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Abstract: The electric vehicle (EV) industry is quickly growing in the present scenario, and will
have more demand in the future. A sharp increase in the sales of EVs by 160% in 2021 represents
26% of new sales in the worldwide automotive market. EVs are deemed to be the transportation
of the future, as they offer significant cost savings and reduce carbon emissions. However, their
interactions with the power grid, charging stations, and households require new communication
and control techniques. EVs show unprecedented behavior during vehicle battery charging, and
sending the charge from the vehicle’s battery back to the grid via a charging station during peak
hours has an impact on the grid operation. Balancing the load during peak hours, i.e., managing
the energy between the grid and vehicle, requires efficient communication protocols, standards, and
computational technologies that are essential for improving the performance, efficiency, and security
of vehicle-to-vehicle, vehicle-to-grid (V2G), and grid-to-vehicle (G2V) communication. Machine
learning and deep learning technologies are being used to manage EV-charging station interactions,
estimate the charging behavior, and to use EVs in the load balancing and stability control of smart
grids. Internet of Things (IoT) technology can be used for managing EV charging stations and
monitoring EV batteries. Recently, much work has been presented in the EV communication and
control domain. In order to categorize these efforts in a meaningful manner and highlight their
contributions to advancing EV migration, a thorough survey is required. This paper presents
existing literature on emerging protocols, standards, communication technologies, and computational
technologies for EVs. Frameworks, standards, architectures, and protocols proposed by various
authors are discussed in the paper to serve the need of various researchers for implementing the
applications in the EV domain. Security plays a vital role in EV authentication and billing activities.
Hackers may exploit the hardware, such as sensors and other electronic systems and software of the
EV, for various malicious activities. Various authors proposed standards and protocols for mitigating
cyber-attacks on security aspects in the complex EV ecosystem.

Keywords: PEVs; V2G; G2V; IoT; Zigbee; machine learning; big data and blockchain; V2G; V2X;
charging station

1. Introduction

Governments and automobile manufacturers of various countries are promoting elec-
tric vehicles (EVs) as a vital technology for zero carbon emissions for climate change [1].
EVs are very climate-friendly when compared to vehicles that run on gasoline and diesel [2].
Most automotive manufacturers aim to stop selling new gasoline-powered vehicles and
trucks by 2035 and will manufacture battery-powered vehicles [3]. The worldwide EV mar-
ket size will be increased to 34,756 thousand units by 2030, at a compound annual growth
rate of 26.8% [4]. Vehicles are connected to everything nowadays. Vehicle-to-everything
(V2X) is a wireless communication technology that is extensively used for vehicle-to-
pedestrian, vehicle-to-infrastructure, vehicle-to-vehicle (V2V), and vehicle-to-infrastructure
communication (V2I). V2V technology allows vehicles to share relevant information within
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a specific limit. V2I technology can be used to communicate with various infrastructures,
such as the grid, traffic lights, and municipal authorities. This technology can also be used
in autonomous vehicles to navigate urban areas. Vehicle-to-pedestrian technology can send
traffic status alerts to pedestrians’ cell phones and warn them in order to avoid accidents.
Various sensors, electronic systems, communication protocols, and standards are being used
in the technologies mentioned above and have been implemented successfully. Various
important parameters of the EVs, such as the driving range, monitoring the battery status
of the vehicle, receiving billing information after battery charging and discharging, and
receiving alerts from vehicles and other infrastructure, are to be implemented effectively.
Due to the pressing need for the technological advancement of EVs, various protocols,
communication standards, and computational technologies have emerged and have been
utilized effectively for the improved performance of various EVs. Only a few papers
addressed EVs’ standards, protocols, communication, and computational technologies.

Vendor-independent, open, and international EV charging standards pliable for infras-
tructure operators and EV drivers have been discussed in [5]. In [6], the author discussed
various open protocols used in Europe and USA for the EV industry. However, [5,6] au-
thors have not discussed anything related to the IoT, Zigbee, and other communication
standards used for V2I, vehicle, and personal communication. In [7], the author discussed
the communication protocols and standards of EV-grid messaging. Various protocols,
such as openADR, OCPP, and ISO15118, have been discussed. The paper also proposed
methods for selecting messaging protocols. James Mater et al. [7] did not focus on wireless
communication technologies such as LoRa, LoraWAN, and 5G for V2X communication.
Various standards and communication protocols for different purposes for EVs have been
discussed in [8,9]. Authors in [9] discussed communication standards and technologies for
EVs and smart grid applications. The authors discussed wireless communication standards
such as Wi-Fi, Zigbee, and LTE, and the use cases were compared. In [10], The authors
proposed various electric vehicle smart charging technologies and strategies to provide
solution for charging demand.The authors did not focus on computational and commu-
nication technologies like IoT, ML and blockchain for EVs. Myriam Neaimeh and Peter
Bach Andersen et al. [11] discussed the open communication protocols for vehicle-to-grid
(V2G) integration. The authors did not focus on the communication and computational
technologies required for V2X communication.

Vidhya et al. discussed the electrical aspects of EVs, such as the drive system and
electrical machine design [12]. The authors focused more on control techniques and
converter topologies and did not mention the computational and communication-related
protocols. In [13], the authors presented a literature review on plug-in EVs, focusing more
on EVs’ charging and technical aspects but not on the computational and communication
technologies. In [14], the authors presented a literature review on EVs that focuses on the
problems and solutions of PEV deployment and integration into the grid in the United
States. They mentioned much about the hurdles in the deployment of PEV. Liao et al. [15]
presented a comprehensive literature review on EV consumer preferences. They compared
EVs’ psychological and economic aspects to give direction to research.

In [16], the authors focused more on the moderators and mediators for EV adoption,
which would be helpful to policy makers and researchers. The authors did not mention any
literature review on computational technologies. In [17], the authors thoroughly mentioned
various technologies for EV battery management, technologies related to the charging
process of EVs, and EV battery management. In [18], the authors presented a paper on
the interaction of EVs with power distribution systems. They presented a chronological
survey showing the interactions between the electric grid and EVs. The authors did not
mention anything about computational and communication technologies. The need for
EVs is growing daily, and we can see a drastic increase in migration to EVs, cars, and
buses in every country [19,20]. In the future, every EV should communicate with the
infrastructure, vehicle, and person. Communication technologies are very much required
to ensure efficient and secure inter and intra-vehicular communication [21]. Computational
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technologies such as machine learning and big data can be used to predict charging station
deployment. Blockchain technology can be used to make the billing and transactions of
PEVs more transparent and secure. Few authors focused on the open communication
standards of EVs, and some authors discussed only wireless communication technologies.
The number of published papers on communication and computational technologies taken
from the Scopus database is shown in Figure 1.

Figure 1. Publication statistics on emerging technologies for EVs.

The above statistics show that emerging technologies are yet to be adequately ex-
ploited to enhance EVs’ utility. This paper discusses the open communication standards,
communication technologies, and computational technologies required for the PEV in-
dustry. The works of various authors have been discussed in the sections. In this paper,
Section 2 describes various open standards for plug-in EV charging and infrastructure
development. Use cases and the purpose of various open communication standards are
discussed. Section 3 is about the communication technologies used in V2X communica-
tion. The work of various authors related to communication technologies used in IoEV is
discussed. Various communication technologies’ speed, range, and frequencies are com-
pared. Applications of disruptive computational technologies such as machine learning, big
data, and blockchain are discussed in Section 4. The purpose of various machine learning
techniques and big data tools is also discussed in Section 4. This survey will be helpful
for those working in the EV industry, building the architectures for EV charging stations,
and establishing communication among the EVs and infrastructure. This paper discusses
various applications of EVs with the above-mentioned disruptive communication and
computational technologies.

2. Protocols and Standards for EVs

As EVs have become an integral part of the transportation system, there is an in-
creased demand for charging stations. Protocols are rules and guidelines certifying smooth
communication and data exchange between various entities in the EV industry. Charging
station operators and service providers are facing challenges regarding the protocols and
regulations of their networks.

Protocols and standards are rules and guidelines used to provide efficient communica-
tion between various entities, such as plug-in EVs, smart grids, and charging point stations.
Various global organizations and research institutes designed and developed open source
and proprietary protocols to meet the ever-increasing EV demands and requirements. One
of the challenges in the design of plugin EVs is interoperability. The increased usage of
battery EVs is associated with challenges such as efficient energy management in the grids,
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battery management, and providing authentication of data transfer. Specifications and
details of all of the EVs protocols have been published [6] by ElaadNL, an innovation center
in the Netherlands.

Very important protocols and standards for EVs have been discussed in [5,6] and
are summarized in Table 1 and in Figure 2. The protocols discussed in this paper are
open standards.

Table 1. PEV industry protocols use cases.

Reference Protocol/Standard Use Cases

[5,6] OCPP Authorize charging session, Billing, Managing grid, Operating charge point,
Reservation, Smart charging

[5,6] OCHP Providing charge point information, Reservation, Roaming, Authorizing
charging sessions, Smart charging.

[5,6] OCPI Providing charge point information, Reservation, Smart charging, Authorizing
charging sessions, Roaming.

[5,6] OSCP Handing out capacity budgets, Managing grid capacity using these budgets,
Smart charging by communicating capacity forecasts.

[5,6] OpenADR Managing grid, Smart charging, Handling registrations

[5,6] eMIP Providing smart charging features, Authorizing charging sessions,
Billing, Roaming.

[5,6] ISO15118 Authorizing charging sessions, Schedule-based charging, Certificate handling.

[5,6] IEEE2030.5
In-house smart grid solutions, Demanding response/load control, Exchanging
metering data, Providing tariff information, Sending text messages, Providing
actual usage and billing information, Energy flow reservation.

[5,6] IEC 61850
Communication parameter modeling, Message structure standardization,
Plug-and-play for different applications, such as charging station–EV
coordination, Virtual power plant operation

Figure 2. Use cases of different EV protocols and standards.

The V2G industry is not yet fully evolved. The standardization of the protocols is
critical for meeting new requirements of the EV communications infrastructure when
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incorporating the capabilities of EVs into grid operations management effectively [6].
IEEE 2030.5-has recently been updated to incorporate the CA Rule 21 and IEEE 1547-
2018 functionality in the standard. It is an application layer standard based on web
services with built-in security and is designed to use the modern Internet to transport
its messages between devices. It is emerging as the preferred industry standard for DER
communication [7]. Several standards related to the DC fast charging option are under
development by the International Electrotechnical Commission (IEC). The IEC 61851-23
standard represents the requirements for communication architecture and grid connections
for fast charging. The use cases and purpose of various communication protocols and
standards used in EVs are provided in the figure below.

In addition, the IEC 61850 standard has been constantly improved to incorporate EVs
and their respective operations [22]. There have been efforts to link different standards, such
as IEEE WAVE and IEC 61850, to successfully manage ad hoc vehicle fleets and the charging
burden [23,24]. The initial results have been very promising, although the connectivity
between different EVs in an ad hoc manner raised privacy concerns. In order to address
these concerns, there have been studies on securing these message exchanges [25,26].
Another effort that combines standard harmonization and addressing security concerns
is presented in [27], where the IEC 61850 communication of EVs in a system is performed
via XMPP. Such schemes have also been tested in real-life testing conditions via hardware-
in-the-loop testing, where standard messages are exchanged to perform power system
control [28].

IoEV is all about connecting the EVs through the Internet to control and manage the
data and energy transfer for V2X. As this is an emerging area, some standards are under
development or published. When the EV is being charged, the vehicle has to follow certain
communication standards and protocols, which The Society of Automotive Engineers
(SAE) has defined. The standards have been described in [29,30] and are summarized
in Table 2. In [31,32] authors communication models based on IEC 61850 are created for
the grid energy management system, PV, EV, and home energy management systems.
Additionally, communication message flows have been built, and utilising various commu-
nication technologies, their performance has been examined. Hussain et al. [33] proposed a
method which uses cognitive radio to establish communication during emergencies and
the simulation results shows the viability of modeling.

Table 2. Communication standards when EV is being charged.

Standard Purpose

SAE J2293 Architectures and functionality required for EV to transfer energy
SAEJ2836/1& J2847/1 communications between EVs and the power grid, and defines energy transfer
SAEJ2836/2& J2847/2 Provides the essentials for the communication between EV and off-board DC charger.

SAEJ2836/3& J2847/3 Defines essentials and use cases for energy (DC) transfer from the grid-to-EV and
grid-to-vehicle energy transfer.

SAE J2931 Provides digital communication essentials between off-board device and EV.

SAE J2931/2 Provides the essentials for physical layer communication with in-band signaling
between EVSE and EV.

3. Emerging Communication Technologies for EVs

The autonomous vehicle number has increased significantly over the past few years.
Reliable and efficient V2X communication is integral to smart cities and autonomous
driving vehicles. Energy-efficient and low-latency architectures are required to implement
V2X communication [33]. V2X communication includes communication from the vehicle to
the pedestrian, vehicle, network, and infrastructure, as illustrated in Figure 3. The main
challenge in V2X communication is data exchange from vehicles to other units at high
speed without losing data packets.
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Figure 3. V2X communication of EVs.

The electronic units of the vehicle and the other infrastructure must respond to the
requests sent by one another without causing much delay. Emerging technologies such as
IoT, 5G, and LoRa are extensively used for V2X communication.

Using the Internet of Things (IoT) for EVs offers various advantages and flexibility.
Various authors proposed different types of charging management systems using the IoT.
An improved decentralized charging mechanism is proposed to coordinate the charging
of large-scale EVs in various residential buildings [34]. EV batteries need to estimate an
accurate charging status to enhance their lifespan. A battery management system using the
Coulomb method and MQQT for communication has been proposed [35].

IoT helps communication between the vehicle and pedestrian and V2V. MQQT and
COAP protocols are extensively used to transfer messages from machine to machine or
machine to human beings. Bilateral communication, data gathering, and response control
are the key features of IoT. Wired and wireless communication standards include Zigbee,
Bluetooth low energy (BLE), LoRa, Wi-Fi, and cellular. Some of the IoT communication
technologies are shown in Figure 4. A comparison of parameters of various communication
technologies has been given in Table 3.

Table 3. Popular communication standards used in IoEVs.

Communication Technology Standard Speed Range Frequency Spectrum

Zigbee IEEE 802.15.4 250 Kbps 100 m 2.4 GHz

LoRa/LoRaWAN IEEE 802.15.g 27 Kbps 10 Km+ 865–926 MHz

WiMAX IEEE 802.16 70 Mbps 50 Km+ 2–11 GHz

Wi-Fi IEEE 802.11 100–250 Mbps 100 mts+ 2.4, 5 GHz

GSM/GPRS ETSI 114 Kbps 35 Km+ 1800, 1900, 900 MHz

LTE 3GPP 0.1–1 Gbps 28 km/10 Km 700–2600 MHz

Many authors have proposed architectures and frameworks designed with the tech-
nologies mentioned above. Customers can visualize the energy consumption through
energy management units (EMUs). EMUs help customers in power grid interactions.
EMU connects to EV supply equipment (EVSE) via Zigbee (802.15.4) and other WLAN
technologies. Most smart home ecosystem providers use Zigbee as a full stack solution [36].
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Figure 4. Types of communication technologies used in IoT.

Cellular communications with different operators offer services for smart grid appli-
cations. EMU and power meter manufacturers embed digital communication modules to
enable garage charging. Application data such as energy consumption and prices are ex-
changed periodically. Most popular cellular networks have various advantages: (1) cellular
communication technologies such as 5G are advanced enough to meet the requirements of
smart grids; (2) since almost all of the cellular networks operate on a licensed spectrum,
there is no need to use unlicensed bands in the spectrum; (3) all of the cellular networks are
reasonably scalable in order to connect many EVs.

Mukarram A. M. Almuhaya et al. [37] discussed various trends, opportunities, and
simulation tools for LoRa technology. The authors compared popular simulation tools
to analyze the network performance of LoRa/LoRaWAN. The authors also classified
the LoRa/LoRaWAN performance in terms of network scalability, network coverage,
energy consumption, quality of service, and security. The various wireless communication
standards used in EVs are given in Table 4.

Table 4. Various wireless communication standards used in EVs.

Reference Objective
Wireless/Cellular
Communication
Standard

Solutions/Results Advantages

[38]
Modeling and simulation
of centralized EV
charging station

Zigbee
Simulation of AODV routing
protocol for EVCS using
NS-2 simulator

The packet loss rate is
significantly lower

[39] Communication between
PHEV and smart grid Zigbee

Hardware modules such as
Arduino boards were used,
along with XCTU software
for communication

Provides architectures to
meet the interest of vehicle
owners and grid operator

[40] An EV charging system Zigbee

Zigbee energy dispenser
(ZED) with onsite charging
hotspot subsystem and
backend web portals
subsystem was developed

Coordinates the dataflow
among utility information
systems and
charging hotspot
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Table 4. Cont.

Reference Objective
Wireless/Cellular
Communication
Standard

Solutions/Results Advantages

[41]
EV alarm regionalization
management
control system

Zigbee

Developed alarm system and
tested multi-sensor
information with
data collection.

Strong robustness and high
practicability

[42]
RFID mesh network
design for EV smart
charging infrastructure.

Zigbee WINSmartEV four-channel
smart charging infrastructure

Cost efficient to identify
and authorize vehicles
for charging

[43]
Heterogenous LPWAN
communication for EV
charging infrastructure

LoRa

Simulation of SNR
characteristic of LoraWAN
and hardware for
communication is proposed

better noise performance,
which extends to −20 dB
with a BER performance
of 10−5

[44]
Implementation of smart
energy meter using a
LoRa network

LoRa

Residential electricity
metering
networks and an electrical
variable measuring device
for households using
LoRa were created

Low power consumption
and robustness

[45]
Vehicle charging
architecture based
on LoRa

LoRa
Developed LoRa protocol
between EV and
energy management

Vehicles obtain information
on charging station before
actually arriving there

[46]

Energy analysis of
LoRaWAN technology
for traffic sensing
applications

LoRa

The adaptive algorithm was
used to transmit sensor data
collected over user-defined
time intervals

Preventing data loss and
better energy efficiency

[47] Privacy protection model
for V2X 5G Intelligent

vehicle-dispatching model

Optimizing the
distributed power system
to make up for the EV

[48] Cyber security issues in
5G enabled EVCS 5G

Simulation of the FDI attack
and DDoS attacks on 5G
enabled remote (SCADA)
system that controls the EV
controller of the EVCS

Could safeguard the EVCS
and its stakeholders from
possible cyber threats

[49]
EV public
charging network based
on 5G

5G
Using forward and backward
algorithms for optimizing
the charging mode of EVs

Testing and processing 5G
and big data EV public
charging network research.

[50]
EV charging behavior
analysis using hybrid
intelligence

5G

Cloud-computing-based
hybrid computing
architecture with
applications in the 5G-based
vehicle-to-grid networks

EVs can be accurately
identified with the
classification method

Charging stations are evolving into much more than just a charger by utilising Wi-Fi to
wirelessly interact between the electric vehicle, the user, and the infrastructure for charging.
Wi-Fi is becoming the most effective method for controlling the charging process in both
wired and wireless charging settings [51]. The wireless communication standards such
as Zigbee and LoRa have been extensively used for developing the applications of EVs,
such as the simulation of EVCS, network design for EV smart charging infrastructure, and
implementation of smart energy meters using the LoRa network, etc., which are given in
Table 5.
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Table 5. Applications of communication standards in IoEVs.

Standard Application in IoEVs

Zigbee (802.15.4) Charging sub-system, The interaction between PEVs and
grid, EVSE to EMU communication

LoRa, LoRaWAN EV charging architectures, Data exchange between EMS
and PEV

3G/4G/LTE/5G
Public charging of PEVs, Energy trading, Garage charging,
EMU-to-grid and mobile-PEVs-to-control-center
communication

Wi-Fi, WiMAX Public charging, Load shifting, EMU-to-grid and
mobile-PEVs-to-control-center communication

4. Computational Technologies for EVs

For the past few years, computational technologies such as artificial intelligence, big
data, and blockchain have revolutionized many sectors, such as health care, education,
defense, finance, agriculture, and banking. Artificial intelligence technologies such as
machine learning and deep learning have been applied to many data sets for predicting
and forecasting the results. Machine learning is a subset or branch of artificial intelligence
that mimics human behavior. Supervised machine learning algorithms such as regression
and classification can be applied to labeled data for analysis. Unsupervised machine
learning algorithms such as dimensionality reduction, association, and clustering are
extensively used in biology and target marketing applications. Reinforcement algorithms
are extensively used in vehicle navigation applications. Reinforcement algorithms are also
used in robotics for industrial automation.

Deep learning techniques are a subset of artificial intelligence that can be applied to
unstructured data and facilitates computational models to learn features steadily from data
at various stages. Deep learning techniques are extensively used in ADAS. Tools such as
PyTorch, Keras, and tensor flow are used in research for deep learning applications.

Big data is a term that describes large, ever-increasing, complex, and hard-to-manage
volumes of both structured and unstructured data, and it is difficult or impossible to
process using traditional methods. With the growth of IoT, a huge volume of data are being
generated by sensors, RFID tags, and smart meters, driving the need to analyze and draw
insights from the big data. Specialized tools such as Apache spark and Hadoop are the
popular big data technologies used for big data processing and analytics.

Blockchain technology records the transactions in a digital ledger, and it is impossible
to change or hack the system [52]. The record is added to the participant’s digital ledger
whenever a new transaction happens. Blockchain uses a cryptographic signature, which is
immutable and called a hash in distributed ledger technology in which transactions will be
recorded. Bitcoin and Ethereum are the most popular crypto currencies that make use of
blockchain’s distributed ledger technology. The various computational technologies used
for IoEVs are shown in Figure 5.

4.1. Machine Learning for Plug-In EVs

Machine learning is a subset of artificial intelligence popular for data science and
computer vision applications. Machine learning technology can be used in EV-related
applications to leverage the performance that enables the EV’s success. As EV sales
have rapidly increased, implementing infrastructure such as EVSE and managing the EVs
effectively is tedious. EVs are chosen for energy sustainability. Machine learning technology
can be used for managing and orchestrating EVs. Machine learning comprises three types
of algorithms: supervised, unsupervised, and reinforcement as given in Table 6. The steps
involved in applying machine learning algorithms to EVs is illustrated in Figure 6.
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Figure 5. Computational technologies for IoEVs.

Table 6. Types of machine learning.

Machine Learning Type Purpose

Supervised Classification, Regression, Forecasting

Semi-Supervised For labeled and unlabeled data

Unsupervised Association, Clustering, Dimensionality reduction

Reinforcement ANN, RNN

Figure 6. Applying ML algorithms for predicting EV.
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Many researchers have developed EV charging recommendation systems for EVs.
The recommendation system considers multiple spatiotemporal factors for recommending
charging stations to the public

Unsupervised machine learning methods such as k-nearest neighbors, random forest,
and decision trees have been used for load forecasting. The driving range of EVs is predicted
inaccurately, and a better battery management system is required to estimate the energy
left for further travel. Yong Wanga et al. proposed an efficient decision-tree-based gradient
boosting algorithm (LGBM) to precisely predict the driving range of EVs. In this model,
the feature importance scores are provided to discover the relationship. Donovan Aguilar-
Dominguez et al. proposed a model to predict the availability of an EV providing the
vehicle-to-home services [53]. Machine learning algorithms have been applied to the data
related to distinct vehicle usage profiles, differentiated by the number of trips made per
week to predict the availability of EVs. Rafael Basso et al. proposed a time-dependent EV
routing problem with chance constraints (EVRP-CC) based on a Bayesian-based probability
model [54]. A summary of different machine learning models used for predicting charging
behavior is given in Table 7.

Table 7. Types of machine learning models used for predicting charging behavior.

Source Predicting Term Learning Model Type

[55] EV charging departure time Supervised ML (XG Boost and LR)
[56] Energy consumption at a charging outlet on University campus Supervised ML (KNN)
[57] Daily charging times charging capacity Supervised ML (Random Forest)
[58] Charging behavior based on clustering Unsupervised ML (K-Means)
[59] User charging behavior based on distinct clusters Unsupervised ML (GMM)

[60] Charging demand of parking lot based on expected departure and
arrival times Time-Series-Based Forecasting (ARIMA)

[61] Public charging station hourly load prediction Deep Learning (RNN)
[62] EV arrival rates and traffic flow estimation Deep Learning (CNN)
[63] Charging behavior based on labels obtained using clustering Deep Learning (ANN)

In [55], O. Frendo et al. used XGBoost and LR to predict the EV departure time in order
to improve smart charge optimization. An MAE of 82 min for departure was achieved.
In [56], the supervised ML model KNN was used to predict energy consumption, resulting
in 15.27% SMAPE. In [57], Y. Lu et al. used a random forest algorithm to predict the
charging times and charging capacity, resulting in 9.76% MAPE.

S.Venticinque et al. in [58] used k-means and KNN algorithms to find the charging
behavior and classify the data into clusters. In [59], J.R Helmus et al. used the unsupervised
Gaussian mixture model to find unique user charging behavior for nonresidential charging.
In [60], J.Zhu et al. used recurrent neural network (RNN)-based models to predict the hourly
charging load of a public charging station. X. Zhang et al., in [61], used a convolutional
neural network (CNN) to estimate traffic flow and arrival rates. In [62], Y.Xiong et al. used
artificial neural networks (ANN) for predicting the charging behavior using clustering
along with labels, resulting in a 78% accuracy.

In [64], Shuai Sun and Jun Zhang used machine learning and fuzzy-logic-based meth-
ods to drive the range prediction model to improve the prediction accuracy. In [65], Marina
Dorokhova et al. used reinforcement learning approaches for routing EVs with interme-
diary charging stations. They used a reinforcement machine learning approach that aims
to produce possible energy paths for EVs from the source to the target. Xue Lin et al. [66]
proposed energy management in a hybrid EV to minimize total operating costs based on
machine learning. The authors used the inner loop reinforcement learning process and
outer loop adaptive learning to minimize the fuel usage and battery replacement cost.
In [67], Connor Scott, Mominul Ahsan et al. used Holt–Winters and neural networks to
improve the public buildings’ energy performance. K-nearest neighbors, random forests,
and decision trees have been used extensively by many researchers in the EVs domain for
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load forecasting and energy monitoring. The driving range and energy consumption of EVs
using machine learning technology was discussed in [68]. Weijia Zhang et al. [69] proposed
a multi-agent spatio-temporal reinforcement learning framework. It is a multi-objective
and multi-agent reinforcement learning system. D. Cao et al. [70] proposed a prediction
module for forecasting the dynamic charging load using machine learning (ML) techniques.
A. Mathew et al. [71] discussed various approaches to deep learning algorithms, such
as recurrent neural networks (RNN) and artificial neural networks. Deep learning is a
method of clustering, classifying, and predicting things using different types of neural
networks trained on huge amounts of data [72]. Many standard CNN models, such as
AlexNet, GoogleNet, Inception-ResNet, VGG, etc., are available today to solve complex
problems. Renesas company has designed a r-Car development framework to acceler-
ate deep learning development for ADAS and automotive driving applications [73,74].
K.Lopez et al. [75] proposed the demand side management of EV smart charging using
deep learning techniques. The authors used various deep learning techniques to manage
smart charging.

4.2. Big Data Technology for EVs

Big data refers to the huge volume, complex, and variety of data that are difficult
to process using traditional methods. Unstructured data such as text documents, emails,
videos, and audio are part of big data [76]. EVs have made a massive impact on carbon-free
transportation. EVs are the producers of data that are generated from various sources, such
as onboard sensors and off-board sensors of various infrastructure, which communicate
with PEVs. Once the big data are stored in the cloud databases, they can be used for
developing algorithms, strategies for siting charging stations [77], and various policies
for battery management systems. Big data technology facilitates EV manufacturers and
policymakers to turn these challenges into opportunities. The real-time recharge data
of EVs enable the companies to know how many EVs are using charging points in the
vicinity [78]. IBM company and car manufacturer Peugeot teamed up to develop new
connected car services, such as analyzing drivers’ data to help retailers and car dealerships.
IBM’s big data and analytics platform allow Peugeot to analyze a wide range of driver and
vehicle data for safe transportation. The data collected can improve road building decisions
and ease traffic conditions in smart cities [79]. Streaming data can help drivers adapt to
driving conditions and avoid dangerous situations.

The volume of the data has doubled every two years. Recent advances in IoT have
increased the data’s volume, variety, and velocity. The vast amount of data generated by
buildings, EVs, and smart grids with the highest data transmission rates lead to big data.
The difference between traditional data and big data is given in Table 8. Big data analytics
uses innovative analytical techniques using large, different datasets containing distinct
sizes of non-structural and structural data from various sources [80]. Various sensors inside
and outside of the vehicle continuously transmit and receive data from infrastructure,
pedestrians, vehicles, etc., leading to the generation of huge volumes of data. Harnessing
this big data requires specialized data analytic tools to retrieve intelligent and meaningful
insights. Apache spark and Hadoop are the two big data analytics tools available to solve
the potential challenges of big data [81]. Big data analytics is essential to handle the huge
volume of data generated by ESEVs, smart meters, and intelligent electronic devices [82].
Every EV consists of sensors and electronic subsystems to monitor the battery’s driving
behavior and energy level.

The amount of information generated by various sources can be stored and analyzed
by various tools. One must distinguish big data from normal data before using the tools for
drawing insights. Distinct strategies and tools are deployed for big data and traditional
data [83]. Analytic tools used for traditional data may not support analyzing big data.
Hadoop and Spark frameworks are extensively used for big data processing and analytics.
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Table 8. Comparison of big data and traditional data.

Big Data Traditional Data

Data Type Structured, semi-structured, unstructured Structured

Data Structure Distributed Centralized

Relationship of Data Complex Uncertain

Data Volume Petabytes and zettabytes Terabytes

Apache Hadoop is a scalable and reliable distributed computing framework that can
be used for processing large data sets across clusters of computers. The framework is de-
signed to scale up from a single server to multiple servers. The framework also detects and
handles failures at the application layer. The Apache framework includes modules such as
Hadoop Common, HDFS, Hadoop YARN, and Hadoop MapReduce. The distributed file
system is the core of the HDFS framework and provides a high throughput. Hadoop YARN
and MapReduce are used for the cluster resource management and parallel processing of
large data sets. The other related projects include Ambari, Cassandra, Hbase, Hive, etc. [83].
Apache Spark is another popular framework for executing data-science-related projects
on single-node clusters. The key features of Apache Spark are real-time streaming data
processing, SQL analytics, and machine learning. SQL queries can be executed quickly with
Apache Spark for dashboarding and ad hoc reporting [84]. Apache Spark can be integrated
with various machine learning and analytics frameworks.

A comparison of Hadoop and Spark frameworks can be seen in Table 9. Hadoop is best
for batch processing, using the MapReduce feature to divide large data across clusters for
parallel processing. In contrast, Spark is extensively used for live streaming data analysis.
Apache Hadoop is extremely secure and supports LDAP, ACLs, etc. Spark relies on Hadoop
for necessary security. The other big data tools and their purpose is given in Table 10.

Table 9. Comparison of Hadoop and Spark frameworks.

Parameter Hadoop Spark

Cost Open-source platform Open-source platform

Scalability Using nodes and disks for scalability Tough to scale because it depends on
random access memory for computations.

Data Processing Suitable for batch processing Best for repetitive and live-stream
data analysis

Ease of Use and Language Support Java or Python can be used for
MapReduce apps.

Application programming interfaces can be
written in Python, Spark SQL, and Java.

Machine Learning

Performance
Performance is lower because it depends
on disk write and read speeds of
secondary storage

High performance due to in-memory
computations with reduced
disk operations.

The data from PEVs, infrastructure, and charging stations comprise the big data of
EVs, which require big data analytic tools running on the cloud platform. Mobile apps
designed by automobile manufacturers can be used to monitor the vehicle’s charging levels.
Data are mainly generated from electronic units and the sensors on the vehicle. Authorized
government enterprises can use big data to install charging stations based on the charging
behavior and patterns of EV owners. The huge volumes of generated data with variety can
be stored in the cloud for future projects.
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Table 10. Purpose of various big data tools.

Big Data Tools Purpose

Hadoop and HBase To optimize the charging via job scheduling

Hadoop, Pig script, MySQL To improve the interoperability of heterogeneous chargers

Cassandra and MongoDB NoSQL DBMS for managing large databases

Hadoop and R statistical package To improve the accuracy of the battery consumption model

J48 and M5 algorithms from Weka platform To provide decision support for power system operators

Big data analytics is useful for applications such as battery monitoring, finding the
better letter for installing charging stations, and PEV status tracking. Traditional statistical
methods and algorithms are not useful for drawing actionable insights from big data. The
challenges faced in using different big data tools is summarized in Table 11.

Table 11. Objectives and challenges in various big data applications.

Reference Technology Subdomain Objectives Challenges

[85] Big data IoEVs Proposed a categotization of
big data in IoV.

Extracting insights from
multidimensional data
generated from
heterogeneous objects

[86] Big data and ML Driving Parameters

Proposed and developed a
system prototype for
improving the
driver-braking style through
visual elements

Gathering the data from
in-vehicle sensors
and components

[87] Big data Smart Cities

Highlighted the feature of
edge computing that
supports BDA activities in
smart grid to EV integration
in smart cities.

Integrating security features
into design and development
of edge architectures

[88] Big data IoEVs Framework for EV range
estimation

Gathering real-time and
historical data of
all standards

[89] Big data Intelligent
Transportation

Big data analysis on EV data
using fuzzy means and k
means clustering algorithms

Gathering the data based on
different traffic conditions.

[90] Big data Driving Parameters
Analyzing the energy
consumption and driving
range of EVs

Collecting driving patterns
data from GPS data loggers.

In [85], Ansif Arroj et al. explored the key features of big data in the vehicle domain.
The authors explored that conventional data gathering and analyzing methods are insuf-
ficient in yielding optimal results in big data applications. Giovanni Delnevo et al. [86]
used big data and machine learning technology to improve the driver’s braking style. The
authors conducted tests with simulated and real data. Dr. Mo-Yuen Chow and Habiballah
Rahimi-Eichi, in [88], proposed a framework for EV range estimation. The authors used
various historical and standard data related to the driving range for big data analytics.
Gebeyehu M. Fetene et al. [90] used big data technology to analyze the energy consump-
tion rate (ECR) and driving range of battery vehicles. The authors collected the driving
patterns of 741 drivers over two periods. Based on the research, the authors found that the
performance of battery EVs (BEV) is highly dependent on weather conditions and driving
patterns. In [91], W. Wei et al. proposed a model that processed data in parallel using
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MapReduce over the Hadoop framework. Their model uses grid demand, an EV battery, a
user, a charging station, and data from a local distribution system. The authors developed
an optimized charging model, the multi-level feedback queue. Further studies are required
to evaluate the performance using Hadoop and other framework works.

In [92], Lee et al. used the R statistical package and Hadoop framework for the
proposed spatio-temporal analysis of EV data. The authors conducted time series analysis
to predict the EVs battery consumption using the R Language package. J. Lee et al. proposed
a framework to implement meter management for streaming EV data [93].

Bolly J. Springer et al. [94] used a pre-processing stage to eliminate duplicates and
inconsistencies in the data. The authors extracted and transformed raw EV data into
classified buckets. The authors took more than ten features of 200 EVs into consideration.
The authors used Hadoop and MapReduce to process the unstructured data. Weka and
Hadoop-based platforms can be considered for distributed data mining and streaming big
data analytics.

One of the challenges in big data is the lack of publicly available real-time data on EVs
and infrastructure. Efficient and secure data analytics approaches and tools are required
for the real-time interaction of the EVs with the other infrastructure.

4.3. Blockchain Technology for EVs

A blockchain is a distributed digital ledger shared across a private or public computing
network that nullifies the role of central authority to verify transactions between two or
more parties [95]. Transactions will be encrypted mathematically and added as a new block
to the chain of records, authenticated by multiple consensus protocols before being added
to the ledger. Blockchain technology can be used in EVs for efficient payment processing.
Blockchain transactions are recorded with a hash called SHA 256, which is used to verify
the transaction’s authenticity. Blockchain is a disruptive technology for cyber security,
healthcare, and finance.

Blockchain technology can cause a massive impact on the EVs domain [96]. The
publication statistics for the use of blockchain for EVs is shown in Figure 7.

Figure 7. Publications on blockchain for EVs.

In addition, it shows an increasing trend, indicating its popularity for EV applications.
The general architecture of blockchain for EV applications is shown in Figure 8.
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Figure 8. Blockchain architecture for EV applications.

Leveraging blockchain technology for EV-related applications will boost the develop-
ment of the EV industry. The above figure represents the architecture of blockchain for EV
infra. V2X commutations such as vehicle-to-access-point mechanisms are extensively used
in blockchain architecture. Each EV in the architecture is a mobile entity and will have a
unique ID. Nodes or access points are the electronic units capable of receiving the data from
EVs, so nodes or access points are to be placed at regular intervals. Sensors embedded in
the EVs continuously monitor the status of various parameters, such as the battery status,
vehicle status, bill payment for charging, etc., and send them to the access points using
various wireless communication technologies. The access points communicate among
themselves either by wired or wireless communication technology. The access points in the
blockchain network consider the data as blocks, and each access point must validate the
transaction to ensure transparency. The transport authorities access the blockchain network
to continuously monitor the status of the EVs and send personalized recommendations to
the EV user.

The benefits of using blockchain technology for EVs are that payments can be verified
instantly by automatic confirmations, and the payments of EVs can be processed automati-
cally, executing contracts directly with the station based on user convenience [96]. Various
blockchain platforms are available to build blockchain applications. The popular blockhead
platforms are the XDC network, Ethereum, Hyperledger Fabric, R3Corda, Ripple, etc., and
are summarized in Table 12 [97].

Table 12. Blockchain platforms based on industry and ledger type.

XDC Network Ethereum Hyperledger
Fabric R3 Corda Ripple

Industry Type Cross-Industry Cross-Industry Cross-Industry Financial Services Financial Services
Ledger Type Permission-less Permission-less Permissioned Permissioned Permissioned

Ethereum is a peer-to-peer decentralized blockchain platform that establishes a net-
work that securely executes and verifies an application code, called smart contracts. Ex-
tremely flexible decentralized applications can be built using the solidity scripting language
and Ethereum virtual machine [98]. Smart contracts are the application codes written in
Solidity and Vyper that reside at a specific address on the blockchain. A transaction in
Ethereum refers to a signed data package that stores a message to be sent from an externally
owned account [99]. Financial and semi-financial applications can be designed on top of
Ethereum. Hyperledger Fabric is the first distributed platform supporting smart contracts
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written in Go, Java, and Node.js programming languages [100]. The Fabric platform is
permissioned, which means that the participants may not fully trust one another, but a
governance model is built off of what trust exists between participants [93]. Hyperledger
Fabric uses pluggable management identity protocols such as LDAP or OpenID connect.
In [101], problems such as a lack of transparency in trading systems can be mitigated with
blockchain technology. Blockchain can be used for automatic payment processing at toll
stations. Many companies are developing e-wallets for payment processing. Users of PEVs
can sell the excess electricity to charging stations through smart contracts and pay the bills
through e-wallets [102]. A comparison of Hyperledger Fabric and Ethereum are shown in
Table 13.

Table 13. Comparision of Hyperledger Fabric and Ethereum frameworks.

Hyperledger Fabric Ethereum

Public vs. Private Private Public

Governance Federated Decentralized

Permissions Permissioned Permissionless

Smart Contract Languages Go, Java, Javascript (Node.js) Solidity, Vyper

Private Transactions Yes No

Consensus Mechanism Pluggable BFT Proof-of-Work

Speed 3000 Tps 15 Tps

In [101], Prince Waqas Khan et al. proposed a payment method for energy trading and
charging for EVs based on blockchain technology. The authors developed an automatic
payment system for EVs using the Hyperledger Fabric platform. The proposed scheme
will reduce human interaction and increase EV users’ transparency, privacy, and trust. The
authors also assessed the latency and throughput of resource utilization.

Javed et al. [102] used blockchain technology to provide a solution for the secured
scheduling of the charging system. They introduced V2V and V2G charging strategies.
In [103], Pustiek et al. introduced the concept of blockchain-independent negotiation.
In [104], Xiang et al. used blockchain technology to provide automated demand response
solutions for EVs.

In [105], Shang et al. used Multi-Objective Gray Wolf Algorithm to build charging
and discharging model on blockchain. The article by Duan et al. [106] used IoT and
blockchain-based smart contracts to propose charging methods for EVs. In [107], Khan et al.
used blockchain technology for vehicle networking applications, mainly considering the
decentralized big data storage and security. Authors defined different nodes, such as road
networks and vehicles, to form different blockchain subnets

A summary of the various works on blockchain for EVs is given in Table 14.
P. Bhattacharya et al. proposed a trusted and secure energy trading scheme for EVs

based on blockchain technology [108]. The authors used 5G-enabled software-defined
networks (SDN), which allow the V2I nodes to handle multiple requests with a lower
response time, which is a secure and trusted energy trading scheme for trusted EVs based
on blockchain technology. The authors used 5G-enabled software-defined networks (SDN),
allowing V2X nodes to handle multiple requests with a minimum response time. Furqan
Jameel et al. in [109] proposed an efficient mining cluster selection for V2X communications
based on blockchain technology. Their work showed an improved performance over the
conventional nearest mining cluster selection technique. MyeongHyun Kim et al., in [111],
proposed a charging system for EVs to resolve the security flaws, such as privileged insider
attacks and a distributed denial of service. The proposed charging system ensures secure
mutual authentication, security of key, and perfect forward secrecy. The authors also
compared computation and communication costs with previous schemes.
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Table 14. Challenges of blockchain technology in the EV domain.

Reference Objectives Subdomain Technologies Solution Advantages Challenges

[108]
Efficient energy trading
scheme for V2X
communications

V2X communications Blockchain and 5G

Adopting a game-theoretic
approach to efficiently
unload the mining tasks to
the mining clusters

The block convergence time
is less, with minimal
computation and good data
transfer rates to maintain the
fairness of the vehicles in the
unloading process

Scalability of the data chains
within the blockchain and
the impact of data security
in the process of
downloading data into EVs

[109]
Efficient mining cluster
selection for V2X
communications

Secure V2X
communications

Blockchain and named
data networking (NDN)

Deploying a novel
framework
with finite block
length architecture

Good data transmission
rates and maintaining
fairness among
offloading vehicles

Without the right cluster, the
secure V2X sequence does
not help in improving
network performance

[110]
Energy trading and
charging payment system
for EVs

Demand side
management for
smart grid

Private blockchain
Opportunistic scheduling
algorithms to reduce
electricity cost

Real-time pricing for
unpredictable energy
consumption trends

Development of a priority
enabled scheduling
algorithms based
on constraints

[111] EV charging system Charging system model Hyperledger Fabric
blockchain platform

A secure and practical EV
charging system

Proved secure mutual
authentication
between EV and EAG

Developing schemes for
mutual authentication and
key agreement to
provide security

[112]
A review of Ethereum
blockchain
platform

Application of Ethereum
blockchain platform

Ethereum
Blockchain platform Application in finance Efficiency and security

Techniques to improve the
efficiency of public and
private Ethereum chain



Energies 2022, 15, 6580 19 of 26

In above table, various authors worked on their objectives and provided solutions
using different blockchain platforms, such as Ethereum and private platforms. Advantages
and challenges are also mentioned in above table. In [113], Danda et al. proposed a frame-
work for privacy-aware V2X communications by using named data networking (NDN)
and blockchain. The authors did not use the confidential information of the vehicle owners
and pedestrians in their work. The authors claim that the overall network performance can
be improved by clustering the users. In [95], the authors proposed a broad methodology
for designing blockchain-based systems and show how to apply it to EVs.

In [114], Ayesha Sadiq et al. used blockchain technology to work on data and energy
trading in IoEV. The authors also used an inter-planetary file system (IPFS), which provides
reliable and fault tolerant data storage for overcoming failures. The authors also produced
results that explain the efficacy of their proposed data and energy trading scheme in IoEV.
Ahmed S. Musleh et al. [115] proposed frameworks for key smart grid blockchain-based
applications. The authors also reviewed different prospects and technical challenges in
utilizing blockchain technology for smart grid applications. Marina Dorokhova et al. [116]
proposed an Ethereum-based framework for the charging management of EVs. The pro-
posed framework enables the reliable and secure accounting of energy exchanges in a
network, thus facilitating EV charging through private charging infrastructure. Al-Saif
Nasser et al. [117] provided various opportunities, requirements, and challenges in their
work. There are various opportunities of blockchain in EV energy trading, such as stake-
holder reputation-aware energy trading, streamlined billing and payments, automatic
energy auctioning, and automated vehicle-to-grid energy trading. The authors discussed
various blockchain opportunities in energy trading in detail with respective designs. The
authors also discussed various research projects by research organizations and companies.

Various technological and organizational challenges may affect the adoption of blockchain
technology for EVs. The main challenges for adopting blockchain technology in EVs are
scalability, interoperability, privacy, and security. Godwin C. Okwuibe et al. [118] proposed
a blockchain-based smart charging infrastructure. The maximum duration of the charging
event and charging of the EV user will provide the demand. The authors simulated the
charging system with different loads and achieved an acceptance rate of EV users that
increased by more than 50 percent. Blockchain technology can reduce a company’s produc-
tion costs with the blockchain track-and-trace feature. This feature allows manufacturers to
track materials, such as wolframite and cobalt, as they are brought for production [119].
Blockchain also allows manufacturers to monitor the discrepancies while materials are
brought into the factory for EV production. Various authors proposed frameworks and
policies related to EV energy trading systems using blockchain technology. Machine learn-
ing and deep learning technologies can be used along with blockchain technology for a
better analysis and prediction with transparency.

4.4. Security Aspects of EVs

EVs are being used by many people currently in the urban and semi-urban areas
of the world because of their ease of use. Various automobile manufacturers have been
manufacturing plug-in EVs for the past few decades. EVs have low greenhouse gas
emissions and lower maintenance and operating costs. The EV users can generate revenue
by selling the electricity stored in their car’s batteries to the grid. The disadvantages of
using EVs are the cost of batteries, swapping the batteries at the right time, charging
station availability while travelling farther places, and an overload on electric grids during
charging at peak hours. Every EV, whether a BEV (battery EV) or plug-in EV, contains
various electronic systems and relevant system software to interact with the sensors and
other infrastructure inside and outside of the vehicle. Providing security for EV hardware
and software is essential for mitigating its risks. EVs can communicate with pedestrians,
vehicles, and infrastructure by sending messages and signals.

A certain level of risk is involved in the connected devices. Connected cars send essen-
tial information about the driver and other systems of the vehicle to the other infrastructure
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with the Internet. In 2019, the number of cyber-attacks on connected cars increased to
seven times [120]. Most EVs and connected cars rely on embedded software to efficiently
manage and operate the systems. A hacker can exploit the security vulnerabilities, such
as disabling the brakes, taking control of steering, disabling cameras, sensors, electronic
control units (ECUs), and accessing the personal information of the vehicles and other
infrastructure [121]. Most connected cars and EV users use mobile applications to control
infotainment systems and other Bluetooth-technology-related operations, which may in-
crease the security risk. The EV charging security is the main concern currently because an
application is very much needed to communicate with EV supply equipment (EVSE) for
charging. One must focus on the components of EVSE, such as firmware updates, physical
access points, the communication channel between the vehicle and EVSE, and the mobile
application that the vehicle driver uses for tracking the charging [121].

Various automotive industries are practicing various coding standards for EV secu-
rity. ISO21434 is the automotive standard used by auto makers to reduce cyber security
risks [121]. Because of the complex ecosystem of the EVs and EVSE, it is challenging to
mitigate some of the issues regarding the cyber security risks. The important challenges are
limitations of the devices and communication channels, identity and communication man-
agement, and access and authorization control. Various types of attacks, such as denial of
service, a delay attack, and a Sybil attack on EV infrastructure show a social, physical, and
cyber impact. Using the above attacks, the hackers can break the communication either at a
broader or aggregate level; requesting power at incorrect timings may cause breakdowns;
and the hackers can copy ID tokens for various purposes [122]. Security researchers have
proposed authentication protocols to protect data exchange between the charging station
and EV. In [123], the authors discussed various aspects of security, threats, and the threat
model in the EV charging system. The authors also compared various security protocols
that offer authentication, secure payment, and billing facilities. Farooq et al. [124] proposed
an authentication protocol that provides direct authentication mechanisms between differ-
ent components. Hamouid et al. [125] designed a protocol for EV charging systems. The
protocol hides the location of the EV during the entire charging process and also provides
other features, such as fast authentication and anonymity. Various researchers proposed
security-related protocols for various purposes to mitigate the cyber security risks in the
smartgrid domain [126–130].

5. Conclusions

EVs are the future of reliable and carbon-emission-free transportation. Unlike tradi-
tional vehicles, EVs directly interact with the electricity grid. Their impact on the grid
operation exponentially increases as their numbers rise. Therefore, researchers have focused
on developing solutions to efficiently communicate with EVs and control their behavior,
not only to minimize their negative impacts on the grid but also to make them contribute
to grid stability and reliability. The authors discussed various communication and compu-
tational standards and their applications in the EV domain. Applications of EV industry
protocols and standards in various scenarios, such as authorizing charging sessions, billing,
managing the grid, operating the charge point, reservation, and smart charging use cases,
have been emphasized. Communication standards during charging for various purposes,
such as grid-to-vehicle and vehicle-to-grid energy transfers and communication between
the EV and off-board DC charger, have been discussed. Various wireless communication
technologies, such as Zigbee, BLE, Wi-FI, and LoRa, are used for V2X communication
for efficient data transfer and security. Use cases of communication technologies in the
IoEV domain were discussed in the paper. Computational technologies such as ML and
neural networks are used to predict the charging behavior and find the optimum location
of charging stations. Apart from the above two use cases, machine learning algorithms can
monitor the battery status and driver habits. The paper also discusses applying bigdata
tools in the EV domain for the generated data. Authors have also discussed the work of
different authors who have carried out work on the security aspects of EVs, such as authen-
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tication, secure payment, and billing facilities. The authors have conducted an extensive
literature survey on computational and communication technologies to meet the needs of
authors and researchers to find the gap in the EV research domain and pursue their research
successfully. For efficient communication, various protocols and standards are available
for vehicle-to-vehicle, vehicle-to-infrastructure, and vehicle-to-person communication. Ma-
chine learning and deep learning can be used for decision making and predictive analytics
for EV-charging control. Blockchain technology can be used for energy-trading systems
for EVs for transparent and secure transactions. All of the technologies mentioned above
and communication standards can be used in the EV industry for building frameworks,
architectures, and policies for better future prospects. Only in this fashion can a full-scale
migration to EVs be possible.
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Abbreviations

AI Artificial Intelligence
ADAS Advanced Driver-Assistance Systems
ANN Artificial Neural networks
AODV Ad hoc On-demand Distance Vector
BLE Bluetooth Low Energy
CNN Convolutional Neural Network
COAP Constrained Application Protocol
DDoS Distributed Denial-of-Service
DER Distributed Energy Resources
EV Electric Vehicle
EVCS EV Charging Station
eMIP eMobility Protocol Inter-Operation
EMU Energy Management Unit
EVSE EV Supply Equipment
IBM International Business Machines
IEC International Electro technical Commission
IEEE Institute of Electrical and Electronics Engineers
IoT Internet of Things
IoEV Internet of EVs
LoRa Long Range
IoV Internet of Vehicles
LPWAN Low-Power Wide-Area Network
ML Machine Learning
MQQT Message Queuing Telemetry Transport
OCHP Open Clearing House Protocol
OCPI Open Charge Point Interface
OCPP Open Charge Point Protocol
OpenADR Open Automated Demand Response
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OSCP Open Smart Charging Protocol
PEV Plug-in EV
LTE Long-Term Evolution
RFID Radio Frequency Identification
RNN Recurrent Neural Network
SAE Society of Automotive Engineers
SCADA Supervisory Control And Data Acquisition
SQL Structured Query Language
V2G Vehicle-to-Grid
V2I Vehicle-to-Infrastructure
V2P Vehicle-to-Pedestrian
V2X Vehicle-to-Anything
Wi-Fi Wireless Fidelity
WLAN Wireless Local-Area Network
ZED Zigbee Energy Dispenser
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