment of emission level for an unstable load,” and is considered in [77]. More precise
to the application of this paper, the IEC 61000-3-7 standard in [78] explains a sudden voltage
dip in the voltage level between 1% to 90 % of the so-called value for a shorter phase of
1ms to 1 min and is termed a voltage dip. In contrast, in most cases, a 3% of voltage dip
in the power system is standard [64]. The researchers of studies in [76,77] emphasized the
voltage dips’ reduction through the distributed generation system instigated by the higher
level insertion of fixed speed wind turbine using a DFIG in a transmission system. Using
a simple and cheap series capacitor (SC) or power transfer to the grid during the voltage
steadiness improved the voltage dip reduction problems. The studies in [77] indicated the
non-integration of the series compensation throughout the power disruptions and voltage
dips that surpass the series converter’s rated specifications. In [79], scholars briefed on
how a power converter system with a series compensator consuming less active power
can reinstate the voltage dips at the load end side. Research scholars carry out the voltage
dip analysis with a modeled induction machine with a flicker coefficient utilizing a failure
dataset in [77] as defined by IEC 61400. Computational modeling and dynamic simulation
results indicated that using an SC through wind-driven turbines could improve the power
system voltage mapping at the PCC. The improvement in voltage mapping includes an
increase of 3.7% and 1.6% of the PCC power supply voltage and the LVRT capability with
4.37% and 1.0% increases in the critical clearing time.
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The authors discussed the IEC 61400 standards in [78]. The standards highlighted the
coordinated voltage control and preventive voltage control modes, whereby the synchro-
nized control mode traces the established value and alleviates the voltage variations. The
pre-emptive control system retains faster and more responsive dynamic reactive power
(DRP), keeping the WTGs’ terminus voltages and the grid voltage per the IEC 61400 stan-
dards’ recommended upper and lower limit. The authors reviewed appropriate control
systems in [53,80,81] to maintain the power system voltage stability. The authors explain
the Volt/Var ratio control in [53] and describe how to keep the voltage stability in extended-
spell and shorter-spell aspects. In [80], the author proposed a kind of methodology to
overwhelm the shortcomings of the DPC and SDC on the low voltage ride through im-
plementation using the modified direct power control (DPC) algorithm in combination
with sequence domain control (SDC). The suggested improved version of the controller
adopted a fusion version of the electrical power system control to maintain the power
system voltage stability, similarly utilized in SDC and the delta variation and lookup matrix
table’s computation process of DPC. The droop characteristics of inner current control
loop systems are adopted to control the system voltage magnitude and frequency for
grid-integrated DFIGs [81]. The inserted real and reactive powers are changed depending
on the voltage magnitude and frequency of the electrical power grid system.

2.2. Startup and Switching Operation of Wind Generators Onto The Smart Grid

The startup and switching operation of the wind turbine can originate power supply
voltage instabilities and thus voltage swell and voltage sag that could source substantial
voltage deviation. The comparative % voltage variation d due to the switching process of
the wind-driven turbine is [74]:

d = 100Ku(ψk)
Sn

S∗k
(1)

Here, d is the comparative voltage, Ku(ψk) is the voltage variation factor, Sn is the
total assessed power of a wind-driven turbine, and S∗k the supply grid’s short circuit
absolute power. The flickering and electrical power deviation assessment is within 95% of
the maximal deviation range equivalent to the standard deviance. The acceptance levels
of the switching process depend on grid supply voltage and how frequently this might
happen [74]. The extreme amount of accepted switching operations in less than 10 min
time intervals and 120 min time breaks are explained in the IEC 61400-3-7 Standard [82].

A voltage sag is stochastic with severe current distortion. Natural disasters or load
transient conditions such as short circuit failures in the electrical power grid system, the
turning-on of large inductive motors/arc furnaces/generators, and climate circumstances,
including thunderstorms and birds nesting across the distribution lines, cause the voltage
sag. Voltage sag occurs when the grid supply voltage magnitude drives to lower and
proceeds to the standard measure from one-half cycle to 1 min. Usually, the specific extent
of voltage sag is defined by the droops’ magnitude and period. The IEEE 61400-21 power
supply superiority principles describe the voltage sag once the magnitude of the voltage
is 0.1 per unit–0.9 per unit value and its interval is within 10 milliseconds and 60,000
milliseconds [83,84].

The research scholars in [85] introduced a novel methodology using the 30 IEEE bus
testing method for discovering voltage dips impacts caused by symmetrical and unsym-
metrical faults in power system transmission lines, employing Evolutionary Approaches
(EA). This methodology permits the approximation of voltage swells and sags without
power quality monitoring, thus growing the exposure of power quality checking systems.
The suggested evolutionary operatives concerning selection, alteration, and switchover
are confirmed adequately, since fault locality inaccuracy is less than 2% based on the IEEE
61400-21 standards.

The research scholars explored the usage of voltage sag generators (VSG) in [86,87] to
recognize the results of voltage sags on complex loads and in renewable energy systems
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(RES), as specified in the IEC 61400-21 standard. The authors recommended the usage
of VSG in [86] with adjustable voltage levels, periods, and frequencies, to verify the
invulnerability of a delicate element within numerous voltage sag instabilities. In [87], the
VSG usage is recommended based on the impedance switching described for the possible
adjustment on the complexity and period of stable and unstable voltage dips, and in the
creation of it, one is likely to notice the performance of wind-driven turbines under voltage
dips specified in the IEC 61400-21 standard.

The power quality control center (PQCC) consists of consecutive power electronics
converters, a distributed generator (DG), and a DC bus system. The researchers in [79]
presented a three-phase operational scheme of the PQCC in alleviating the influences of
voltage sags. The research study divides the active procedure into three phases. The initial
phase 1 of the system operates by keeping the dc bus voltage at a similar extent earlier than
the sag. Here, throughout the sag alleviation, the input side inverter of PQCC is potentially
guarded against congestion, and the fueling cell lasts uninterrupted during this phase [79].
The middle phase 2 of the scheme consisted of additional severe sags to reduce the input
side current by decreasing the active power delivered by the ascending power system. This
process is accomplished by lowering the dc bus voltage and compelling the fueling cell to
contribute to the rest of the real power [79]. In the final phase 3, the PQCC would decrease
the dc bus voltage farther down. Thus, the DG provides complete secured loadings [79].

The researchers in papers [88,89] introduce two different methodologies to monitor
voltage sag optimal allocation centered on the fuzzy logic system with particle swarm algo-
rithm and voltage sag state estimation (VSSE) using a genetic algorithm (GA). Researchers
placed the fuzzy logic approach and monitoring index, aiming at the conventional monitor
reach area’s challenges (MRA), and contemplated the bus monitoring capability. Then, the
fuzzy control logic modeling is confirmed to acquire the ideal objective [88]. The researchers
improved the modeling provision in [88] by the binary particle swarm algorithm (BPSO)
and verified on the IEEE 30 bus system. The research test outcomes disclosed that the
comprehensive observation of voltage sag in the electrical power system network could
be perceived.

Similarly, the researchers in [89] introduced the thought process of VSSE to clarify that
assessing the voltage sags at every single bus of an electrical power network is typically
impractical. Hence, the researchers assumed the introduction of VSSE as a technique that
permits approximating the happening of voltage sags at unmetered buses employing the
dataset composed at partial metering points. The general mathematical formulation is
engaged in state estimation on the subsequent association [89].

H = MX + E (2)

H is a dimensional vector representing voltage sags, and X is the state parameter vector
representing numerous assessed faults. M is a dimensional binary matrix that associates
the state parameters to the measurements, and E is the dimensional vector representing
noise, which can be primarily overlooked [89]. Additionally, in a similar approach to reflect
any fault, the VSSE preparation can be prolonged in an analogous process to reflect any
kind of fault. The researchers evaluated the influence of the observing platform in the VSSE
by presenting the total number of connected monitors’ impact on the outcomes of the sags
assessment in [88,89].

2.3. Active and Reactive Power

Research scholars comprehensively studied the active power and reactive power su-
periority norms, challenges, and advancement in the grid-integrated renewable energies,
especially the DFIG control systems in [69,83,84,90,91], in accord with IEC 61400 standards.
The wind turbine power control is one of the significant influences on the transient sta-
bility of wind power generation [92]. The researchers in [93] recognized the IEC 61400-21
standard, stipulating that the reactive power of wind-driven turbines is equivalent to a
10-min mean rate as the functionality of the 10-min target power for 10%, 20%, . . . , and up
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to 100% of the assessed power. The active regulation of reactive power can advance the
power standard and alleviate the power system grid. Presently, there are three approaches
to power the regulation for wind turbines. Firstly, the stall control follows a higher wind
speed to limit wind turbine power. Secondly, pitch control restricts capacity by altering the
pitch angle according to the wind direction. Finally, the active stall effect amalgamates stall
and pitch control [94].

Researchers proposed a view on accomplishing the grid integrated DFIG power
superiority standards in [83,84] using a static compensator (STATCOM) and a reliable bang-
bang controller to practice a hysteresis current control method. The control methodology
keeps the control parameter’s limits of the hysteresis area by providing precise IGBT
switching signals for the STATCOM set-up for the grid-integrated DFIG at the PCC. This
arrangement accomplishes faster and more active grid current harmonic reduction by
inserting additional reactive power into the grid. The suggested interpretation in [83]
reveals the power superiority standards following IEC norms 61400-2l by adjusting the
reactive power and (if required) real power in the linked route.

Researchers proposed a leading-end power voltage source inverter (VSI) operation
in the current hysteresis control method [90]. The key objective of the projected control
method is to retain the three-phase power supply line currents mutually in its phase and
scale. The wave shape is the constantly sinusoidal cycle to follow three-phase credential
signals resulting from one of the phases’ voltage. Researchers implemented the leading-end
control of VSI on a digital signal processor (DSP) with DC bus voltage and source voltage
as feedback signals. Usage of such a control system provides reactive power hold-up so
that the grid system voltage is preserved constantly, as per the IEC standard 61400-2l [83].
Similarly, the real power is pressed from the wind side into the integrated system to relieve
the liability of the present power grid system so that it can have an additional temporary
stability edge [90].

The case studies discussed by the research scholars [69,91,93] consist of the DFIG
control system methodologies. They focus on the DFIG’s life expectancy and real and
reactive power regulation under stable and distorted network conditions. The researchers
in [91] attentively focused on the less life expectancy of a DFIG’s rotor side converter (RSC)
than that of a grid side converter (GSC) due to the various characteristics of the power
converter and the reactive power conversation connecting a DFIG and the electrical power
network. The research scholars observed that an overexcited reactive power addition
would decrease the RSC’s lifespan to meet the EON regulation requirement [91]. An EON
entitles the power generating facility owner to motivate its internal network by using
the power grid integrations. The 30% of under-excited reactive power and 40% of the
overexcited reactive power are estimated to be maintained if the real power is greater
than 20%. Research scholars primarily assessed the added strain of a power electronic
semiconductor device resulting from the reactive power addition in [69] concerning a
modulation matrix index and the current load. Then, an enhanced reactive power flow
is suggested, assuming the adoption of an overexcited reactive power provision with
the cooperative coverage from both the RSC and the GSC. The research scholars in [69]
proposed an appropriate asymmetrical scheme of the back-to-back (BTB) power electronic
converters and the chip redesigning of the power element to improve the reliability of the
wind energy converters.

Similar to the research work in [69,91], the research scholars in [93] assessed a modular
DFIG system control strategy under distorted conditions using a data transfer rate-based
tedious regulator to recover the system’s strength alongside grid frequency deviations. In
accord with novel power grid code necessities, wind-driven turbines need to stay coupled
to the power grid throughout grid instabilities below 80% of the nominal PCC voltage. They
must also hand out voltage provision through and after grid failures. The wind-driven
turbines must be coupled to the grid in less than 150 milliseconds if the PCC potential drops
to zero. The outcomes have revealed that reactive power addition by DFIG-based wind-
driven turbines is restricted while the rotor side power converter is gridlocked. Another
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alternative to the droop control scheme is [95], which associates the P/V droop control
system with voltage droops to regulate the real power. The researchers in [95] suggested
that a Lyapunov-Function-based current tracing regulator regulates the actual and reactive
power flow for a parallel-integrated inverter. The THD measures were reasonably suitable
for inconsistent loadings.

2.4. Frequency Regulation

Grid-integrated wind power ramping measures significantly disturb the power sys-
tem’s stability in terms of absolute power. In contrast, there is a destabilized power system
frequency. The IEC standard allows grid frequency deviation to ±0.5 Hz only [96]. The
research scholars in [92,97,98] established that the power system’s frequency control formed
the primary frequency regulation and the secondary frequency regulation. The researchers
in [99] viewed the technological obligation and testing code of the wind turbine primary
frequency regulation (NB/T 10315-2019). Firstly, when the wind turbine output power is
higher than 20% of the designed output power, it should be capable of influencing the de-
signed output power for primary frequency control. Secondly, when grid frequency drops
downs, the wind turbine should increase 6–10% of the planned output power at a reaction
time of 5 s. Finally, the wind turbine should preserve the increased output power for not
less than 10 s, with an acceptable error margin of ±2% of the designed power capacity.
The wind turbine’s secondary frequency control consists of the speed droop characteristic
adjustment of the local generators from 30 s to 30 min after a frequency event [100]. After
the primary frequency control, the secondary control operation eliminates the steady-state
frequency error [101].

The researchers in [15] recognized that the primary and secondary frequency regu-
lation on the grid-integrated wind power has a 3-stage grading, i.e., wind turbine, wind
farm, and power system-level regulations. In the first level for the primary regulation, the
localized regulators, inclusive of the inertial, droop, and de-loading regulators [102,103] on
the power electronics converters of variable speed wind turbines, or the pitch angle regula-
tors of all categories of wind turbines, are installed [104]. The DFIG wind turbine lacks the
inertia reaction feature due to the de-coupling between the revolution of the machine and
grid frequency [99]. However, the concealed inertial control proposed in [15] maintains the
frequency control in the momentary process without any additional equipment, using the
methodologies of “concealed” inertia simulation. The concealed inertia power control is
calculated as [15,104]:

Pin = 2H ×ωsys ×
dωsys

dt
(3)

where ωsys is the rotating speed, and H is the hidden inertia of the system. The short power
reserve [97]:

Pconstt =
1
2

Jωr0
2 − 1

2
Jωrt

2 (4)

where t (t < tmax) is the durable time of the short power reserve since the start of the
frequency event, ωr0 is the primary rotor speed, and ωrt is the rotor speed in tune to time
t. The frequency droop characteristics describe the droop control in [105] that generates
the actual power output variation, which is proportionate to the frequency deviation given
by [15,106,107]:

∆ f = fmeans − fnom (5)

where fmeans is the computed system frequency, and fnom is the nominal system frequency.
However, droop control does not disturb much primary frequency alteration rate but
significantly impacts the frequency base. The de-loading authority delivers the power
reserves for the wind farm and reduces the steady-state frequency deviance [108]. The
actual power control signal of droop control is obtained by [97]:

∆P = P1 − P0 = − ∆ f
RWT

(6)
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The researchers in [109–114] established that the de-loading control system allows
the wind turbines to function over de-loading curves in place of the MPPT and keeps
the accessible power as reserves by regulating the pitch angle for a constant wind speed
and a constant turbine rotational speed or increasing the turbine rotational speed from
the MPPT value (over-speeding) for a constant wind speed and constant pitch angle.
The authors in [115] recognized an adaptive gain frequency support arrangement and
clarified that the wind turbines’ optimum functioning points are limited to rotor speeds.
However, it improved during the secondary frequency regulation to settle the stability
of wind turbines under variable wind speeds, diverse stages of wind power penetration,
and system conditions. On the second wind farm level [92,97,98], the anticipated system
generation is accomplished in the collaboration of the central control and the local control.
The main controller accepts the power command from the system operators and formerly
allocates this command to the localized controller of the wind turbines and storage energy
elements in the wind farm. The coordination between the automatic generation controller
controlled generation plants and the wind farms improves frequency performance on
the third power system level for the secondary control. A detailed study of estimating
the reserve from wind turbines and its ratio to conventional generation reserves will
help determine how frequency control by wind generation is economically viable for a
power system.

2.5. Harmonics

The grid-integrated impacts of wind-driven turbines have been the main focus in
recent times since the wind-driven turbines are among the utilities measured to be possible
causes of substandard electrical power quality [116]. Particularly, inconsistent-speed wind-
driven turbines have some benefits about flickering. However, present forced-commutated
power semiconductor inverters in inconsistent-speed wind-driven turbines harvest har-
monics and inter-harmonics [59,71]. Lately, researchers have handled high-frequency (HF)
harmonics and inter-harmonics (IF) in the IEC 61000-4-7 [117] and IEC 61000-3-6 [118].
The methodologies for computing harmonics and inter-harmonics in the IEC 61000-3-6
apply to wind-driven turbines. To acquire an accurate scale of the frequency modules, the
application of precise window width, in accord with the IEC 61000-4-7, Amendment 1, is of
most tremendous significance, as has been described in [116,119,120].

The researcher scholars in [121–123] discussed adaptable and intelligent artificial
neural network-based approaches to discover power system harmonics in accord with the
IEC 61000-4-7 and IEEE-519 1992 harmonic standards. The proposed harmonic indicator
in [121] consists of three feed-forward levels, the input level, the hidden level, and the
output level backpropagation ANN. The secret group consists of 10 neurons with a tangent
sigmoidal initiation functional set and while the output level consists of one neuron with
a linear initiation practical set [121]. The initial stage of this work identifies a harmonic
contented of the biased theoretic waveform, whereas the second stage deals with the usage
of the suggested computational process to a simulated power system load current. The
researchers endorsed the achieved outcomes as the supremacy of the ANN in connection
with the average harmonic detection significance as indLh = 0.0757% [121].

As in the proposed simulation setup in [121], the researchers described the usage of an
AI computation in [122] in resolving the power quality problem by employing the parallel
active power filter (APF) approach in two-wire power distribution systems. The suggested
flexible ANN methodology by the authors in [122] has improved the computational al-
gorithm (an improved data rule weight W-H) and an appropriate alpha value (learning
rate value 0.0009 to 0.001) in identifying harmonic variables. The applied PWM together
produces power electronics IGBT switching approaches for the filters to locate and regulate
current harmonics for the real power as per the recommended IEEE-519 1992 harmonic
standards [122]. The authors in [123] presented a novel Adaptive Notch Filtering (ANF)
methodology according to IEC 61000-4-7 standard. ANF methodology directs matters
such as removing harmonics, voltage regulation, composite power control, overpowering
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frequency deviations, and noise substances employing the progressive voltage elements as
a reference.

A phase-locked loop (PLL) control unit is a powerful integration tool for delivering
output phase signals identical to the input. The researchers in [60] proposed an integrated
fuzzy logic controller with an adapted particle swarm optimization (MPSO) depending on
the MPPT control technique. MPSO lowers the steady-state oscillation (THD level from
7.69% to 0.5%) and accomplishes the coordinating point quickly after the maximum power
point (MPP) is traced. The researchers in [54] established that the regulation of an error
signal of likelihoods and currents in the fuzzy logic control unit by including the input
signal of ‘fuzzy set of error’ and ‘alteration of error of the boost-up converter,’ which is the
error rate put on to the controller established on fuzzy control logic.

The researchers in [124] propose modeling a DC/DC single-end primary inductor
power converter to each renewable energy resource, with a collective converter phase for
power generation with low current ripples. The proposed model used a 5-level inverter
in series with the LC filter combined with a closed-loop fuzzy logic control (FLC) unit for
better results to make a total harmonic reduction to a low value of 13.24%. The DC/AC
inverter is suitable for two-way mutual power transmission [124]. With the development
of the final inception model, the researchers also saw that the proposed FLC could offer
low THD under nonlinear loading conditions and good dynamic response under transient
loading conditions. The multilayer inverter with the proposed (FLC) is suitable for utility
applications where the load introduces periodic distortions [124].

The research scholars acknowledge the IEC 61000-4-7 standard classification of HF
and IF harmonics and discussed various methodologies in [125] to accomplish harmonic
mitigation in the DFIG integrated power grid system. The research scholars choose the
programmable harmonic resistance (PR-SHI) process. The proposed method describes how
it is adaptable for islanded micro-grids application to remodel the converter-coupled DG
elements to influence the malformation of the electrical utility grid positively. However,
accomplishing regulated harmonic current distribution between unlike DG elements is not
dispensed using the proposed methodology. The research scholars of [125] understood that
the voltage-based droop control strategy and their deviation P/f or P/V do not share the
harmonic load in a regulated means. Alternatively, the distributed generator elements in
the microgrid supply alternating voltages with fundamental frequency, nearly configuring
short circuits for harmonic currents. Hence, the usage of G-H, the droop method where G is
the harmonic conductance and H is the harmonic VAR, is suitable for inductive load lines.
Further, an extended combination method with P-f and Q-V is used for microgrids having
mainly resistive line parameters to have controllable harmonic current and power quality.

Integrated wind energy in the electrical grid system impacts power superiority, an
established variable explaining the power supply properties supplied to the customers in
normal operational circumstances [126,127]. Here, the phrase power supply standards are
presented as a set of variables of the power supply as distributed to the end-user in normal
operational circumstances in a turn of phrase of the stability of power supply and features
of frequency, voltage, active and reactive power, and current [59].

To ensure the consistent and follow certification of wind-driven turbines’ power supply
superiority features, the International Electro-technical Commission (IEC) worked to enable
power supply superiority in 1996 [71]. Subsequently, IEC 61400-26 activity was introduced
on the availability of wind turbines to develop the technological description of accessibility
for wind-driven turbines. Standard operating conditions of WTGS, are allowed for inner
and outer circumstances, and algorithms for operational devices established on serving of
the timeline and production [128,129].

The IEC 61400-25 & 26 have been hosted as an evolving procedure drawn-out from IEC
61850 to communicate with wind-driven turbines [130]. The IEC 61400-26 standard obliges
valuable patterns and references. Hence, no deviances from the standing IEC standards
are permissible. The IEC 61400-26 standard concept further splits the entity into three
parts: IEC 61400-26-1 terms for time-based availability of a WTGS, IEC 61400-26-2 terms
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for the production-based availability of a WTGS, and IEC-61400-26-3 terms for the time
and production-based availability of a WTGS [128]. Testing and assessing power supply
quality features of smart grid-integrated wind power energy converters was developed by
the IEC- technical committee 88, and nowadays, most wind-driven turbine industrialists
supply power quality feature data accordingly [72]. These credentials are a strong base for
power system utilities to assess the grid-connected power supply quality and grid code
matters of wind-driven turbines [73,74].

The authors outlined the general structure and methodologies of the literature review
in the next section. The following section presents an overview of the general structure,
different methodologies, and timelines used in what is usually called AI methodologies
nowadays, and how they can be utilized in grid-integrated REs applications. The method-
ologies have been there for a long time but nowadays have built a platform of method-
ologies supplementing each other and establishing a group of tools to be used to build
“learning systems”.

3. General Structure and Methodologies of the Review

In the proposed structured literature review, the authors argued that the technical
review is not only a primary product improvement activity but is a sustaining and col-
lective one of dire significance for establishing that the reviewed content is accurate and
comprehensive to engage research scholars. Due to the particular difficulties and features of
power electronics systems, e.g., higher tune-up speed in control, the proposed approach of
the application of AI in power electronics has its elements of data-driven and model-based
control schemes to adventure available information to advance product effectiveness by
improved designing and intelligent control solutions. Hence, this technical literature review
identified a wide variety of valuable information for power electronics’ converter modeled
wind turbine DFIG control systems during different stages of its life-phasing under the
diverse settings of wind power penetration and system conditions.

Research scholars have observed that AI-based studies for power electronics control
systems are growing. Hence, it is a highly dynamic and challenging region of research. The
recent advancement in big-data analytics opportunity [131], edge computing, internet-of-
things (IoT), and digital twin [132,133] provide a wider diversity of valuable information
for power electronics control systems. The increase in data size allows enormous openings
and arranges a compact base for AI in power electronics. Subsequently, AI-based research
on DFIG power electronics control systems is a persistent need to accelerate collaborative
research and multidisciplinary practices specifically for complex and challenging cases.
Figure 2 shows that the implementation of artificial intelligence applications in the grid-
connected power electronic converter-based DFIG and renewable energies control systems
has been amplified and acknowledged. This study included all the journal articles primarily
centered on IEEE Xplore, Energies, Science Direct, and Elsevier to gain global quality
research knowledge and attain more visibility and discoverability to conduct a further
research analysis. The AI functionality, methodologies, and timeline are explained in
Sections 3.1 and 3.2.

3.1. Functions of AI for DFIG Power Converter Control Systems

An efficient and practical level links artificial intelligence and the power electronics
converter functions. The categorization of AI is as follows:

1. Classification
2. Regression
3. Optimization

The above categorizations are valuable tools for further data analysis, such as data
interpretation, reasoning, planning, and data analysis prospects, as shown in Figure 3.
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1. Classification has been widely explored in machine language and pacts with trans-
ferring input data information through a specific tag signifying any single k-discrete
modules [45]. The typical method is to learn a classifier from labeled data. However„
actual data might comprise noise as termed in [131] as consisting of non-systematic
errors [132].

2. Regression: A historical dataset deals with a fortune of information to the end-user.
Furthermore, the accuracy of the forecast methodology is the key [133]. Consequently,
an exchange between efficiency and accuracy is necessary for the dataset-operated
energy predicting methods [134,135]. Researchers in [136] identified that the long-
term and short-term memory (LSTM) and convolutional neural network (CNN)
hybrid approach outperforms the discrete method, diminishing the error, though
challenging to incorporate. The hybrid approach recognizes the association between
inconsistent input parameters and output parameters to forecast the significance of
additional uninterrupted objective parameters on assumed input parameters. The
researchers in [137] established that among the polynomial, SVM, and Random Forest
(RF) algorithms, the RF algorithm models are not suitable for long-term prediction.
For instance, in [138], researchers recognized that regression modeling could enable
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an intelligent controller amongst the variable electrical input parameters and the
output control parameters.

3. Optimization: This mentions finding the best resolution of maximizing or reducing
impartial functions, including an established pair of accessible substitutes that are
certain on restraints, impartialities, or inequities to gratify the results [139].

3.2. AI Methodologies in DFIG Power Converter Control System

Fuzzy logic, machine/deep learning, and the expert system are reviewed here and
discussed more closely to recognize the collective understanding, useful implications,
and further research prospects in applying AI tools for grid-connected DFIG-based wind-
driven turbine control systems. The literature studies demonstrate that machine learning
(ML) techniques [45,140–143] are very useful for small power quality (PQ) data analysis.
Artificial neural networks [77,79,144–146] have been used for voltage dip characterization
and classifications. Support vector machines (SVM’s) [147–149] provide efficient voltage dip
classifiers. Logistic regression and principal component analysis (PCA) [150] are effective
methods for calculating single event characteristics of voltage dips. The Deep Learning
(DL) technique performs better than conventional machine learning techniques dealing
with large datasets. In essence, the goal or intent of the literary analysis is to identify the
appropriate applications, algorithms, and techniques in the literature and develop them
as an efficient AI-based DFIG control system diagnostic tool. This tool will detect power
systems enduring abnormalities, resulting in comprehensive promotion and use in the
renewable energy control system.

The Pareto analysis status in Figure 4 indicates various aspects of AI contribution to
power the electronics-based grid-integrated DFIG wind turbine control system. The analysis
influences the control system, design optimization, and fault diagnosis in descending
percentage order of 72%, 18.1%, and 9.9%, respectively. This review states that most
AI application tasks are relevant to optimization and regression, with a minor focus on
classification. Figure 5 stats suggest that machine learning has the most significant share of
AI methodologies in power converter control systems in ascending order on the applications
as the ML (65%), search process guiding method (20%), fuzzy logic (13%), and specialist
methods (2%). Authors acclaimed here that the applicable AI methods are extensively
pragmatic to the power electronics’ converter concept applied for the grid-integrated
DFIG-based wind turbine control system.
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The ML is sub-categorized, namely Supervised, Unsupervised, Semi-supervised, and
Reinforcement learning. Researchers in [5] primarily argued for reinforcement learning to
learn the set of input parameters to harvest the desired behavior of the control system.

The researchers have established that the study has some limitations in terms of the
system’s response time and the lack of robust computer infrastructure utilization. However,
consideration of the specific parameters for data sets and suitable fuzzy membership
functions could enhance the fine-tuning aspects of the model. Reference [6] concluded that
the fault analysis algorithm on the realistic DFIG model by merging the state-space vector
(SVM) model could successfully supervise the fault incident. Reference [7] suggested a
Recurrent Type-2 Fuzzy Neural Networks (RT2FNN) controller for real and reactive power
control of a grid-integrated wind-driven turbine with DFIG.

The proposed service model in [8] discussed an AI-integrated fuzzy fractional-order
closed-loop control (FFORC) for a grid-combined DFIG using a DSP320F37D processor.
System performance under the suggested FFORC structure justified the speed tracking
error nearly to zero compared with the sliding mode control method observed error to
0.4 radian/sec. Further, the research scholars in [9] suggested a hybrid control strategy
termed Neuro-Fuzzy Inference System to suit changing wind conditions and a fuzzy logic
controller on the pitch angle control to retain the apprehended mechanical power at the
rated design [9]. Research scholars observed a maximum of 0.18% of the captured automatic
power variation with the recommended controller.

The researchers in [151] proposed a theoretical regulatory methodology for DFIG
wind turbine systems to overcome the IGBT switching operations’ power quality issues
and behavior. Researchers carried out the active/reactive power control and the DC-link
voltage control at variable wind speeds with the help of back-to-back converters. Intelligent
fuzzy controllers are being used for efficient operations to overcome the challenges of
conventional PI controllers. The traditional PI and fuzzy controllers cannot deal accurately
with the system variation. Hence, researchers in [152] proposed an AI-configured adaptive
fuzzy-PI controller to advance the system regulation under minor disruption and immense
disruption at an improved response rising time, reduced undershoot, overshoot, and
resolving time. Another AI-configured adaptive proportional resonance (PR) vector control
system is proposed in [153] to achieve power decoupling by controlling the rotor side
current’s phase, frequency, and amplitude. The PR control system has the advantage
of having an immeasurable gain at the resonance frequency, which tracks the data flow
without error and adjusts the proportional parameters according to the error size and rate
of change.

The researchers in [10] used a pure ANN modeling approach using a genetic algorithm.
They established that an ANFIS control methodology with a genetic algorithm turned
out to be more efficient and forecasted better data of wind speed ranges at mid-energy
levels and during cut-off events at the highest wind speed compared to a hybrid method
of computational fluid dynamics. The model also indicated the need for the rotor side
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converter’s health monitoring and fault recognition using neuro-fuzzy to ensure that the
operation of the DFIG is entirely sustainable.

The work in [11] approached NN, ML, and Neuro-Fuzzy-DPC logics using the neurons
rules to overcome the challenges with the grid-connected DFIG control system, reactive
power variations, and the variable wind speed. Test results concluded that the NF-DPC
control strategy had performed better than the predictable PI control approach.

The research scholars in [12] evaluated the connected baseload susceptance and con-
ductance in an integrated grid system as per reference supply currents. Here, the data
clusters should have been visualized as a two-dimensional “map”, such that observations
would be more visual for practical analysis. Researchers included the load currents and the
rapid PCC voltages in the justification by suggesting the Kohonen Learning Neural Network
(KLNN)-centered control algorithm for the wind farm’s reactive power reimbursement.

The authors of [13] advanced the DFIG operation optimization using advanced direct
vector control with a four-level fuzzy pulse width modulation and the NN design replacing
the proportional-integral controller. The observed value of the total harmonic distortion
of the stator current had a better result of 0.13% THD than the PID control. The Current
Source Inverter (CSI) control strategy in [14] suggested that the system runs smoothly under
symmetrical faults, unsymmetrical faults, and variable wind conditions. Considering the
presence of significant inductance Ld to avoid the commutation failure in the same leg
of the CSI would have been an added advantage. The authors of [15] argued about the
various feed-forward NN controllers, i.e., probabilistic feed-forward (PFF), multi-layer
perceptron feed-forward (MLPFF), and radial basic function feed-forward (RBFF) for the
grid-integrated DFIG control system. The study achieved the optimum performance
in relationships of overshoot value, settling time, and rise time. However, the added
supervisory learning technique would have been more efficient in achieving better results.

The research scholars in [16] focused on the operational improvement of the DFIG-
based wind power conversion system due to ecological concerns such as temperature,
moisture, etc. The researchers in [18] established that the probabilistic methods are best
suited for improvisation on power features and control parameter tuning in power elec-
tronic converters. In [19], researchers specified an inclusive assessment of the uses of NN in
power electronic converters and explained numerous models of control system credentials.
However, alternate AI techniques, for instance fuzzy control logic, advanced optimization
methodology, etc., are not argued. Though the researchers debated the above-mentioned
methods in [20], it highlights that the descriptive models through a detailed investigation
of AI computational procedures are not delivered.

In [21], the authors studied a thorough argument of metaheuristic methodologies
for MPPT control in PV control systems, emphasizing particular PV applications only. A
presented tutorial in [4] works as an introductory level of the AI algorithms. However, the
tutorial did not explain the required particulars of the AI algorithms and their assessments.
The authors in [24–26] argued about the AI-based DFIG control system self-sufficiency and
applications. Various AI-based control applications comprise the optimization of power
module heat shrink [24], wind energy conversion MPPT control [25], and inverter-based
anomaly recognition [26]. These control applications are entrenched with competencies
of self-recognition and the flexibility to adapt and enhance the system’s self-sufficiency.
It lacked an inclusive assessment of the AI procedures and power electronic converters
used for smart grid-integrated DFIG-based wind turbines. From a life process outlook,
the objective of the research is to plug inclusive assessment breaches and widely assess
the study publications in power electronics utilizing the AI technique in grid-integrated
DFIG-based wind turbine control systems, which prerequisites a methodical linking.

3.2.1. Fuzzy Logic Spatial Analysis

This section presents the selected articles’ attributes, including the fuzzy logic analysis
related to the abnormalities of the grid-integrated DFIG-based wind power control sys-
tem. Fuzzy logic is a methodology for adaptable dispensation that permits the numerous
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likelihood truth table values to be administered through a similar variable. Similarly to
an expert system, the fuzzy logic reasoning depends on the IF . . . THEN rule. Fuzzy logic
analysis that attempts to resolve glitches with an open and indefinite data spectrum that
makes it possible to gain a collection of precise conclusions. The fuzzy logic input signals
accrued in the interface stage with fuzzy logic procedures. Consequently, a fuzzy logic
area influences the complex value that concludes nonaligned plotting with detailed codes
between the input and target. De-fuzzification is successively executed on the interface
results by allowing for the point of satisfaction and outputs a hard value [29]. It uses the
descending approach to control time-constant lined methods and time-derived nonlinear
methods with various uncertainties and noisy measurements [27,28].

The category of the fuzzy interface arrangement is classified as Type-1, [154], the four-
level adaptive supervisory control [155,156] Type-2 [30] Mamdani type (FIS) [31], and the
TSK type [32]. For the supervisory fuzzy control method, the gains scheduling contributes
to continuously update the values Kp and Ki according to the situations. The four-level
fuzzy control benefits a generic algorithm, faster reaction time, and fewer ripples. However,
it has the limitation of generating variable frequency control signals. The Mamdani type
is a fuzzy interpretation system used as the originator’s association function. The result
is triangular frame-type functions, of which the X and Y are the input, and the Z is the
output [157]. For the TSK type fuzzy interface structure [33], the association function of the
initiator portion is like the Mamdani category, though the resultant is single, in order to
have consistent standards. Usually, more fuzzy logic datasets are required for the Mamdani
type structure to be associated with the TSK type structure for a similar assignment. The
fuzzy control has the advantage over the Mamdani type in that it is adaptive, giving fast
convergence without an accurate signal information exchange.

3.2.2. Metaheuristic Methods

A metaheuristic method is a high-end process to discover, create, or select a fractional
search algorithm that may deliver an adequate solution to an optimization challenge, ex-
pressly with partial or restricted computation ability. The metaheuristic method approaches
expertise as an end-to-end generic tool for several optimization tasks [158,159]. Formula-
tion of the optimization task of a particular application optimizes the result managed by
a linear or a non-linear encoding methodology. The metaheuristic techniques recognize
with stimulations of biological progression, e.g., Genetic Algorithm (GA) [160–162], by the
procedure of usual collection, the Ant Colony Optimization algorithm (ACO) [158]. The
optimum solution is encouraged by the research and development procedures.

The metaheuristic methodologies are classified as population-based methodologies
such as GA, Particle Swarm Optimization (PSO), [158,159,163–166], and differential evolu-
tion [167]. Associated with the trajectory-based procedures, they are higher in meeting the
speed and the overall penetrating competency and are exclusively beneficial for numer-
ous optimization assignments. Due to massive benefits, population-based methodologies
resolved most of the reform assignments in power electronic converters [168]. For trajectory-
based procedures such as the Tabu search method [169], every assessment stage contains
simply one aspirant explanation and advances towards alternative results rendering a
definite instruction.

Researchers expanded these aspirant explanations at every constant assessment
(e.g., edge in the GA) or merged and substituted them with newer aspirant explana-
tions to advance the feature of the population in the current group. Subsequently, an
enhanced data population correctness with the optimum resolution [170,171] is studied. As
an outcome, the conjunction speed of the trajectory-based techniques is usually slower. The
ultimate result is to be indigenous in place of the comprehensive resolution for non-convex
improvised functions.

In line with the above-mentioned practical metaheuristic methods, numerous additional
incipient ways seemed practically tested on a restricted gauge, e.g., the biogeographical-
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approached optimization [172], crow search algorithms [173], teaching-learning-based opti-
mization [174], colonial competitive algorithm in [175], etc.

An additional abstract detailing the metaheuristic methods in [156] indicates the
optimum solutions. GA [141,142,176], and PSO [166,171,177] are the best common meta-
heuristic approaches tuned to power electronic converter systems, as revealed in Figure 6.
Table 1 indicates the applications of the metaheuristic method’s superiority.
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Table 1. The applications of metaheuristic methods in power electronics’ control system.

Methods Type Conventional
Algorithms

Applications Advantages and Drawbacks

Control
Systems

Parallel
Ability Global Union Implementation

Ease Merge Speed

Metaheuristic

Population-
based

methods

Particle Swarm
Optimization

(PSO)

[18,19,25,42,43,
54,164,165,167,

177–183]

Yes

BEST GOOD GOOD

Crow Search
Algorithm

(CSA)
[49] BETTER BETTER BETTER

Ant Colony
Optimization

(ACO)
[158,166] BETTER BETTER BETTER

Differential
Evolutionary

(DE)

[19,140,156,
167,171,174,

184–186]
BETTER BETTER BETTER

Immune
Algorithm (IA)

[44,45,166,184,
185] BETTER BETTER BETTER

Genetic
Algorithm

(GA)

[39–41,47,51–
53,165,166,177,
180,181,187–

193]

BEST GOOD GOOD

Solutions with AI applications:
1. Accomplishes pre-training with an appealing smaller learning rate to accomplish faster merging

Trajectory-
based

methods

Tabu Search
Method (TSM)

Control System
[45,164,165,
169,184,194] No

GOOD BEST BEST

Simulated
Annealing

Method (SAM)
[164] BETTER BEST BEST

Solutions with AI applications:
1. Works on undefined jump location
2. Less inclined to impulsive merging

3. least possible to become caught in localized targets

Currently, metaheuristic algorithms have turned out to be fairly smart because of
their distinct benefits over customary algorithms. Since metaheuristic methods with some
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hybrid techniques can resolve multiple-objective multiple-solution and nonlinear designs,
they are involved to determine higher-quality resolutions to an ever-growing quantity of
complex problems such as the design optimization and amalgamation for novel predictive
control systems.

3.2.3. Expert System

In artificial intelligence methodology, an expert system is a computational arrangement
matching the human intellectuals that effectively implement industrial applications [17].
Expert systems are aimed to resolve compound problems cognitive through bodies of
information, signified mainly as IF-THEN rubrics rather than through predictable prac-
tical programming [17,195], and several exemplary applications can be found in [15,28].
Features of expert systems are high execution, consistent, extremely receptive, and logi-
cal. Modules of the expert system include a facts base, conclusion engine, graphical user
interface, and a justification subsystem for user education [195]. The expert system fea-
tures in recommending, instructing, demonstrating, deriving a solution, and justifying
the conclusion.

The professional system [24–27] is fundamentally a dataset that incorporates the
professional information in a Boolean logical set established on IF . . . THEN rules. The
accumulated dataset is either from area of professional knowledge or simulated dataset,
details, and reports, and is constantly corrected. The uses of expert systems are evident as
the lowest possible 2% rendering to the data in Figure 5. In essence, the expert system has
limitations in substituting human decision-making, producing accurate output, refining
their knowledge, and possessing human capabilities and universality. Moreover, due to the
fast advancement of algorithm stages, the complementary forward-thinking AI approaches
(e.g., optimization methods, machine learning, fuzzy control logic) can substitute the
functionality of expert systems with more significant competencies in interpretation and
estimation uses in power electronic converter control systems.

3.2.4. Machine Learning Neural Network

Machine learning is considered to spontaneously ascertain principles and symmetries
with know-how from either a collected dataset base or an interface by trial and error
method. The ML methodology has three categories, namely:

1. Supervised learning;
2. Unsupervised learning;
3. Reinforcement learning.

As an outline, Figure 7 indicates the empirical data of the ML approaches. SL is
predominantly practiced in 85% of power electronics control systems, being a multipurpose
tool, which is usually the dominant part of the mainstream ML approaches in power
electronics converter arrangements.
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1. Supervised learning (SL)—Supervised learning is explained by its use of input and
output pair data sets to train algorithms to institute plotting accurately and applicable
affiliations between the inputs and outputs. This aspect is specifically suitable for
circumstances in power converters, wherein structure patterns are stimulating to artic-
ulate. The supervised learning methodology is categorized as an approach-oriented
(i.e., ANN technique), probabilistic graphic methodology (Bayesian Networks), and
thought-oriented methodology (i.e., conventional and sparse kernel methodology).
The various investigations have been fanatic to enlighten the presentation of neural
network methods.

The enhancements, as mentioned earlier, are configured with different features for
use in power electronic converters. The primary feature of the ML pacts allows ambigu-
ity competence in conducting the unhealthy signal of the NN to advance the method’s
strength [196]. Incorporating the fuzzy control logic enables such quality towards NN,
termed as the fuzzy neural network (FNN and WPFNN) or its deviations, e.g., adaptive
neuro-fuzzy inference system (ANFIS) [196]. The secondary feature is beneficial to aggres-
sive achievement enhancement about NN to challenge the time period-array database, e.g.,
the intelligent control unit, RUL.

Associated with the conservative NN (FFNN and RBFN), where the linkage weights
are autonomous, the brief presentation is enabled by allocating weights among diverse
levels and networking cells. The weight allocation in NN applies on a narrow gauge using
a convolutional neural network (CNN), Time-delayed neural network (TDNN), and Finite
state model predictive control (FSMPC) [197], whereas the application is based on a broad
and prominent gauge by employing a recurring element, such as the Elman neural network
(ENN), Eco state neural network (ESN), and Recurrent neural network (RNN) [157,198].

The probabilistic graphic methods attain information from the data through a visual
symbol of input and output sets. The graphical sign indicates the provisional dependency
affiliation among the conclusive variables. The fundamental connection in the pattern
is expressed in the Bayesian framework [199] and perhaps conditional in a likelihood
means. Additional theoretic particulars on the likelihood graphic approaches are available
in [200–202]. The likelihood graphic model’s interpretability is better than neural network
methods. Moreover, it is greater in using ambiguity and partial knowledge.

Apart from the NN and graphic methods, the training database in the kernel method is
retained and utilized for the testing phase. The results are shared as the collaborative effort
to identify critical data elements (e.g., support vector machine (SVM) and relevance vector
machine (RVM)) [203] or as a sub-section in the training database. The conventional kernel
method is calculation intense, as the entire training database is functional to the analysis
phase. In SVM and RVM, the parameter approximation is enhanced based on the Bayesian
methods. Generally, the training database requisite for the kernel method is inferior to the
NN methods; hence, it is further appropriate with smaller datasets [200]. Table 2 indicates
a synopsis of the supervised learning approaches advantages and limitations in power
electronic converter-based applications.
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Table 2. The application of supervised learning methods in power converters-based control system.

Methods Type Conventional
Algorithms Applications Advantages Drawbacks

MACHINE/DEEP
Learning Neural

Network (NN) methods

Clustering

k-means Control system,
[140,204–207] Not applicable

Density-based spatial
clustering of

applications with noise
(DBSCAN), Radial basis

function network
(RBFN)

Control systems [141–
143,176,186,208–215],

Equated to Feed Forward NN

1. Easy network
structure
2. Higher training speed

1. Longer training time
2. Less sensitive
3. Low capability of
handling uncertainty

Association

Fuzzy neural network
(FNN) and (WPFNN)

Control systems,
[31,143,147,148,154,177,

180,190,191,196,216–223]

Equated to Conventional NN

1. Competence in
managing ambiguity
2. Association of
professional knowledge
3. Greater training
speed

1. Manual fuzzy rule
generation

Adaptive Fuzzy neural
interface system

(ANFIS)
Control systems

[155,196,219,224–228]

Equated to Conventional FNN

1. Auto Fuzzy logic rule
generation

NN with recurrent unit

Recurrent neural
network (RNN) or
Elman NN (ENN),

Self-evaluation (ANN)

Control systems
[45,148,179,226,229–231]

Equated to Conventional NN

1. Improved transient
ability
2. Enhanced
responsiveness

1. Lower long-term
dependence dealing
2. Slower training
speediness

Non-linear
autoregressive network
with exogenous inputs

(NARX)

Control systems
[218,232],

Equated to RNN or ENN

1. Improved training
speed
2. Improved
simplification
3. Enhanced long-term
dependence dealing

1. Less sensitive

NN with convolutional
structure

Time-delayed neural
network (TDNN) or1D

convolutional NN
(CNN), FSMPC

Control system
[45,157,197]

Equated to Conventional RNN

1. Weaker time series
modeling

1. Improved
accountability

1. Composite
computation
2. Theoretical output
with random
parameters

Kernel-based approach Sparse Kernel method Support Vector Machine
(SVM)

Control systems
[147,148,233–237]

Equated to Convectional Kernel Method

1. Better approximation
2. Better computation
efficiency

1. Probabilistic output
2. Longer training
period

Solutions with AI applications:
1. Probabilistic results are overcome with certainty, using data to evaluate the frequency of past success and unsuccessful actions
2. Solve training arrays locally

2. Un-supervised machine learning (USL)—The un-supervised machine learning accords
the end-user to achieve more compounded processing tasks. These compounded
tasks are associated with supervised learning. Even though unsupervised learning
can be further randomly associated with an added natural learning methodology, it
does not have an output dataset about the learning objective through the learning
procedure. The database is available in the input and the output sets. Unsupervised
learning algorithms comprise clustering, neural networks, and data firmness. For the
dataset gathering, it discovers the symmetries out of the messy database and barriers
the database into numerous altered groups rendering to their resemblances. In such a
manner, the dataset features inside the similar group are alike and dissimilar from the
other groups.

The principal component analysis (PCA) is used in [238], where a compact illustration
of the database attains the fewest number of characteristics and upholds the database relia-
bility. Usually, these unsupervised learning procedures function as the dataset-preprocess
before it drives to the subsequent data analysis (e.g., failure diagnostics). Table 3 sum-



Energies 2022, 15, 6488 23 of 56

marizes the unsupervised learning approaches and their variations in power converters
regarding their benefits and limits.

Table 3. The application of unsupervised learning methods in power converters’ control system.

Methods Type Conventional
Algorithms Applications Advantages Drawbacks

Unsupervised Learning Neural
Network (NN) methods

Clustering

k- means Control system
[162]

1. Simple
implementation
2. Better
interpretability

1. Complex to deviations

Density-based
spatial
clustering of
applications
with noise
(DBSCAN)

Control system
[181,239]

Self-organizing
maps (SOMs)

Control system
[181,239]

1. Improved
interpretability
2. Less complex
to original
variable
collection
3. Less complex
to deviations

Solutions with AI applications:
1. Substitute deviations with an appropriate value employing Quantile Methods

Data
minimization
approach

Principal
component
analysis (PCA)

Control system
[150]

1. Flexible
frameworks
with various
improvements

1. Only be used with grouping
and intellectual methods

Solutions with AI applications:
1. Substitute data minimization methods with filtering and standardization methods

3. Reinforcement machine learning—The reinforcement learning (RL) approach is not a
prerequisite to a training database such as SL and USL. As an alternative, it discusses
goal-oriented algorithms, which inquire how to attain a complex goal or make the
best use of a specific dimension over several steps. This object-aligned approach
articulates from interfaces with the model approach by analysis [240,241]. Thus, it
accrues knowledge gradually and acquires a detailed strategy that makes the most of
specifically defined objectives. Ideally, RL is a Markov decision procedure [43,242,243].
The RL training aims to advance a Q-table in response to an act choosing criteria,
which perhaps eventually make the best use of the total predictable rewards. The
Q-table is a useful strategy matrix that registers the detained optimum activity given
the specific conditional parameters [244–246].

3.2.5. Timeline of Events

Figure 8 reviews the indicators of the applicable AI methodologies and their uses in
DFIG power converter control systems relevant to renewable energies [247], including the
initial period when the computational process started to suggest. It is worth bearing in
mind that the available facts are attributed to the excellent understanding of the author.
Moreover, the chronology does not include every standing AI methodology. Alternately,
only the flaunted methodologies having great potential in electronics’ converter controls
are incorporated. It follows that:
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• Fuzzy logic and machine learning can be subjugated for classification tasks. The fuzzy
logic and the expert systems have become more reasonable, particularly for the expert
system [248].

• This fast improvement in computerized applications accelerates applying different AI
control methodologies for substituting the fuzzy logic control and expert system [249].
Until 2005, researchers recognized that hands-on applications of FL and ES were
presented partially.

• Both metaheuristic methodologies and machine learning can be applied to optimization
tasks. Specifically, machine learning-based reinforcement learning optimization focuses
on the dynamic optimization involved with the decision-making in MPPT control.

• Neural network methodologies are the utmost proactive zone for AI implementation
for electronics’ converter systems due to the following reasons:

a. Data structure exploration.
b. The authors in [250,251] suggested that the neural network structure is some-

what malleable to combine further relevant AI methodologies for the system’s
accomplishment enhancement.

c. Research works in [52,240] have established that reinforcement learning is the
newest forefront of the ML methodologies practiced for power electronics con-
trol systems enabled by the speedy advancement of computing peripherals.

This section demonstrates that machine learning computational processes could aid in
exploring the collected works’ reviews. These reviews are evaluated on a sizeable numeral
of papers, presenting trends, the practice fraction, presentation tendency, structures, and
conditions of AI in the control system of the power electronics’ converter applicable in the
DFIG control system. Based on the functionality viewpoint, the AI-related applications
are handled fundamentally with improvisation, classification, regression, and dataset
arrangement investigation.
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4. Smart Grid-Integrated DFIG Power Converter Control System

The research scholars in [252] acknowledged that control system methodology bids
with AI approaches in power electronic converters considered optimization and regression.
In [185,253], more samples of the optimization-linked functions in control system usage
are identical to the design stage allocated with metaheuristic approaches. For the best
appropriateness valuation, every direction for the various variables, such as finest, average,
and worst, and the standard deviation of improved procedural costing, is noticed [249].
The below section explains several illustrative applications.

The researchers in [158] proposed the metaheuristics method to overwhelm the chal-
lenge of numerous maximum power points in moderately sheltered conditions for REs
systems. Initially, the researchers in [189] proposed an experimental analysis that used
a GA methodology for the PID tuning of a programming logic controller. For the ones
initialized with proportional gain Kp, the GA establishes the integral gain Ki, and derivative
gain Kd. It reduces the error margin in the model phase and ramp-up reactions for better
optimization. The researchers of [189] see the performed empirical analysis, which shows
that the output response of the improved controller is close to the model step and ramp
reaction. Reference [254] defines how a single-phase full-bridge inverter current IA prac-
ticed discovering the optimum alternating pulse-width modulation (PWM) control systems
of four IGBT switches. The modulation reduces the complete harmonic distortion (THD)
to 0.79% best, regarding the conservative control methodology of the hysteresis current
centered PWM, with 1.23% and GA 0.99% of the output waveshapes. The ACO-established
MPPT control methodology in [158] defines a message associated with conservative meth-
ods and unchanged voltage tracking and observation and PSO. The empirical outcomes
specify that the ACO-established MPPT methodology is best in universal conjunction and
sturdiness, as compared to multiple layers arrays [158].

The researchers in [185] established that the regression-allied tasks in the control
system application are trading with the random plotting of the system’s input and output
statically or dynamically. Primarily, it is apprehensive with flexible structures to confirm
deliberated appearance output with system ideologies. The researchers in [189] have
recognized numerous restrictions of conservative procedures as compared with [158,185],
which are listed below:

1. The controller arrangement in [189] involves comprehensive data of control system ide-
ologies, which are exciting and impractical for compound circumstances. It is tedious
for the compound system to review the time-variation and vector field-direct features,
where the controller has generally improved numerous acute operational facts [189].

2. The research scholars in [158] discussed that the proposed modeled controller functions
statically with restricted compliance specifically for time-invariant schemes. However,
when operative and conservational circumstances alter, the controller turns out to be a
little sturdy to structure variable drifts with a worse possible control performance.

3. From an effective control outlook, a perfect controller must be capable of dealing with
variable acceptances with a speedy momentary reaction to sustain system steadiness.
AI approaches alleviate these boundaries. Various usage of the regression-associated
task in the control system is well prepared in terms of fuzzy control [217,255–257] neu-
ral network [157,258,259] and reinforcement learning [240,244,260,261] individually.

4.1. Fuzzy Logic-Centered Control Methodology

Figure 9 summarizes the reviewed publications on various proposed fuzzy logic
concepts applied to the power electronics control systems. The summary consists of speed
system control [36,217,256], an integrated grid principle frequency support [257], MPPT
control [246], an energy managing system [216], and an adaptive system gain for real and
reactive power control [155], amongst others.
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The researchers in [224] employed the principle of model adaptive fuzzy control for a
slipping power recovery speed system, as shown in Figure 10. Here, a fuzzy adaptor and a
reference model are added, such that the fuzzy output sets now have a triangular shape
with fixed-width flexible centers. Initially, the direct FLC does not know how to control
the machine. However, these flexibly adapted centers, by the fuzzy adaptor/learner, are
shifted such that the output of the direct FLC will prevent the device from following the
reference speed reaction. For every time-step, all of the formerly stimulated fuzzy sets Uj

have the centers cj of their membership functions shifted by the extent of the adaptation
variables, the output of the fuzzy learner m [224]:

cj(t) = cj(t− dt) + m(t) (7)
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Researchers practiced the Adaptive Disturbance Rejection Scheme (ADRS) controller
method to reduce the error among the reference and adaptive models. The foremost
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It is worth noting the features and configurations of the adaptable fuzzy logic control
modeling debated in the paper of significance to this review [217,256,257]. Researchers
suggested TSK-type fuzzy logic control approaches in [217,263], where the states and
control regulations are allowed for motor speed, and sliding mode control for the combined
LED drive system. The researchers in [217] approached a perfect speed control algorithm
to regulate the switched reluctance motor speed. This algorithm allows the regulated data
to settle down the system’s steadiness by applying the Lyapunov stability theorem. The
researchers in [217] considered the empirical study to establish that the adjustable TSK-type
controller outclasses the conservative fuzzy-based control and the PI control systems.

The authors in [264] provided a detailed fuzzy control logic concept, including a
classic set A as a group of characters or equipment x ε X, where the respective x is capable
or incapable of the defined set A. Unlike the conservative background, the fuzzy dataset
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demonstrates how a component fits a dataset. The dataset arrangement signifies the extent
of the association of an element in a specified dataset. Hence, the authors in [253] proposed
an acceptable ambiguous dataset to possess a value in the middle of 1 and 0. If X is a pool
of elements represented broadly, x, then a fuzzy dataset A in X is clarified as a dataset of
methodical sets [255].

The researchers in [263] proposed a modeled controller using a cascaded double
buck-boost converter to resemble the distinctive sliding mode of the control curve for
the combined light-emitting diode drive system. The input converter has the function
of a specific power factor, whereas the target converter does control the LED current.
Additionally, the particular language parameters are the current error in the LED panel (ei),
the growth in duty cycle (∆D), and the input and output of the fuzzy controller, respectively.
The researchers in [263] considered fine-tuning the variables kp = 0.0855 and ki = 180 and
employed the second Ziegler–Nichols method (continuous oscillations) to achieve a decent
active reaction and a decrease in the low-frequency ripple. The research scholars in [263]
see the usage of the TSK type controller as an added advantage as a reduction in the
low-frequency ripple, which is the prime concern in the LED voltage and current [263].

The authors in [249] proposed the two independent conventional FLC’s going through
three main distinct stages, namely fuzzification, base rule processing, and de-fuzzification,
to manage the non-linearity and parametric uncertainties. Furthermore, the proposed
FLC modeling in [249,254] is different from that of [215,260] due to variable operative
circumstances. The controller search operation is sustained in a similar direction to increase
the error rejection ability. If the estimated output power P0(k) is progressive with the former
advanced rotational speed ∆ωr

*, and if positive ∆ωr
* causes the output power P0(k) to be

negative, the search operation is negative. The research scholars of [256] concluded that the
generator speed fluctuates with a minor increase when it attains the optimal state. Finally,
the output is de-fuzzified to transform to the firm value to regulate the generator speed to
generate the extreme wind turbine output. The fundamental control laws, as indicated in
Figure 13a, are as given as “IF ∆P0 is positive medium (PM) AND L∆ωr

* is positive, THEN
∆ωr

* is a negative medium (NM)”, as shown in [256].
Be that as it may, the association functions are regulated through system models and

experimentation, compared with a substantial decline in the execution of the PID tuned
controllers under variable parametrization [256]. To further test the effectiveness of the
disturbance rejection ability due to non-linearity and parametric uncertainties, researchers
explained a related Mamdani-type fuzzy logic control system for the principal frequency
rule of wind energy generation in [257]. Here, the authors proposed a model where the
output of the fuzzy logic is determined by defining 25 rules, as indicated in Figure 13b.
Researchers evaluated the fuzzy inference rules-based data sets in [257] and discovered the
associated deviation in frequency (∆f ) and the amount of reserve (∆PWT). The minimum
conjunction operator avoids any faster response rate for small resources. To prevent the
problem of instability in transient regimes, the authors in [265] considered parameter
variations as fuzzy variables. In FLC, a constant gain associated with control variation
gives low results.



Energies 2022, 15, 6488 29 of 56

Energies 2022, 15, x FOR PEER REVIEW 29 of 57 
 

 

to increase the error rejection ability. If the estimated output power P0(k) is progressive 
with the former advanced rotational speed ∆ωr*, and if positive ∆ωr* causes the output 
power P0(k) to be negative, the search operation is negative. The research scholars of [256] 
concluded that the generator speed fluctuates with a minor increase when it attains the 
optimal state. Finally, the output is de-fuzzified to transform to the firm value to regulate 
the generator speed to generate the extreme wind turbine output. The fundamental con-
trol laws, as indicated in Figure 13a, are as given as “IF ∆P0 is positive medium (PM) AND 
L∆ωr* is positive, THEN ∆ωr* is a negative medium (NM)”, as shown in [256]. 

Be that as it may, the association functions are regulated through system models and 
experimentation, compared with a substantial decline in the execution of the PID tuned 
controllers under variable parametrization [256]. To further test the effectiveness of the 
disturbance rejection ability due to non-linearity and parametric uncertainties, researchers 
explained a related Mamdani-type fuzzy logic control system for the principal frequency 
rule of wind energy generation in [257]. Here, the authors proposed a model where the 
output of the fuzzy logic is determined by defining 25 rules, as indicated in Figure 13b. 
Researchers evaluated the fuzzy inference rules-based data sets in [257] and discovered 
the associated deviation in frequency (∆f) and the amount of reserve (∆PWT). The minimum 
conjunction operator avoids any faster response rate for small resources. To prevent the 
problem of instability in transient regimes, the authors in [265] considered parameter var-
iations as fuzzy variables. In FLC, a constant gain associated with control variation gives 
low results. 

 
Figure 13. Fuzzy inference rules [257]. (a). Fundamental Fuzzy control laws, (b). Fuzzy inference 
rules-based data sets. 

The authors in [155] proposed an adaptive fuzzy control for the DFIG, taking into 
account the adaption of the control gain revealed in Figure 14 [155]. They used the order 
decision table in Figure 15b, with an order variation between the moments Tk+1 given by 
[155]: 

11 1kk k U kU U G U
++ Δ += + ∗ Δ  (10)

Figure 13. Fuzzy inference rules [257]. (a). Fundamental Fuzzy control laws, (b). Fuzzy inference
rules-based data sets.

The authors in [155] proposed an adaptive fuzzy control for the DFIG, taking into
account the adaption of the control gain revealed in Figure 14 [155]. They used the order de-
cision table in Figure 15b, with an order variation between the moments Tk+1 given by [155]:

Uk+1 = Uk + G∆Uk+1 ∗ ∆Uk+1 (10)
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The researchers of [154,224,266] demonstrated the simulation studies on the fuzzy
logic control algorithms on DFIG control. Researchers discovered that the power ripples
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and total harmonic distortion, sensitivity to design of FLC, and exposure to changing
environment, requirements on sensors, observers, and regulators are lower in adaptive
fuzzy control than classical control. The research scholars in [154] observe that the type-2
FLC control confirms the improved operational performance associated with the type-1
FLC control, though in the existence of parameter deviances and outside instabilities (stator
resistance, rotor resistance, and moment of inertia). Reference [154] shows imposing the
type-1 classical fuzzy logic controller against the novel type-2 fuzzy logic controller due to
the uncertainties caused by imprecision of the membership functions and knowledge base.
Hence, the researchers in [154] proposed an added research work that built the theoretical
foundation for system stabilization.

The authors in [266] discovered that the fuzzy logic control system could operate the
system ambiguity, close to the conservative methodology, such as the PID control system.
However, the authors observe that the study lacks the inside renovation approach, and
hence the system compliance is restricted. Furthermore, the authors in [266] perceive that
the membership functions of the design and fuzzy dataset rules need professional knowl-
edge, limiting the methodology in reality. However, relating to the outlook, professional
learning can be managed with fuzzy type logic control and subsequently combined through
further AI approaches as an amalgam of techniques. The researchers proposed a DFIG
protection technique in [227] consisting of two dependent approaches. The first approach
was to deal with the fault detector algorithm that uses an adaptive neuro-fuzzy inference
system as an artificial intelligence technique to detect the fault occurrence and its location.
The second approach was to implement the Egyptian LVRT grid code to discriminate be-
tween tripping or not tripping decisions on fault conditions such as its duration and voltage
level. The simulation results demonstrate that the proposed protection technique can detect
and isolate the faulted area according to Egyptian LVRT grid code requirements for the
enhancement of the stability of the studied wind farm. Another case study in [228,264]
explains how the machine parameters have greatly influenced the system stability during
the fault condition of an integrated DFIG wind turbine. The simulation results of the
DFIG-based WECS mitigated the overvoltage issues in the Northern region by ensuring
that all bus voltages were observed within the acceptable limits of 1.0 ± 0.05 p.u [264].

4.2. Neural Network-Based Control Methodology

The researcher scholars of [258,265,267] discussed the modeled neural network and
how an NN consists of a serial combination of computational logic undertaken to recognize
principal associations of a dataset with a procedure simulating similar human intelligence
functions. The study mentions that the randomness in neuron data behavior is either
organic or artificial NN [258]. The research is discussed through simulation studies and
analysis of the Mean Square Error (MSE), signifying the alteration between anticipated and
actual output levels. In the best circumstances, the MSE approaches zero. The simulation
study results demonstrate that the NN-type control system owns numerous benefits by
adding a few system statistics requests. The system’s advantages include a productive
capacity in forecasting models, attracting nonlinear identification and control robustness
attributes, managing an ample number of data and input variables, model-free, dynamic,
adaptive to non-mathematical models, universal approximation, etc. However, the research
scholars of [258] have identified that study has demonstrated limitations of training the
operation of neural networks and longer processing time, and the quality prediction
requires large datasets. Figure 16 indicates the number of publications on the NN-based
power electronics’ converter control in the smart grid-integrated DFIG control system.
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ML forming used the neural network-based control method in four subcategories, as
shown below:

1. Conventional neural network-based controller;
2. Neural-network controller with fuzzy logic base;
3. Neural-network controller with adaptive neuro-fuzzy interface control system;
4. Neural network with the recurrent controller.

4.2.1. Conventional Neural Network-Based Controller

The research scholars in [258] see the enormous potential of NN in the imminent
time. Their uses in the power electronic converter are so far in the phase of early stages.
Researchers proposed a kind of extensively applied feed-forward neural network (FFNN)
for an electronic converter system in [157,194]. Some of them are a multilevel perceptron
(MLP) backpropagation configuration methodology, as shown in Figure 17 [157]; the space
vector PWM (SVPWM) compatible with the triple-layer voltage-fed inverter in [259], and
waveforms measuring in AC drives in [194] are proposed for an electronic converter system.
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The research scholars established that the MLP kind of NN method [157] is highly
influential to an algorithmic association. However, an SVM algorithm-based NN in [259]
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has the advantage of speedy implementation. As a result of this arrangement, the respective
practices use the properties of fixed nonlinear plotting of the FFNN. Additionally, the
scholars of [157] propose various NN formats. The first proposal was formed on an early
NN arrangement of the anticipated input (a) and target (c) level neurons read out by the
numerous individual indicators, which is an unseen level (b) with few neurons and suitable
transfer functions (TFs). Smaller arbitrary weights are designated, so that neuron outputs
remain un-saturated. The second proposal on the NN arrangement is to use one input
design, where the output is intended (predefined as an onward pass) in association with
the output design.

Figure 17 shows the calculated fault sum-squared-error (SSE) or mean-squared-error
(MSE) are labeled in advance; the weights are changed in the reverse path using the
backpropagation procedure until the fault inclusive of the preferred output design is minor
and adequate [157]. In the event of an inadequate fault convergence, the hidden or unseen
layers’ neuron numbers need to be improved and subsequently added to an unseen layer(s).
The whole SSE of the P arrays pair, as detailed in [157]:

SSE = E =
P

∑
p=1

Ep =
P

∑
p=1

Q

∑
j=1

(
dp

j − yp
j

)2
(11)

As a result of this arrangement, the neuron’s weights improved to curtail the impor-
tance of the impartial function SSE by the grade succession method, as stated earlier. The
weight amend equation is specified as [157]:

Wij(k + 1) = Wij(k)− η

(
δEp

δWij(k)

)
(12)

Mean square error (MSE = SSE/Q) as the objective function is engaged, where Q is
the dimension of the output vector. A thrusting term µ

[
Wij(k)−Wij(k− 1)

]
is attached

to Equation (12), and considered u < 1.0 as a minor assessment to ensure that the SSE
meets a global minimum. The additional development of the backpropagation procedure
is probable by creating the flexible knowledge rate stages as [157]:

η(k + 1) = uη(k) with u〈1.0 (13)

so that oscillation sets off to least. Researchers identified in [157] that most NN implemen-
tations have limitations with digital speed processing (DSP). Multiple usages of DSP en-
hanced the execution speed at a reasonably higher cost, since economic digital application-
specific integrated circuit chips were still in the design phase.

The authors in [267] proposed the substitution of PI regulators for the DFIG indirect
control system accomplished by the Levenberg-Marquardt back-propagation algorithm
(LM). The proposed substitute was relevant to ANNs’ regulator with the structural design
of a single-layered NN structure comprising three neurons using the sigmoid stimulation
function denoted in Figure 18 [267]. The proposed system has demonstrated the active and
static performance enhancement of the DFIG in terms of perfect follow-up, tight regulation,
zero static error, and sturdiness concerning parametric variations of the DFIG machine
versus the PI controller.

The researchers in [194] presented a simulation-based study related to waveforms
measuring and immediate filtering applicable to power electronics and AC drives. The
study proposed two scenarios of adjustable frequency and adaptable scale using the FFNN
methodology as capable of efficiently converting the m- phase waveforms of a random
profile into the n- phase wave shape. The conversion of waveforms was featured through
the additional low pass filter (LPF) components through numerous scaling and occurrence
features with amplitude tracing (linear or nonlinear) and locked phase angles.
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Researchers in [259] proposed the space vector PWM (SVPWM) to be compatible
with the triple-layer voltage-fed inverter for the FFNN model application. The study
accomplished a test assessment of an open-loop volts/Hz speed-regulated induction motor
drive with the FFNN-established SVPWM and adapted it on a dedicated IC chip; linked
with a predictable DSP-based modulator, it demonstrated exceptional execution. The
research work included the experimented phase voltages as the input to the NN and the
PWM arrays of SVPWM as an output. The training dataset is created through a model
using an SVPWM computational process. The proposed modular in [259] has challenges
for a vector-controlled drive application due to the limitations of ASIC-integrated chips’
availability and the drift issues with the intel 80170 electrically trained ANN ICs.

Research scholars in [188] highlighted an added conservative NN arrangement in line
with FFNN as a radial basis function network (RBFN).

References [157,258,259] highlighted that in FFNN, the weights of input-to-concealed
and concealed-to-target are concurrently intended. However, research scholars in [180]
propose that for RBFN, the input level is straight and completely linked with the unseen
level deprived of weights. The unseen level is linked to the target level through the weights
parameter Wj to be identified in training, as revealed in Figure 19 [180]. The proposed
backpropagation learning algorithm in [180] is very similar to that of the proposed model
in [157]. The RBFN model uses a backpropagation learning algorithm with an improved
particle swarm optimization (IPSO) introduced to improve the online learning capability in
the RBFNN. The study debated the procedure to regulate the DC bus voltage and the AC
line voltage in an induction generator.

The research scholars in [180] discussed a few ideologies to regulate the optimum neuron
number and explained how a general methodology initiates through moderately smaller
neuron numbers and progressively raises to the execution of the training fault. Beside the
initiation function in the unseen level, several possibilities, including sigmoid [147,178,179,268],
RBFN [180,269], hyperbolic tangent function [187,270], wavelet function [165,221,271], etc., are
in existence. Researchers in [165] highlighted that the wavelet activation function holds greater
proficiencies of simplification and speed conjunction.

4.2.2. Neural-Network Controller Based on Fuzzy Logic

Several research scholars in [186,219,272] proposed a consideration of the system vari-
ables’ ambiguity and outward disruption for various power electronic regulator system
applications and steadiness. Consequently, an enhanced variation of NN, i.e., the fuzzy
neural control network (FNN), or neuro-fuzzy logic, a hybrid of NN and the fuzzy control
logic, is suggested in [219]. As compared to NN in [157,258,259], the FNN is a combination
of the potential of the human-like IF . . . THEN cognitive fuzzy control logic rules inte-
grating professional information and reasoning ambiguity, and the robust competencies of
estimation and simplification to all random systems [186,219,272].
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The authors in [219] proposed an experimental study of a conventional DC-DC boost
converter related to a four-level structure fuzzy NN controller. A simulation application
of FNN onto a boosting converter’s slide mode control system indicates a 20.3% voltage
tracing and chattering enhancement to the TSMC framework using an FNN type controller,
as shown in Figure 20 [219]. The four-level converter system as shown in Figure 21 [219],
simulates the total sliding mode control (TSMC) rule and its network variables. The
authors in [219] considered the sliding surface S(t) and its differentiation S’(t) as the
two specified inputs of the FNN type controller. These specified inputs result from the
tracked errors of the standard even target voltage and inductor current ei, assuming the
referencing voltage as Vref and the current as iref. Moreover, the output signal of the
control system was used as the PWM burden cycle u, where the rule layer applies the
fuzzy logic conclusion lk = I In

i=1wk
jiµ

j
i(xi). The authors achieved the network target as

u = f
(

∑
Ny
k=1 wklk

)
. Equation (14) indicates that the authors assessed the voltage tracing

presentation by the MSE of the target voltage [219]:

MSE =
1
T

T

∑
d=1

e2
v(d) (14)

The authors in [174] discussed a six-phase permanent magnet synchronous motor
control logic using an asymmetric membership function (AMF). The network regulation
intends to decrease the MSE to a precise and steady output voltage. A rational calculation
of the association function will enhance the FNN presentation meaningfully. It specifies
in [189,228] that conservative association functions, e.g., Gaussian processes, can improve
network learning speed. Here, T indicates the sampling times’ number.
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4.2.3. Neural-Network Controller with Random Neuro-Fuzzy Interface Control

The research scholars in [196,219,273,274] established that designing the fuzzy rule is
the challenge of an FNN system, which needs to experience professional exposure. There-
fore, researchers in [196] proposed a self-adaptable network-established fuzzy inference
system (ANFIS) model to better understand FNN challenges through an additional charac-
teristic and active framework. The study includes fuzzy control logic and NN, which could
be prolonged through the four-level topology, as shown in Figure 21 [219], to a five-level
structure, as shown in Figure 22 [196]. The researchers suggested that IF . . . THEN fuzzy
rubrics can be inevitably produced in the training phase of the ANFIS system. In [196],
researchers established a straight-driven torque neuro-fuzzy logic controller pattern for
a PWM-inverter drive supplying an induction motor founded with an ANFIS system
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similar to [259]. The flux fault ξm and the torque fault ξψ are the input signals to the
ANFIS controller.
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The scholars in [196] proposed the usage of a five-level topology for an ANFIS model,
where level 1 comprises the association stage as input weights Wψ and Wm. Level 2 selects
the least through the inputs. Level 3 sets the standardization. In level 4, researchers pooled
the outputs 01 to 09 alongside system inputs ud = (εm, εψ). Level 5 contains the system
outputs of the stator voltage vector coordinates ϕvc, and Vc, the stator flux vector gradual
angle ∆γi and actual angle γs, respectively. In [196], scholars understood that the ANFIS
system’s variable fine-tuning is accomplished collectively with the backpropagation proce-
dures and the minimum square methodology (for variables in the 4th level). Furthermore,
in [273,274], research studies accept and explain that the assembly of the ANFIS is static
compared to [196], and the variables’ credential through the amalgam learning law.

Researchers in [196,259] acknowledged that the random and planned knowledge
presentation of ANFIS is the prime advantage over traditional direct methods in flexible
filtering and signal processing. The listed benefits include identifying non-linear modules
in line with the control system, inverse modeling, predictive coding on a chaotic time series,
adaptable channel equalization, adaptable interfering (sound or echo) cancellation, etc.

4.2.4. Neural Network System with the Recurrent Controller

The research scholars in [148] propose the RNFN modeling consisting of multilevel
probabilistic arrangements having a centered response ring to represent an efficient active
system. Therefore, the RNFNs are dynamically capable of managing time-variable input or
target, which is acute for a transient response as compared to predictive NNs in [196,219,259],
as the NN arrangements are only appropriate to the static association plotting and performance
description. A memory element of the time-lag response linking Z-1 is generally introduced
in a recurrent neural network (RNN) to allow the dynamic competence of an NN control
system [148]. The research scholars discuss a six-level T-SORNFN arrangement, as shown in
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Figure 23 [181], consisting of the input, the membership, the instruction, the recurrent, the TSK,
and the target levels. The study indicated that the system output droops on the current and
preceding input. In addition to the presented model, the system arrangement can challenge
the scatterplot dataset to simplify the improved presentation of dynamics and awareness.
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The research scholars in [181] discussed that combining RNN with fuzzy logic control
advances the system’s sturdiness. Hence, in [181], a TSK-based adaptive recurrent fuzzy
logic neural network control (RFNN) is suggested for a highly accurate path tracking of a
direct micro-stepping motor drive to perfect the reverse dynamics of the drive.

Researchers highlighted that the study in [219] is associated with the network structure
FNN, as shown in Figure 21 [219]. The significance of the RFNN in Figure 23 [181] is the
supplement of a recurrent layer, in which the deferred neuron target hi(k) is reverted as the
system input for improved dynamics. The researchers suggested an accustomed system
drawing and dimensions to an enhanced adaptive methodology and the individual system
variables pitching with recursive least square methods.
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The research scholars in [179] also suggested a novel improved Elman neural network
(IENN)-centered computing process for better optimal control performance of the DFIG
with MPPT as compared to FNN in [219]. Researchers used supervised learning in [187]
and primed the IENN to train this system established on a gradient descent to improve
learning capability. Furthermore, an online training IENN control system applying a back-
propagation (BP) learning algorithm with improved PSO is proposed and planned to assign
the wind turbine pitch correction for power control. The derivation is similar to that of the
BP computational process. It is engaged in regulating the variables of the ENN by applying
the training designs. By recursive usage of the chain law, the error function E for each level
is primarily expressed as follows [179]:

E = 1/2
(

ω∗re f −ωr

)2
= 1/2e2 (15)

where ωref
* and ωr signify the rotor speed reference and the generator rotor speed, singly,

and e means the tracing error. In [275], researchers found a similar RNN structure for
better optimal control performance of a single-phase grid integrated inverter controller
under the variable system parameters. With the suggested regulation, the system can
follow maximum power through the produced power as the input, even with parameter
uncertainties.

4.3. Reinforcement Learning-Based Control Methodology

The research scholars in [240,244,260,261] discussed the reinforcement learning (RL)
model-based control system. Proposed reinforcement learning (RL) in [240] explains how a
proxy picks up from its knowledge by openly relating to the ambient over engagements,
conditions, and compensations, similarly to supervised learning in [157,194,259], where
a proxy picks up from the samples delivered by an outside administrator. The proxy
accepts a recompense whenever it transfers from an existing condition to an alternative.
The researchers in [240] proposed the RL model to map conditions to activities to make
the most of the compensations. The RL model pacts with the finite Markov node-set [S, A,
Pa

ss′ Ra
ss′ ]. It consists of S as a set of conditions, A as a set of activities, Pa

ss′ as a state
alteration probabilistic function to deliver the likelihood of changeover from one state s to
an alternative state, where, upon action, a is initiated, and Ra

ss′ is the recompense function
that regulates the recompense after the state conversion [240].

The study in [240] listed that value functionality assessment is essential for RL proce-
dures. The study categorized the RL problem-solving methodology as the modeled-free
temporal difference (TD), modeled-free Monte Carlo method, and modeled-based dynamic
programming learning. Q-learning is a form of the modeled-free RL algorithm based on TD
and has numerous built-up uses, such as optimal control and multi-agent RL systems [261].
It accrues experience gradually and acquires a specific control strategy that optimizes
defaulted objectives. The defined stored and experienced action values in a Q-table and the
Q-learning form [240] are:

Qt+1(st, at) = Qt(st, at)

+lt

[
rt+1 + γmax

ai
Qt+1(st+1, ai)−Qt(st, at)

]
(16)

It consists of γ ε [0, 1] as the discount factor, which describes the current values of the
rewards to be established shortly, i as the act index in accomplishing the planetary, and Qt
(st; at) as the act-value function requiring an evaluation.

The research scholars proposed an RL-oriented actual intellectual MPPT controller in
the sustainable energy system, as shown in Figure 24 [240].
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The study includes accessible knowledgeability by interrelating with the domain. The
research scholars expressed an optimized control approach through the Q-table. In this
study, the Q-table comprises state changeover possibility q(st; at) elements to maximize the
projected rotor speed output power ω+

r . Given the present structure state St, the ability
to be accomplished comprises the current output electrical power Pe and the generator
rotating speed ωr. Besides participating in an NN within the Q-learning of RL [247], this is
extended effort, since the wind-driven turbine variable and the air velocity is not mandatory
here. Hence, it evades the state-space limitations.

The researchers in [276] proposed an adjustable pitch controller consisting of a critic
network and action network for the DFIG-connected wind turbine based on reinforcement
learning. By measuring the objective data of the system, it converges to the optimal control
solution in real-time. As shown in Figure 25 [276], the aim is to steady the output speed of
the control system at the designed rate when the wind-driven turbine is under the influence
of a higher wind speed than the designed speed, and control the fluctuation on a smaller
scale. Figure 26 [276] is the structure of the critic network. It is a backpropagation neural
network with a hidden layer. Where {x1, x2, x3, . . . , xn } and u are the input and output of
the action network, correspondingly. J(t) is the output of the critic network that is applied as
the estimated value of the accumulative prospect reward at time t to forecast the cumulative
compensation acheived from the control output of the active network [276]:

J(t) = ∑Nh
i=1 w(2)

ci (t)pi(t) (17)

Here, Nh is the total number of the hidden nodes, Wc is the weight vector in the critic
network, and pi is the corresponding output of the ith hidden node. The research scholars
in [244] established that the rebooted accessible knowledge procedure absorbed by the
system’s aging behaviors elevates the optimum relation. It meaningfully advances the
self-sufficient ability of the wind energy transformation method.
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Research scholars in [260] established an intellectual MPPT control procedure for the
electronic power control of photovoltaic arrangements utilizing RL. The study in [260]
suggests a standard RLMPPT control methodology based on a reinforcement learning
(RL) methodology that follows and regulates the maximum power point of a photovoltaic
source deprived of any previous data under varying conditions. Researchers explained a
Markov Decision Process (MDP) modeling for the MPPT photo voltaic procedure, and an
RL algorithm is suggested and assessed on several photovoltaic resources. The proposed
RLMPPT control methodology is also linked alongside the Perturb and Observe (P&O)
algorithm [277], displaying improved outcomes in respect of speed and the generated
power to diverse PV resources with minimal set-up interval [260].
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A neural network control accomplishes the learning process from samples given by an
outside administrator. The RL control system absorbs the knowledge by interrelating the
background over activities and recompenses. Hence, the RL-type control is advantageous
to novel schemes having no present statistics [260,277].

4.4. Summary of AI Algorithms in Power Converter Controllers

A summary presented in Tables 4 and 5 indicates the benefits, boundaries, and an
assessment of artificial intelligence-based algorithms and their procedures in power elec-
tronics’ control systems and the life span used for grid-integrated DFIG wind turbines and
renewable energy resources. It is significant to state that AI procedures’ active achievement,
sturdiness, simplification, and conjunction speed are vital in advanced control uses. The
procedure difficulty and process of computing are the primary contests. Therefore, the
necessities of control procedure speediness and precision are very crucial. Moreover, the re-
searchers established that AI holds massive potential in power electronic converter control
systems. The discovery of numerous openings and challenges is still to be as follows.

Table 4. Summary of AI algorithms in power converter controller.

Dynamic Performance
Measures

Fuzzy Logic
Machine/Deep Learning Reinforcement

LearningFFNN FNN RNN RFNN

Dataset requirement Superior Finest Superior Good Good Not
applicable

Approximation ability Good Superior Finest Finest Finest Finest

Strength Better Good Superior Superior Finest Finest

Calculation burden Finest Finest Superior Good Good Not
applicable

Expert knowledge rooted
in the ability Yes No Yes No Yes No

System Dynamics Not
applicable

Not
applicable

Not
applicable Applicable Applicable Applicable

Table 5. Assessment of AI procedures in every stage of the lifespan of the power converter system.

Conditions of
AI in Power
Electronics’

Control
System

Data Set
Condition Accuracy Sensitivity Speed Interpretability Computing

Effect

Low High accuracy High High High Moderate

4.5. AI Outlook on DFIG Power Converter Control System

Based on the research reviews on algorithm perception, it is essential to explore the
structures of AI related to various lifetime-cycle stages of the power electronics’ converters.
Various detailed examples have demonstrated the necessities of AI methodologies for each
lifetime-cycle stage of a power electronic system. For the intellectual controller of a power
electronic converter system, the actual time control errors, e.g., the speed error, the active
and reactive power error, voltage error, the torque error, and the current error, need to be
resumed to the controller for the self-adaptive apprising in an online approach.

It is conclusive that AI holds enormous potential in power electronic converter control
systems. Thus, the necessities of algorithm accuracy, speed, and margin of error are the
most acute. In addition, the controller’s steadiness needs to be hypothetically confirmed,
and thus accountability is compassionate. The intellectual controller, in general, is tuned
online. Hence, it is needless to arrange the data sets for the model drill.
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4.5.1. Rationalization of AI Methodologies Applied to DFIG Power Converter Control System

The usage of AI in the smart grid-integrated DFIG-based wind turbine power converter
control system is now reaching the emerging markets. In this context, Artificial Intelligence
can cut energy wastage and low energy costs and enable and fast-track the usage of clean,
renewable energy sources in power systems globally. AI can also advance grid-integrated
power systems’ planning, operation, and control. Thus, a tie-up of AI technologies with
DFIG power electronic converter control systems to deliver clean and economical energy
is vital for growth. This growth can be achieved by shifting the know-how of the power
sector abnormalities to AI modeling. Though there are several types of research on AI for
power electronics converter systems in the works of literature since the 1995s, the hands-on
industrial applications are still inadequate, which appears to be a short gap associated with
the appealed AI possibilities. However, it is essential for deep research into an assignment
in which AI shall fundamentally overtake conservative control system approaches.

The researchers in [278] recognized the reasoning of AI-based explanations by associ-
ating them with a conservative methodology based on the engineering application views,
e.g., application difficulty, procedure precision, liability, sturdiness, additional equipment
requirements, computerized calculation intake, entrenched ability, etc.

4.5.2. Association of Vital Information

Safety, optimization, and robustness are the cornerstones of autonomous Artificial
Intelligence technologies. Building a safe and robust advanced AI-based power electronic
converter control system is so complex that no single manufacturer can single-handedly
develop all necessary technology. Instead, there is an extensive ecosystem of partnerships,
each working on a different aspect of the required technology. Researchers achieved the
multilayer information combinations to accomplish the visions of every detail base at the
dataset level [163], characteristic level [207], and their groupings. If these statistic bases
and patterns are simultaneously misused, likely partialities can be alleviated to advance
the system’s sturdiness. Consequently, the increased benefits of the pattern-impelled edge
and the dataset-impelled edge improvised the power system’s precision and sturdiness.

4.5.3. Fast Tracking AI at Lightning Speed

Enhanced computational power and an exponential surge in the database have simu-
lated the rapid rise of artificial intelligence. But as AI systems become further refined, they
will even require additional computational power to tackle their requirements. Traditional
computing hardware probably will not be capable of monitoring with present field uses,
e.g., the control system, and execute a stiff condition on the procedure speediness. Though
compound deep learning methods [275] can deliver a more remarkable presentation, it is a
computer algorithm concentrated on power electronics converter systems. A possible way,
is with the automated AI procedures applied on economically operative components that
deliver similar accomplishments with deep learning algorithms.

4.5.4. Privacy of the Accrued Database

Researchers assumed that AI technologies’ applications in the smart grid-integrated
renewable energy system would confront the challenges of inadequate database model accrual
based on the current advancement of AI technologies. The application of heap database analysis
in the integrated smart grid is still in the early phase, and the database accrual in numerous
application situations is not the same. Dataset models that encounter the requirements of
various AI technologies applications are not abundant, so understanding AI applications
driven on minor data set samples is a challenge that needs continual attention.

The AI-based dataset privacy appeals to the association between the General Data
Protection Regulation (GDPR) [279] and artificial intelligence (AI). It assesses the modern-
ization in AI technology and focuses on applying AI to the personal dataset. It associates
with the challenges and opportunities for individuals and society, evaluates risks and how
risks can be mitigated, and empowers opportunities through technology and regulation.
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It analyzes how AI is controlled in the GDPR and observes how it goes into the GDPR’s
theoretical structure, particularly to purpose restriction and dataset minimization. It evalu-
ates dataset subjects’ privileges, such as the rights to access, removal, transferability, and
fairness. Along with the censorious guidelines, the training of typical AI procedures is
stimulating, since the compacted dataset gathering may not be possible shortly.

Thus, for power electronic converter uses, it is encouraging to advance a collective
learning system for AI procedures deprived of jointly combining datasets from various
localities, e.g., merged knowledge [280]. The study accomplishes this by perceiving that AI
can be arrayed reliably with the GDPR. The GDPR does not provide adequate guidelines
for power electronic converter controllers, and its preparations need to be prolonged
and emblematized. It fits competently trending dataset confidentiality guidelines on the
application of AI-based outcomes.

4.5.5. Power Electronic Database

As a result of the complication of the power electronics’ converter control system,
the empirical testing for database gathering is primarily cumbersome and uneconomical.
The convincing request on structuring the mutual power electronic database and expert
base is further growing. The particular open-knowledge databases are acute to standard
computational process presentations and fast-track usage growth. It will advance the
universal power of electronic groups in academic circles and industries.

5. Conclusions

Authors aligned with the AI methodologies, research, and analysis in power electron-
ics’ control systems for smart grid-integrated DFIG-based wind turbines and renewable
energies. This study established that the current AI computational processes, such as fuzzy
control logic and machine/deep learning, should be designed and optimized with fuzzy
control logic, and machine/deep learning and validated through simulation practices in
evaluating research leanings and hotspots.

Based on the functionality viewpoint, the AI-related applications are handled fun-
damentally with improvisation, classification, regression, and dataset arrangement inves-
tigation. By learning the above discoveries, unconventional control approaches will be
applied to improve the wind turbine’s energetic performance and power system stability.
The authors will consider an elementary control strategy for standard and uninterrupted
operation and interact with the electronic power control system, i.e., the frequency, speed,
and voltage converter, and a precise control strategy for integrated smart grid abnormalities
and grid code achievement. The control system will be designed and optimized using
machine/deep learning considerations and verified by simulations.

Hence, the study focuses on the smart grid-integrated DFIG-based wind turbine sup-
port capability by addressing the abnormalities’ predictive control system and protection
methodologies. These abnormalities are discussed in the literature review so that the
wind-driven turbine stays connected to the smart power grid all the time.

6. Future Scope

Advanced AI control strategies will be developed based on the above discoveries to
enhance the wind turbine’s dynamic performance and improve its power system integrity
and reliability. Future work includes making the AI controller faster and more suitable
for large power systems used for practical methods. Some futuristic improvements may
also be caused by optimizing the neural networks and genetic algorithms. Modifying the
fuzzy rules and fine-tuning the ranges of proportional and derivative gains will enhance
the performance during voltage dip events. These modifications need more research
and expertise.
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AC Africa Case
ACO Ant Colony Optimization Algorithm
AE Auto Encoder
AI Artificial Intelligence
ANFIS Adaptive Neuro-Fuzzy Inference System
ANN Artificial Neural Network
CNN Convolution Neural Network
CSI Current Source Inverter
DFIG Doubly Fed Induction Generator
DL Deep Learning
ENN Elman Neural Network
ESN Eco State Neural Network
ESR Equivalent Series Resistance
FFNN Feed-Forward Neural Network
FMEA Fault Mode and Effective Analysis
FNN Fuzzy Neural Network
FSMPC Finite State Model Predictive Control
GA Genetic Algorithm
GL Germanischer-Lloyd
IEC International Electro-Technical Commission
IEDs Intelligent Electrical Devices
IRENA International Renewable Energy Agency
KLNN Kohonen Learning Neural Network
LSTM Long Short Term Memory
ML Machine Learning
MLPFF Multi-Layer Perceptron Feed-Forward
NARX Non-Linear Auto Regressive Network
NZE Non-Zero Emission
PCA Principal Component Analysis
PEC Power Electronic Circuit
PFF Probabilistic Feed-Forward
PHM Prognostic Health Management
PSO Particle Swarm Optimization
PWM Pulse-Width Modulation
REs Renewable Energies
RFNN Recurrent Fuzzy Logic NNN Control
RL Reinforcement Learning
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RNN Recurrent Neural Network
RT2FNN Recurrent Type-2 Fuzzy Neural Network
RVM Relevance Vector Machine
SE Sum-Squared-Error
SL Supervised Learning
SOA System Operational Availability
SPQ Small Power Quality
SPS’s Stated Policy Scenario
STEPs Social, Technological, and Environmental Pathways
SVPWM Space Vector PWM
SVM Support Vector Machine
TD Temporal Difference
TDNN Time-Delayed Neural Network
TFs Transfer Functions
USL Un Supervised Learning
WP Wind Power
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