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Abstract: Solid-state batteries (SSBs) have proven to have the potential to be a proper substitute
for conventional lithium-ion batteries due to their promising features. In order for the SSBs to be
market-ready, the prognostics and health management (PHM) of battery systems plays a critical
role in achieving such a goal. PHM ensures the reliability and availability of batteries during their
operational time with acceptable safety margin. In the past two decades, much of the focus has been
directed towards the PHM of lithium-ion batteries, while little attention has been given to PHM of
solid-state batteries. Hence, this report presents a holistic review of the recent advances and current
trends in PHM techniques of solid-state batteries and the associated challenges. For this purpose,
notable commonly employed physics-based, data-driven, and hybrid methods are discussed in this
report. The goal of this study is to bridge the gap between liquid state and SSBs and present the
crucial aspects of SSBs that should be considered in order to have an accurate PHM model. The
primary focus is given to the ML-based data-driven methods and the requirements that are needed to
be included in the models, including anode, cathode, and electrolyte materials.

Keywords: solid-state batteries; prognostics and health management; physics-based approach;
data-driven approach

1. Introduction

Over the recent decade, the global energy market has seen a sharp increase in adopting
lithium-ion batteries (LIBs) as a reliable source of fuel for electric vehicles (EV), elec-
tronic devices, and medical instruments. According to the statistics that were reported by
Electric Drive Transportation Association (EDTA), the number of EV sales in the United
States market has increased from 345 vehicles in 2010 to 601,600 in 2022, with a total of
1.8 million EVs over the twelve-year sales period [1]. With ever-increasing demand for
energy storage devices that are lightweight, sustainable, with higher life-cycle, LIBs have
emerged as a universal solution due to their lower weight, higher energy density, relatively
low self-discharge rate, and longer life cycle [2]. In spite of the vast superiority of LIBs
over traditional fossil fuels, they still suffer from reliability and safety issues. Reports of
occasional exploding of LIBs in EVs, mobile phones, and energy storage systems due to
their high flammability, have called for a safer approach for the further acceleration of EV
deployment [3].

The safety issues and flammability of LIBs can originate from several factors that are
highlighted by thermal runaway in the circuit. Thermal runaway is a natural phenomenan
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that is caused by overcharging or the occurrence of internal short circuit during the charging
phase in LIBs that can create major safety risks. Characterized by severe increase of
temperature in the cell, thermal runaway enhances the internal pressure in the cell and can
evaporate the liquid electrolyte quickly leading to an instantaneous release of energy in the
cell and eventually fire or explosion [3,4]. This issue has been addressed in many studies
over the recent years, focusing on examining the root cause of thermal runaway and how
to mitigate this factor [5,6].

Moreover, the narrow operating temperature range of conventional LIBs, flammability
of solvents, a higher demand for ionic conductivity as well as the energy density of energy
storage systems pose a crucial challenge to bridging the gap between the materials research
and industrial mass production.

To overcome the aforementioned challenges, solid-state batteries (SSBs), in which the
organic liquid electrolyte is substituted by solid electrolytes (SEs), have shown to be a
proper substitute for LIBs by replacing the organic electrolyte with solid materials [7]. SSBs
are nonlinear dynamical electrochemical systems with complex internal mechanisms. In
contrast to LIBs, SSBs significantly improve component safety, electrochemical stability,
energy and power density, and the durability of battery packs [8]. However, in order to
make battery packs market-ready, reliability, health state, and operational safety of the
batteries should be evaluated and guaranteed. In this context, battery prognostics and
health management (PHM) has emerged as a reliable engineering discipline that ensures
the safety and availability of batteries [9]. Battery PHM refers to a multifaceted advanced
set of techniques that ensures the integrity and functionality of the battery systems. In
particular, it follows a systematic framework to accurately predict batteries’ state of charge
(SOC), state of health (SOH), and remaining useful life (RUL) by estimating the products
performance given the current degree of deviation and degradation and suggesting an
optimal health management strategy [10]. Due to the complex nature of electrochemical
and mechanical behavior of SSBs, predicting the remaining lifetime and SOH of batteries
become an extremely difficult task. However, it is essential to accurately estimate the
battery status to ensure the functionality and timely maintenance of the batteries under
various operating conditions [9].

The status of batteries can be monitored through prognostics and health monitoring
frameworks. Health monitoring is assigned with the task of detecting the underlying
degradations and preventing the potential faults, while prognostics is responsible for
predicting how soon a product will progress toward failure [10]. PHM techniques are
normally comprised of three primary components: condition monitoring, data acquisition,
and health diagnosis. Condition monitoring is concerned with battery performance and
deriving the crucial aspects of battery performance such as voltage, current, charge, and
discharge capacity. Data acquisition is assigned with the task of obtaining the required
performance indicators and health diagnosis is responsible for estimating the state of health
of the batteries [11].

Over recent years, numerous studies have focused on the PHM of machineries. Several
of the most recent comprehensive reviews of PHM of machine tools and different popular
models can be found in references [12–14]. To date, many investigations have dedicated
their focus to reliability assessment and health prediction review of LIBs using PHM
methods, and no significant attention has been given to health management of SSBs. The
internal mechanism of SSBs differ from that of LIBs by the virtue of solid-state electrolyte
which alters the electrochemical and mechanical performance of the batteries. As such, in
order to create a smooth transition path from LIBs to SSBs utilization in electronic devices
and electric vehicles, a systematic review of the recent advances and progress in the field
of prognostics and health management becomes increasingly important. Furthermore,
in order to make the vast utilization of SSBs in the current and future market possible,
ensuring the safety and functionality of the solid-state battery packs becomes an important
task. Despite significant advances in reliability modeling of LIBs including model-based,
physics-based, and data-driven methods, due to the variation of chemical reactions in the
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SSBs cell level, it is imperative to review the existing PHM methods that are used for SSBs
and make suggestions regarding the future perspective.

Thus, this work aims to present the recent advances in prognostics and health as-
sessment of SSBs by providing a holistic review of the current state of art technology. In
particular, the research works that have been carried out to create the transition path from
liquid state batteries to SSBs, are discussed from several outstanding perspectives. To the
best of author’s knowledge, no research studies has been carried out yet that provides a
detailed overview of the existing PHM modeling of solid-state batteries.

In this work, first the idea behind solid-state batteries is elaborated that makes them
different from conventional LIBs. Additionally, the underlying system state indicators that
are used to characterize the health of SSBs are introduced and discussed. These indicators
are the primary components of PHM frameworks and are employed to differentiate the
efficiency of battery packs during their operational time. Then, in the corresponding
sections, major PHM techniques are discussed in addition to the recent contributions
of research studies in this field. The organization of this work is presented as follows:
Section 2 of this investigation describes the basic characteristics of SSBs and how it differs
from conventional LIBs followed by providing the major health indicators that are used
in PHM methods. In Section 3, notable model-based, data-driven, and hybrid approaches
are elaborated in the field of SSBs followed by Chapter 4 in which we will present the
conclusion, challenges, and perspective of SSBs.

2. Solid-State Batteries

During recent years, solid-state batteries (SSBs) have been widely used in a variety of
applications due to their superior characteristics, which consists of an Li metal anode, solid
electrolyte (SE), and composite cathodes such as lithium cobalt oxide cathode (LiCoO2 or
LTO). Compared to Li-ion batteries, SSBs exhibit higher energy density and stability, which
have attracted a lot of interest in the vast adoption in electronic devices as an alternative
power source. A schematic profile of the typical structures of SSB is shown in Figure 1. The
figure shows that the liquid organic electrolyte is replaced with solid-state materials.

Energies 2022, 15, x FOR PEER REVIEW 3 of 27 
 

 

important task. Despite significant advances in reliability modeling of LIBs including 
model-based, physics-based, and data-driven methods, due to the variation of chemical 
reactions in the SSBs cell level, it is imperative to review the existing PHM methods that 
are used for SSBs and make suggestions regarding the future perspective.  

Thus, this work aims to present the recent advances in prognostics and health assess-
ment of SSBs by providing a holistic review of the current state of art technology. In par-
ticular, the research works that have been carried out to create the transition path from 
liquid state batteries to SSBs, are discussed from several outstanding perspectives. To the 
best of author’s knowledge, no research studies has been carried out yet that provides a 
detailed overview of the existing PHM modeling of solid-state batteries. 

In this work, first the idea behind solid-state batteries is elaborated that makes them 
different from conventional LIBs. Additionally, the underlying system state indicators 
that are used to characterize the health of SSBs are introduced and discussed. These indi-
cators are the primary components of PHM frameworks and are employed to differentiate 
the efficiency of battery packs during their operational time. Then, in the corresponding 
sections, major PHM techniques are discussed in addition to the recent contributions of 
research studies in this field. The organization of this work is presented as follows: Section 
2 of this investigation describes the basic characteristics of SSBs and how it differs from 
conventional LIBs followed by providing the major health indicators that are used in PHM 
methods. In Section 3, notable model-based, data-driven, and hybrid approaches are elab-
orated in the field of SSBs followed by Chapter 4 in which we will present the conclusion, 
challenges, and perspective of SSBs. 

2. Solid-State Batteries 
During recent years, solid-state batteries (SSBs) have been widely used in a variety 

of applications due to their superior characteristics, which consists of an Li metal anode, 
solid electrolyte (SE), and composite cathodes such as lithium cobalt oxide cathode 
(LiCoO2 or LTO). Compared to Li-ion batteries, SSBs exhibit higher energy density and 
stability, which have attracted a lot of interest in the vast adoption in electronic devices as 
an alternative power source. A schematic profile of the typical structures of SSB is shown 
in Figure 1. The figure shows that the liquid organic electrolyte is replaced with solid-state 
materials.  

 
Figure 1. Schematic profile of typical structures of solid−state batteries. Adapted with permission 
from Ref. [15]. Copyright © 2022 Royal Society of Chemistry. 

Figure 1. Schematic profile of typical structures of solid−state batteries. Adapted with permission
from Ref. [15]. Copyright © 2022 Royal Society of Chemistry.

The working principle of SSBs is similar to that of LIBs. The typical chemical reaction
process is as follows:
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Cathodic reaction:

LiCoO2

Charge
−−−−→
←−−−−
Discharge

Li1−xCoO2 + xLi+ + xe− (1)

Anodic reaction:

C + xLi+ + xe−
Charge
−−−−→
←−−−−
Discharge

LixC (2)

Total reaction:

LiCoC2 + C
Charge
−−−−→
←−−−−
Discharge

Li1×x CoO2 + LixC (3)

Replacing the liquid electrolyte with a solid electrolyte not only enhances the battery’s
safety but also leads to a longer, more extended life and higher energy density. It is
believed that SSBs with high safety, longer life, and high energy density will be a promising
alternative to replace LIBs. In order to facilitate the large-scale application of SSBs and
improve safety performance, it is necessary to develop a set of health management systems
for SSBs.

The health status of batteries are assessed through several system state performance
parameters, i.e., state of charge (SOC), state of health (SOH), and remaining useful life
(RUL). SOC is concerned with estimating the remaining capacity during the operation of
the battery before it is required to recharge it. SOH provides internal information regarding
the health condition of the battery and its ability to deliver the nominal capacity with
respect to the new battery. The RUL indicator is responsible for monitoring and predicting
the failure of the battery from the degradation process. RUL is an important parameter that
is used to measure the useful life that is left in the battery during its operational time.

The health characteristics of SSBs can be divided into two categories: external and
internal characteristics. The external characteristics of SSBs refer to the quantities that were
obtained by the simple processing of measurable data, mainly including Electrochemical
Impedance Spectroscopy (EIS), discharge capacity, charging or discharging terminal voltage
curve, and IC curve. The battery discharge capacity and internal resistance are the most
direct external indicators of battery health. The battery charge-discharge capacity data
itself can also be used as an external feature of the health state. For example, Hu et al. [16]
used the terminal voltage data under dynamic charge and discharge conditions to obtain
the sample entropy as a feature for battery capacity estimation. Feng et al. [17] obtained
the probability density function through probability density statistics through experiments,
and established a health state data table that was based on the function to estimate the
health state of the battery online and in real-time. Zheng et al. [18] studied the discharge
data, took Shannon entropy as an index, and combined it with the equivalent circuit model
(ECM) to diagnose and locate the fault of the battery pack. Liu et al. [19] established
the relationship between the features and battery capacity degradation by using external
data features that were based on box Cox transform and support vector machine. The
above-mentioned literature summarize the data acquisition methods for building external
features and further elaborates on the impact of different features of the battery health
management system. The acquisition method of external features is mainly used for battery
health assessment and prediction based on empirical models or it is data-driven, which
contains limited information. The aging models that were established based on this are
mostly empirical models, which are vulnerable to data uncertainty and incompleteness,
and have poor robustness and adaptability.

The internal health characteristics of the battery mainly refer to the internal physical
and chemical parameters. The changes in these parameters characterize the degradation
trend of the internal health state of the battery, or can be used as a tool to study the degra-
dation mechanism. At present, many scholars have studied the changing trend of some
parameters with aging, and used them as characteristic quantities to evaluate the health
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state of batteries. For example, Han et al. [20] and Zhang et al. [21] identified the initial
lithium intercalation rate and active material volume fraction of the electrode and used
them as capacity attenuation factor analysis. Schmidt et al. [22] used the volume fraction of
active substances as the characteristic of capacity attenuation, and the liquid phase conduc-
tivity as the characteristic of internal resistance rise. Ramadesigan et al. [23] identified the
variation trend of solid-phase diffusion coefficient and electrochemical reaction constant
with battery aging. Fu et al. [19,24] studied the effect of side reactions on battery degrada-
tion by using the degradation trend of active substance volume fraction, SEI film resistance,
and electrolyte diffusion coefficient and established a physics-based degradation model.

2.1. Health Status Assessment of SSBs

The system state parameters that were discussed in the previous section can be further
combined to form several important components to construct the PHM model of batteries.
SOC is defined as the ratio of the remaining capacity of the battery to the maximum capacity
and is described by:

SOC =
CR

CM
× 100% (4)

where CR is the remaining capacity and CM is the maximum capacity.
It can also be calculated as:

SOC(T) = SOC(0)−
η
∫ T

0 i dt
Cn

(5)

where SOC(T) and SOC(0) represent the SOC at time T and 0, respectively, η is the Coulom-
bic efficiency, i is the current, and Cn is the nominal capacity as a function of number
of cycles n. The capacity of the battery is measured through the accurate monitoring of
charging and discharging. This process can be somewhat challenging as the time that is
required to capture such measurements can be time-consuming with high cumulative error.

SOH estimation is an essential component of the PHM that is characterized by the ratio
of the maximum available capacity to the nominal capacity of the battery and is calculated
by the equation:

SOH =
Qmax

Qnominal
× 100% (6)

SOH measurement faces many difficulties due to the complex internal chemistry and
operational condition of the battery. However, it is an important component of PHM that
serves as a primary indicator for the time that the battery might need to be replaced. RUL
deals with predicting the lifetime performance of the battery and estimate the threshold of
failure that can be expressed as:

NRUL = NEOL −NECL (7)

where NRUL is the RUL cycle number, NEOL is the end-of-life number, and NECL is the
equivalent circle life of the battery.

To give perspective into the utilization of health characteristics criteria in battery
management strategies, many studies have been conducted to achieve such a goal. Zhang
and Lee [25] reviewed the research progress on prognosis and health monitoring of LIBs,
and summarized the algorithms for SOC prediction and remaining service life estimation.
Watrin et al. [26] introduced three different adaptive systems (Kalman filter, artificial neural
network, and fuzzy logic system), and analyzed their respective uses, advantages, and
disadvantages. These three models can be used for SOC and SOH approximation. At the
same time, Barr é et al. [10,27] summarized the development and related research of LIB
health management systems in other fields, and briefly introduced the methods, algorithms,
and models of battery RUL prediction and SOH approximation, as well as data-driven
methods. Li et al. [28] reviewed the health assessment and health prognosis of LIBs based
on data-driven methods. In 2019, Meng and Li et al. [10] conducted a literature review on
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the prediction and health management (PHM) technology of LIBs. In 2020, Tian et al. [29]
reviewed the SOH of LIBs, analyzed the causes of battery aging, summarized the SOH
prediction methods, and further analyzed the main advantages and disadvantages of each
technique. The above reports focus on the review of PHM and its related algorithms and
mathematical models, further illustrating the important role of battery health characteristics
criteria in battery management. The data acquisition process for RUL prediction of LIBs is
shown in Figure 2, which can also be applied to SSBs. In this process, a specific battery cell
is selected and reliable parameter data are obtained with the help of measuring elements.
Then, these data are used to construct health indicators to estimate the RUL of batteries.
The relationship between SOH and RUL is depicted in Figure 3. By estimating SOH and
predicting RUL, the performance of the battery can be known in real-time and the battery
life can be informed accordingly to ensure the safe and reliable operation of the power
system or battery pack.
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The SSB health management system is similar to liquid electrolyte batteries. Hence it
is necessary to understand the health management strategy of liquid electrolyte batteries.
The development of a literature review on the health management of batteries is discussed
herein. Berecibar et al. [32] summarized battery SOH monitoring methods, reviewed
the advantages and disadvantages of online BMS applications, and proposed a practical
battery SOH estimation method. Cuma et al. [33] summarized the estimation strategies and
methods that are used in EV. The above two papers summarize the research on SOH, but the
recent literature is inadequate. Xiong et al. [34] discussed the classification of battery SOH
estimation methods, elucidated the advantages and disadvantages of different methods,
and proposed the future development prospects. Lipu et al. [35] briefly summarized the
SOH and RUL estimation of electric vehicles, and studied the key problems and challenges
of SOH and RUL. Hu et al. [36] systematically summarized the battery state estimation
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methods, and briefly introduced the methods, problems, challenges, and development
trends in this field. However, due to the large coverage of the literature, important details
of the methods were neglected. Tian et al. [29] summarized SOH estimation methods,
gave the definition and relationship of SOH and RUL, and put forward corresponding
suggestions for existing problems. Similarly, Hu et al. [37] classified and summarized
the RUL prediction methods for batteries. Ungurean et al. [38] conducted a review of
the most relevant existing models, algorithms, and commercial devices that are used in
embedded applications to estimate SOH/RUL. The working principle of this model was
introduced and discussed in detail. Sarmah et al. [39] develop a hybrid method to accurately
calculate the SOH of a battery in real-time and consider self-discharge, and then discussed
the existing research results and future research directions. Ge et al. [31]. analyzed the
development of SOH estimation and RUL prediction techniques for LIBs, summarized
recent advances in direct measurement and model-based SOH estimation methods and
data-driven and hybrid approach-based RUL prediction, and evaluated the advantages
and disadvantages of each method. The SOH estimation and RUL prediction methods are
shown in Figure 4.
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Yang et al. [40] reviewed the existing characteristic parameters of SOH in the cell-level
and pack-level, and proposed several suggestions for the definition of SOH. A general
prospect and estimation procedure for SOH is shown in Figure 5. The influence of external
factors on battery degradation is introduced in this study, which lays the foundation
for SOH estimation. In this report, the goals of SOH monitoring are discussed, and its
applications are summarized from both short-term and long-term perspectives. Then, they
discussed some key tasks and potential research directions from the following three aspects:

1. SOH characterization
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2. SOH estimation

After developing a health management model, a time-domain analysis is needed,
which plays a vital role in the improvement and optimization of the model. First, a trade-off
needs to be made between model complexity and computational efficiency. Secondly, the
extraction and estimation of SOH characteristics in the process of dynamic discharge and
controllable charging is an essential task. In practice, there are very few instances where a
battery can be completely exhausted or fully charged at the pack level. Therefore, the SOH
estimation method should consider the working condition of the battery. Finally, the SOH
estimation of fused multi-signals is likely to become a research hotspot in the future.

3. SOH application

Currently, there is still a large gap between SOH estimation and application. Current
SOH prognostic methods, which mainly include short-term state estimation and long-
term RUL prediction, are only pure judgments of battery retirement points, ignoring the
significance of the battery aging process as a guide in health management. A prominent
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outstanding issue is how to use the diagnostic results to extend battery life and ensure safe
operation. The research on SOH indicators or parameters that are used to formulate battery
health management strategies is still in its preliminary stage, which is a promising aspect
of future research.

2.2. Battery Aging and Aging Characteristics

Generally, batteries are subject to irreversible processes (such as thermal and mechan-
ical stress) and chemical changes (such as side reactions) during their operation, hence
their performance will gradually degrade. The aging process involves many parameters
and different degradation mechanisms. Generally, capacity loss information can be used
as an indicator of battery aging. SOH is an indication of the end of an SSB’s life and a
measure of its condition relative to a new battery. Therefore, clarifying the aging mech-
anism of batteries plays an important role in the study of the SSB health management
field. As shown in Figure 6, Hu et al. [41] summarized the battery failure process into
two degradation modes: the loss of lithium inventory and the loss of active substances.
Specifically, the loss of lithium mainly originates from the formation and decomposition
of the solid electrolyte interface (SEI) membrane, electrolyte decomposition, and lithium
electroplating [42]. The loss of active materials mainly stems from the electrical contact
loss that is caused by graphite spalling, adhesive decomposition, collector corrosion, and
electrode particle cracking [43].
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Tian et al. [29] studied the related investigations and attributed the battery aging to
external environmental and internal factors. As shown in Figure 7, the external environ-
mental factors refer to its working environment condition, such as temperature [44,45],
charging and discharging rate [46,47], depth of discharge (DoD) [48,49], and charging
cut-off voltage [46,50]. However, the internal factors mainly refer to three influencing
mechanisms: lithium inventory loss (LLI) [51,52], active substance loss (LAM) [53–56], and
conductivity loss (CL) [57,58]. LLI includes the formation of SEI layer, lithium dendrite,
and battery self-discharge.
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3. Prognostics and Health Management (PHM)

PHM techniques devise a set of technologies and approaches to support condition
monitoring, health status, fault diagnosis, and maintenance to maximize the reliability
and safety of battery systems. They are mainly divided into three categories: model-
based (physics-based), data-driven, and hybrid approaches. Each of these methods will be
discussed in detail in the following sections.

3.1. Model-Based (Physics-Based) Approaches

The physics-based approach aims to establish a mathematical model that describes
the degradation behavior of a battery accurately. It can be divided into four groups:
electrochemical (mechanistic) models, ECMs, empirical models, or fused models.

3.1.1. Electrochemical (Mechanistic) Models

The electrochemical model mainly completes the accurate modeling of the battery
by describing the electrochemical reaction process inside the battery [59]. However, the
differential equations that are established by this model usually contain a large number
of unknown parameters, which increases the complexity of this model. In addition, the
input variables in the electrochemical model include a large number of internal battery
parameters, such as the effective area of the electrode space, ionic conductivity of the elec-
trolyte, average distance from the electrode to the current collector, etc. These parameters
are normally difficult to obtain by measuring the external structure and cycle performance
of the battery.

The electrochemical model is established based on electrochemical principles, which
can reflect the relationship between the external characteristics and the internal parameters
of the battery and can describe the change in the output characteristics during the charging
and discharging process. The types of SE (LiPON [29,42,60], Li3PO4 [61,62], LiTFSI [63],
LATP [64], Li6PS5Cl [65], and polymers [66]), anode (lithium metal [42,60,61,67,68] and
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graphene [69]), and cathode (LiCoO2 [42,60,68] and TiS2 [60,67]) in the macroscopic model
can be adjusted according to the actual application. The electrochemical model can be used
to analyze the charge-discharge behavior and cycle performance of the battery. In addition,
the effects of contact areas and compressive pressure [63], the contributions of individual
overpotential and impedance, the definition of diffusion coefficient, the expansion of the
electrode particles that is caused by intercalation [70] can also be evaluated.

Danilov et al. [61] proposed a mathematical model for SSBs that takes into account the
insertion and de-insertion of Li+ at the electrolyte/electrode interface and ignores the side
reactions that are occurring at the interface. In this study, the discharge curves at different
current densities are in good agreement with the experimental results [61]. Ansah et al. [65]
also studied the effect of structural parameters on the discharge performance and found out
that increasing the thickness of the cathode and decreasing the thickness of the electrolyte
were beneficial to increasing the battery capacity. However, due to the complexity of
SSBs, it is difficult to validate the results. Considering that several parameters, such as the
mobility number and diffusion coefficient of Li+, are not suitable for SSBs, Fabre et al. [42]
then employed various electrochemical techniques such as galvanostatic intermittent titra-
tion technique (GITT) and electrochemical impedance spectroscopy (EIS) to modify these
parameters. Kodama et al. [71] used nonlinear stress analysis to calculate the ionic con-
ductivity and showed that the simulation results between the diffusion coefficient and
the concentration of Li+ are consistent with the experimental results [72]., Liu et al. [68]
proposed an improved Planck–Nernst–Poisson and Frumkin–Butler–Volmer (MPNP-FBV)
electrochemical model and considered the influence of electric double layer (EDL) structure
and vacancies to investigate the essential phenomena at the equilibrium state in SSBs. They
found that the total electrostatic potential drop at equilibrium is related to the difference in
free enthalpy between different materials. In addition, the charge transfer resistance of the
diffused bilayer structure is higher than that of the dense bilayer structure.

Actually, SEs are fragile that even slight volume changes in SSBs could cause particle
fracture, disconnection, and eventually pulverization [21]. To improve the interface contact
quality and reduce the interface impedance, several methods have been proposed, includ-
ing depositing buffer layers between SEs and the electrodes by pulsed laser deposition
(PLD) or atomic layer deposition (ALD) [21,73,74], grinding nanocomposites to reduce
the particle size and increase surface area [75,76], and fabricating composite cathodes [70].
Tian et al. [60] and Shao et al. [60] introduced a parameter to describe the contact area, which
adjusts the current density in the 1-D Newman model. They found that the capacity drop
was correlated with the loss of contact area, and the optimal charging performance could be
obtained under medium compressive pressures (0.4–1 MPa). To illustrate the relationship
between lithiation-induced stress evolution and electrode structure, Fathiannasab et al. [64]
presented a 3D model by using a synchrotron transmission X-ray microscopy tomography
system to reconstruct the morphology of the SSBs. They revealed that SE with lower stiff-
ness can decrease stress in the microstructure, but aggravate the anisotropic displacement
of AM particles. Interestingly, the anisotropic displacement of AM particles can also be
prevented by applying external compressive pressure. In addition, bending also has a
significant effect on battery performance, as bending the SSB from anode to cathode when
a force is applied can reduce the cell potential, while bending in the opposite direction
induces a potential change and leads to a reduction in lithiation ability [77].

Becker-Steinberger et al. [78] proposed an SSB model that takes into account ion
transport in crystalline metal oxide solid solutions. Specifically, the diffusion part of the
electric double layer is dynamically described by the Poisson equation, while the Stern layer
potential drop is modeled by the Robin boundary condition. In addition, electrochemical
reactions at the electrode/electrolyte interface (EEI) are modeled with nonlinear Neumann
boundary conditions. Danilov et al. [61] developed an isothermal SSB model that takes into
account the incomplete dissociation of ions in the electrolyte. The model consists of two
partial differential equations (PDEs) describing the diffusion process in the SE and cathode.
Based on this model, Kim et al. [62] ] proposed battery management algorithms such as
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state estimation. However, the equation order of this method is higher, and the efficiency
of the algorithm has not been determined. Deng et al. [79] used a combination of Padé
approximation, polynomial profile approximation, and equal response coefficient assump-
tions to reduce the rigorous PDE model with significantly reduced computational burden
and high fidelity that is suitable for online parameter estimation and condition monitoring.
Despite the high accuracy of electrochemical models, these models have shortcomings
such as complex model structure, difficult parameter identification, and low computational
speed. In order to improve the robustness of the models, alternative approaches have
been adopted with higher accuracy, such as P2D (Pseudo Two-Dimensional) model, single
particle model, and the electrode average model. In addition, there are also methods
such as polynomial approximation, Padé approximation, finite volume discretization, and
orthogonal decomposition, which are less prevalent.

3.1.2. Equivalent Circuit Models

Even though electrochemical models offer efficiency for battery modeling and system
state predictions, due to the difficulty in solving the coupled partial differential equations
and the high demands on model parameterization and computation time, it has been
attempted to propose alternative models that can obviate these challenges. SSB is highly
nonlinear and time-varying during the operational time, and internal parameters such as
internal resistance, SOC, SOH, and self-discharge parameters during battery operation
cannot be obtained by direct measurements. In order to analyze the relationship between
the internal variation law of the battery and related parameters, establishing an equivalent
model of the battery is an effective research method [80]. To achieve the expected high
performance, practical applications of SSBs require accurate and computationally efficient
models onboard management algorithms so that the SSB safety, health, and cycling perfor-
mance can be optimized under a wide range of operating conditions. ECM has been widely
used in battery management modeling as a compromise between accuracy and feasibility.
In the ECM, the power batteries’ dynamic response, static characteristics, and dynamic
polarization effect are described by ideal electrical components, constant voltage source,
and RC network, respectively. This strategy has been successfully applied to the estimation
of SOC, SOH, and SOE due to its simple model equations, convenient parameter identifica-
tion, and good real-time performance. ECM is a semi-empirical model, which describes the
charge and discharge characteristics of the battery by arranging and combining electrical
components such as voltage sources, resistors, inductors, and capacitors [81].

The system parameters of the electrical components in ECM models can be deter-
mined by combining different parameter identification methods, such as extended Kalman
filtering, particle filtering, and other algorithms. At present, the development of ECMs
is relatively complete, and the more frequently used models include Rint, first-order RC,
second-order RC, and PNGV [82]. In theory, the multi-order models have higher accuracy
than low-order models, but they have less advantages in accuracy and computational effi-
ciency due to the large number of parameters that need to be identified and the inevitable
errors in each parameter.

In the Rint model, the battery is treated as the series connections of the ohmic internal
resistance and the ideal voltage source, and polarization effects are not considered. The Rint
model is characterized by a simple structure and the least number of parameters. Notably,
the error of the model increases with the increase of the charge and discharge rate of the
battery [83]. The first-order RC model, also known as the Thevenin model, is composed of
an ideal voltage source, an ohmic resistance, a polarization resistance, and a polarization
capacitor in series. Compared with the Rint model, the first-order RC model describes
the polarization effect of the battery during charging and discharging. In addition, the
first-order RC model has high accuracy in terms of constant temperature and constant
current charging and discharging conditions, and can realize the estimation of the state
parameters of LIBs. However, the aging or temperature change of the LIB will cause the
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internal impedance characteristics of the battery to change from a single impedance arc to a
double impedance arc, which significantly impacts the accuracy of the battery model [84].

Compared with the first-order RC model, the second-order RC model adds a series-
connected RC network to describe the battery’s electrochemical polarization and con-
centration polarization at different stages of the charging and discharging process. The
second-order RC model is more computationally expensive than the electrochemical model
and the ECM. Notably, the second-order RC model has high accuracy in describing the
dynamic polarization behavior of LIBs under high-rate current, and the operating results
are closer to the actual state of the battery, and therefore, are widely used in the research of
single batteries [85].

The PNGV model is a derivative model of the first-order RC model, which can describe
the battery capacity while reflecting the DC response characteristics. The primary working
principle of PNGV models is that a capacitor is connected in series based on the first-order
RC mode. The purpose of this model is to describe the relationship between the open
circuit voltage of the battery and the accumulative charge and discharge capacity. Then, the
model can realize the estimation of the available capacity of the battery, and is mostly used
to assess the SOH [82]. The general nonlinear (GNL) model is also called the nonlinear
equivalent model, which is derived from the generalization and development of the Rint
model, Thevenin model, and the PNGV model. The addition of circuit components in the
GNL model makes the physical meaning of each part clearer, so that the voltage change
process can be better simulated.

Since the parameters in the ECM are closely related to the working state of the battery,
the effectiveness of parameter identification during battery operation is crucial. The current
identification methods mainly include the nonlinear least squares method, neural network
algorithm, and bionic optimization algorithm [86–88] Among them, bionic optimization
algorithms include genetic algorithm, particle swarm algorithm, simulated annealing
algorithm, and so on [89]. The ECM method is one of the most commonly used single-cell
models in modeling LIB and SSB packs. The output characteristics and accuracy of the
battery pack model depend on the series-parallel sequence and modeling method of the
selected single-cell model. However, the current production level and manufacturing
process are difficult to ensure the consistency between individual cells. Therefore, the
single-cell model cannot accurately represent the predictive model of the battery pack
through simple quantitative accumulation. The ECM models generally focus on the external
physical quantities such as terminal voltage and current. Moreover, ECM models do not
reflect the electrochemical properties and complex variations in the microstructure of the
battery. The main modeling principles of the ECM method for a single cell are: (1) The
model includes the chemical reaction mechanism of the battery, and the relevant model
parameters should be identified; (2) the model can accurately reflect the characteristics of
the battery and adapt to different environments and working conditions; (3) the single-cell
model is as simple as possible within the scope of the design requirements to simplify the
calculation process and improve the usability of the model.

The physical structure of SSBs is fundamentally different from conventional liquid
electrolyte-based Li-ion batteries. A suitable SSB model with high fidelity and a low
computational burden is essential for most model-based management algorithms. The
ECM has the advantage of being easy to implement in a wide range of applications, in
particular, in circuit simulation and control system design software packages such as
MATLAB/Simulink. In these packages, various numerical solvers have been included,
which can be selected to solve circuit models and facilitate control system design. However,
ECMs lack mechanistic insight into electrochemical dynamics, have limited applicability
for battery performance prediction under wider operating ranges and changing system
dynamics, and fail to properly address battery degradation and internal safety issues.
Additionally, modern applications of batteries need to be designed for increased load
dynamics, higher current rates, and harsher operating environments. In this case, the
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functional complexity, model order, and testing effort for identifying ECM parameters must
increase substantially to achieve sufficient extrapolation.

3.1.3. Empirical Models

Building mathematical models is an effective method to analyze and optimize the
performance of batteries. Generally, mathematical models are divided into two types: one
is a mechanism model that is established by theoretical analysis; the other is an empirical
model, which is proposed on the basis of experiments and can simulate the performance
and explain the behavior of the battery to a certain extent. The former is often used to
describe the mechanism by which various factors affect battery performance, while the
latter is often applied to simple simulations of the performance of single batteries in a
battery pack. In addition, there are also semi-empirical models that combine mechanism
and empirical models. The empirical model refers to the model description of the cell
capacity decay process that can directly or indirectly reflect the change law of the state
variable of the capacity decay with time, the total discharge capacity or the number of cycles
through the empirical formula. In the process of estimating the SOH of lithium batteries,
the empirical model usually needs to use statistics to process the data to determine the
initial parameter values of the model.

The modeling and simulation of LIBs has always been a research hotspot in the
field of electrochemistry. However, most existing reports have studied the numerical and
empirical models of LIBs separately. Establishing an LIB degradation model is one of the
important links in predicting cycle life. However, it is difficult to establish an accurate
battery degradation process model that is based on the electrochemical processes inside
LIBs that are under actual operating conditions. In addition, the degradation process of
the battery is directly affected by various factors such as temperature, impedance, end of
charged voltage (EOCV), and depth of discharge (DOD). Generally, the more parameters
that are involved in the model, the higher the accuracy of the model. However, some
parameters are not easy to obtain in the process of battery capacity degradation, and the
model establishment is more complicated. Empirical models that are commonly used
in LIBs include internal resistance model, ECM, neural network model, fuzzy algorithm
model, and the genetic algorithm model. Saha et al. [90] first carried out experiments on the
performance degradation of LIBs under different conditions and obtained a large amount
of test data. Some scholars conducted accelerated life tests on lithium power batteries at
multiple temperatures (40–70 ◦C) [91,92]. They proposed a completely empirical model
according to the variation law of the battery’s internal resistance, temperature, and SOC,
and finally developed a multi-sigmoid model. Ramadass et al. [93] quantitatively studied
the capacity fading of batteries through the changes of SOC, resistance, and diffusion
coefficient of an SEI membrane, and proposed a semi-empirical model for battery capacity
degradation. Furthermore, Ning et al. [94] improved a semi-empirical model that was based
on the quantitative analysis of the effects of EOCV and DOD on the cycle life of batteries.

3.1.4. Fused Models

Fused models combine all available knowledge, information, and data sources, bring-
ing the advantages of model-based and data-driven approaches. Specifically, fused models
can combine the robustness and interpretability of model-based methods with the speci-
ficity and accuracy of data-driven methods. They incorporate different types of battery
models to extract additional features from the available data. The differential equations that
are established by the electrochemical models usually contain a large number of unknown
parameters, and the input variables include many internal parameters of lithium batteries,
which are difficult to obtain by measuring the external characteristics of lithium batteries.
Therefore, electrochemical models are rarely used in practical BMS. The ECM avoids the
extensive use of internal parameters of lithium batteries and reduces the difficulty of es-
tablishing the model. In order to achieve high-precision modeling, Verbrugge et al. [95,96]
introduced a first-order delay in the RC model of lithium batteries, which was experi-
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mentally demonstrated to have better performance under dynamic current conditions.
Plett et al. [83] obtained the fused model by fusing the Shepherd model, the Unnewehr
general model, and the Nernst model. Liu et al. [97] modeled the lithium battery that was
based on the fusion model and achieved an accurate estimation of the state of the lithium
battery based on the improved fusion model.

The RUL is usually defined as the number of remaining charge and discharge cycles
when the battery reaches the end of life (EOL), which is used to measure the reliability
of the battery in its life span and is a description of the future state of the battery at the
macro scale. However, SOH belongs to the description of the current state of the battery
at the macro scale. To fully evaluate the aging degree of the battery, it is necessary to
perform SOH estimation and RUL prediction simultaneously [35]. So far, joint estimations
of SOC-SOH are now common, but predictions of RUL are usually done separately. Since
it is difficult to achieve an accurate prediction of RUL using only a single method, fusion
algorithms are regarded as the main research direction. In addition, RUL is a description
of the future state of the battery, and therefore, it is necessary to provide an uncertainty
expression of the predicted results to improve reliability. Xing et al. [98] proposed a fused
model method that was based on exponential and polynomial to achieve RUL prediction
by using PF to update the model parameters online. These types of models are simple,
but usually only provide point forecasts and perform poorly in long-term RUL forecasts.
In addition, data-driven methods using machine learning are also widely used in RUL
prediction. Wang et al. [99] established a multi-step capacity prediction model, which takes
energy efficiency and average operating temperature as the input of SVM, and the current
capacity of the battery and the decreasing value of the capacity during the cycle as the
output of SVM. Although machine learning algorithms can achieve accurate modeling of
nonlinear systems, they have poor multi-step iterative prediction ability, and usually only
single-step prediction can be performed [100].

3.1.5. Comparison of Physics-Based Approaches

Although the electrochemical model has high accuracy, it has obvious shortcomings
such as complex model structure, difficult parameter identification, and low operation
speed. Therefore, the electrochemical model is not suitable for the BMS of the actual ve-
hicles. The electrochemical model mainly realizes the accurate modeling of the lithium
battery by describing the electrochemical reaction process inside the battery. However,
the differential equations that are established by the electrochemical model usually con-
tain many unknown parameters, which increases the complexity of the electrochemical
model. Meantime, the input variables in the electrochemical model include many internal
parameters of the lithium battery, which are difficult to obtain by measuring the external
characteristics of the lithium battery, such as the effective area of the electrode space, the
ionic conductivity of the electrolyte, the average distance of holes from the electrode to
the current collector, etc. [101]. The ECM simulates the lithium battery by establishing a
circuit, which avoids the extensive use of internal parameters of the lithium battery and
reduces the difficulty of model establishment. Therefore, ECMs are frequently used in
practical BMS test systems. Empirical models are easier to obtain and more applicable.
Furthermore, the prediction of the remaining life of the lithium battery can be realized
by using an appropriate filtering algorithm combined with the corresponding empirical
model. However, the empirical models are difficult to describe the influence mechanism
of multiple factors on the aging and load dynamic characteristics of lithium batteries, and
the accuracy and stability of the model still have certain limitations. Based on the fusion
model, higher-precision modeling of lithium batteries can be achieved. Importantly, physi-
cal models and simulation technologies keep pace with the time and develop vigorously.
The development of new calculation methods to accelerate the understanding of SSBs is
particularly important due to challenges such as the complexity of the interface and the
diversity of SEs. The combination of powerful simulation techniques is currently a topic of
great interest, especially utilizing machine learning techniques. The market demand for
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batteries with excellent performance will drive the innovation of multi-functional physical
models and high-efficiency computational methods in the future, which is essential to break
through the bottleneck of the development of battery technology. Due to the advantages
and limitations of each method, there is no single perfect method for battery PHM. As far
as physics-based forecasting methods are concerned, they can use limited data. As battery
systems, operating conditions, and monitoring data become more complex, a data-driven
approach that is based on machine learning becomes increasingly beneficial. Hybrid ap-
proaches are also promising in the field of battery PHM by integrating data-driven and
physics-based approaches.

3.2. Data-Driven Approaches

Despite significant efficiency of model-based approaches, in reality, due to large the
volume of dimensionality and complexity of electro-chemical and mechanical character-
istics of batteries, adopting data-driven methods can offer substantial improvement over
model-based approaches. Data-driven techniques can transform high dimensional and
noisy data into lower dimensional and cleaner ones that can be used for prognostications.
They employ a set of predictive models that are dependent upon the data’s quality and size.
Using historical monitoring data and statistical pattern recognition tools to detect faults,
data-driven methods predict the degradation of a battery based on a training database of
internal and external covariates. This method’s three major tasks are fault diagnostics, prog-
nostics, and condition-based maintenance. Here, a handful of the most known data-driven
approaches that can be used for SSBs are presented and discussed. This section aims to
compile the most prevalent and robust data-driven methods that can serve as a benchmark
for clients to select the appropriate method for SSB health status assessment.

Data-driven approaches that are used in PHM generally can be classified into two
categories: statistical approach and machine learning (ML) approach. Statistical-based data-
driven methods generally rely on statistical parameters of the dataset such as the standard
deviation, covariance and mean, that are contingent upon the existence of probability
distribution of the statistical parameters [102]. On the contrary, machine learning methods
do not require any statistical assumption and makes a prediction that is based on the
acquired data. Broadly speaking, ML methods are widely recognized as the primary
data-driven approaches. They can be divided into three categories: supervised learning,
unsupervised learning, and semi-supervised learning. The main difference between the
three is the type and amount of data that are available. Most ML-based data-driven
prognostication models are built using supervised learning models. Supervised learning
can predict the output values of continuous quantities (such as volume modulus, band gap,
etc.) or discrete quantities (such as crystal structure, etc.). Unsupervised learning models
are often used to classify or reduce the dimension of vectors, which solves the problem of
creating from sparse datasets. Semi-supervised learning is rarely used in SSE prediction.
The basic rule of this method is to use some local features of labeled data and the overall
distribution of the unlabeled data to obtain acceptable classification results.

Among many ML techniques that offer significant capability for battery informatics,
the most important underlying feature is the capability of the method to accurately include
the inherent properties of the battery material and behavior. It starts with predicting the
performance of the material for a targeted functionality that normally uses parametrization
in one or more crucial material properties. Then, the established model is used to predict
the functionality of the material with the best given performance. An important feature of
the data-driven method that is employed for solid-state electrolytes, which is the governing
factor that differentiates them with liquid LIBs, is the ability to accurately represent the
compositional information and crystalline structure of the electrolyte in the model. Deep
learning data-driven methods have achieved substantial breakthroughs in representing
these features in their model [37,103]. They possess the potential to transfer information
from the learning process of the formation energy in order to represent elemental knowl-
edge. Furthermore, the recently developed crystal graph convolutional neural network
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(CGCNN) has illustrated the ability to accurately represent the crystalline structure [104].
In the pool of various data-driven algorithms for establishing SSB models, the most notable
methods are artificial neural network (ANN) [105], kernel ridge regression (KRR) [106],
support vector machine (SVM) [107], k- Nearest Neighbor (kNN) [108], Random forest
(RF) [109], and the Bayesian method (BM) [110].

3.2.1. Artificial Neural Network (ANN)

Artificial neural network (ANN) motivated from the biological arrangement and
characteristics of the human brain is a widely used method in data-driven approaches that
is based on a collection of connected neurons. Each connection transmits or receives a
signal from adjoining neurons that connected to them. The model is constituted by three
components: the input layer, hidden layer and the output layer and are classified into
different types where the primary used methods are: feedforward neural network (FNN)
and recurrent neural network (RNN). Their difference originates from the fact that in RNN,
the connections between the nodes form a directed or undirected graph, while in FNN, the
connections do not form a cycle. Many researchers over the recent decades have focused
on employing the ANN methods to perform health diagnosis and SOC estimation of LIBs
and SSBs [105].

3.2.2. Kernel Ridge Regression (KRR)

A generalized version of linear regression and ridge regression methods, KRR extends
the linear regression into a nonlinear correlation between the available data and maps
them into a higher-dimensional feature space. The nonlinear regression scheme is then
transformed into a linear format in the feature space [110]. Due to the difficulty in selecting
an appropriate mapping function, the kernels are applied, representing a similarity between
the inputs. For this purpose, a non-linear kernel function is applied in the input space
instead of mapping the data and solving high-dimensional non-linear regression. Examples
of kernel methods are Gaussian, polynomial, and Laplacian kernel. Fitting the KRR models
are commonly a challenging task due to computationally intensive demand of the data
which limits the application of medium-sized datasets [106].

3.2.3. Data-Driven Prognosis (DDP)

Recently, a novel data-driven method called data-driven prognosis (DDP) was pro-
posed by Chandra et al. [111] that relies on in situ data measurements and estimates the
system’s failure based on the curvature information that is extracted from the system. This
method was later on employed to analyze LIBs [112]. The proposed approach extracts
the constitutive parameters of LIBs in the shape of curvature and analyzes the curvature
information in the system based on the pairwise information of the data points. Then, it
estimates the probable timeframe that the system might enter the instability stage and
using a set of threshold criteria, predicts the failure of the system [112].

3.2.4. Support Vector Machine (SVM)

SVM methods align with KRR techniques in that they attempt to solve linear classifi-
cation problems in a high-dimensional feature space [113]. The principle the SVM function
under is to locate a hyperplane in the feature space and classifies the data points, and
identify the plane with a maximum distance between the data points [107].

3.2.5. k-Nearest Neighbor (kNN)

A commonly employed nonlinear ML method, kNN is used to solve both classification
and regression problems. It hypothesizes that similar data points are in the vicinity of
feature space and classifies the new data points into a category governed by its kNNs [108].
This procedure is counted as the classification task. In order to perform, regression, among
the kNNs, a weighted average label value is calculated. a requirement for a reasonable
distance metric is a limitation of this method [108].
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3.2.6. Random Forest (RF)

RF is an ML technique that is used for classification and regression problems [109]. It
constructs an ensemble of decision trees on various domains of the data points, makes a
prediction that is based on each decision tree, and calculates their mean. Higher accuracy
and less overfitting is achieved by selecting a large number of decision tress. The employ-
ment of ensemble-based architecture in RF methods leads to high accurate predictions and
efficiency in the results [109].

3.2.7. Bayesian Method (BM)

BMs are an optimization approach that are used to produce a probabilistic model for a
target function commonly utilizing Gaussian Processes (GPs) [83,86]. GPs use stochastic
procedures to describe probability distributions over the functions and assigns a probability
to each of these functions. Then, the probability distribution is used to represent the most
probable characterization of the data. A notable advantage of Gaussian process regression
is their ability to describe the uncertainty of each prediction model. On the other hand, it
might be computationally intensive and time-consuming [87].

3.3. Application of ML-Based Data-Driven Techniques in Solid-State Batteries Research

In order to accurately model the SSB characteristics in the selected data-driven frame-
work, the SSB primary components, i.e., the electrodes (anode and cathode) in addition
to electrolytes, should be modeled properly. The candidate SSB cathode materials should
possess high energy density, high voltage and capacity, and stable mechanical properties.
Multiple data-driven methods have been utilized to model the materials in a way that they
match these requirements.

3.3.1. Anode Materials

Eremin et al. [88] integrated topological analysis with density-functional theory
(DFT) modeling in addition to ridge regression in the configurational space of LiNiO2
and LiNi0.8Co0.15Al0.05O2 cathode materials. They showed that the topology of Li lay-
ers, ions, and dopants substantially influence the energy balance. In a similar study,
Natarajan et al. [89] combined ANNs with adapted cluster functions to predict the for-
mation of Li-vacancy orderings on the spinel LiTiSs and demonstrated that the ANN
method can produce the DFT-computed convex hull with information regarding the pair
cluster correlation as the input variable. In 2020, Eckhoff et al. [114,115] used an ANN
method to model LixMn2O4 that utilized a Jahn–Teller distortion model to predict several
properties of SSBs such as an Li diffusion barrier and phonon frequencies and oxidation.
Bartel et al. [116] investigated seven ML methods to study the formation energy of Li transi-
tion metal oxides using chemical formula and showed that models can predict the formation
energies accurately.

3.3.2. Cathode Materials

Similarly, several studies have been carried out to simulate the SSBs anode materials
using ML-based data-driven methods. Artrith et al. [117] employed atomistic ANN models
to evaluate the crystal structure of TiO2 and the features if amorphous Si anodes. Based
on their results, they showed that the computed average voltage was in alignment with
experimental results and validated their model. Onat et al. [118] used an ANN method to
represent the atomic interactions of amorphous Li-Si alloys and computed the Li diffusivity
to compare their results with the available references. Yoo et al. [119] studied Si crystals
as well as nanoclusters with atomic energy mapping modeled in ANN. In a study by
Zuo et al. [120] that was conducted to compare the performance of several ML interatomic
models, including ANN potential with SF representation as well as GPR potential, it was
found out that all the ML potentials illustrated accurate prediction of forces, energies, and
thermal properties.
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3.3.3. Electrolyte Materials

The electrolyte in SSBs is an important component of the battery that should be
accurately modeled to possess high ionic conductivity and compatibility with electrodes
and mechanical stability. Lacivita et al. [121] devised a set of data-driven methods to
determine the N defects in Li3PO4. Their study focused on the potential energy surface
(PES) sampling and used ANN for fast screening. According to the investigation by
Li et al. [122] which used ANN models to evaluate Li diffusion in amorphous Li3PO4, it
was shown that including Li diffusion transient structures in the simulations is an essential
parameter to reduce the error of the barrier energies. Miwa et al. [123,124] constructed
an automatic Bayesian optimization model without including any stochastic assumption.
Their study presented that the promotion of Li diffusion in β-Li2B12H12 is achieved by
lattice expansion and predicted the conductivity of Li and activation barriers in Nb-doped
LLZO. Deng et al. [79] proposed an electrostatic spectral analysis potential (eSNAP) and
simulated the diffusion of Li layers in superionic conductor α-Li3N to provide insight
into the concerted ionic motion and grain boundary diffusion. Wang et al. [125] studied
the Li diffusion pathways in the interphase and examined the Li ionic conductivities
of Li materials on the interfaces of electrolytes using LOTF-MD methods. In a study
that was conducted by Fujimura et al. [126], an SVM method was employed to model a
diffusion-based model considering the temperature and energy formation and diffusion
coefficient to study the ionic conductivity of electrolytes. Due to the importance of fast
ionic conductivity and electrochemical stability, Sendek et al. [127] carried out a study that
showed the inclusion of Cl-, Br-, and I-based solid ion conductors lead to more efficient
stability and ionic conductivity.

3.3.4. Comparison of Data-Driven Approaches

Data-driven prognosis and health assessment of SSBs are complex procedures requir-
ing an extensive survey in the system’s domain under analysis. System characteristics, data
availability, and application constraints are the primary components that need to be taken
into consideration before selecting the appropriate method. With that being said, no unique
technique can be identified as the most efficient approach as requirements of the users and
decision-makers vary from project to project. Thus, it is recommended that the selection of
the data-driven method be completely based on the specific system, working environment,
and the cost of the assessment.

3.4. Hybrid Approaches

Even though physics-based models provide valuable insight about the internal state of
SSBs, they require extensive parameter estimation of the components. Furthermore, in some
systems, it is not amenable to perform off-line testing of the system to extract measurements
of the cells, particularly when the model parametrization is further become challenging
by the inherent cell–cell variability. To overcome these bottlenecks, hybrid models are
introduced that can be used as an advanced SSB state estimation tool in battery BMS. Hybrid
approaches combine physics-based methods with data-driven methods to obtain accurate
predictions of the SOH of battery systems. The most commonly used hybrid approaches are
series and parallel [128]. Combining a model-based model with available prior knowledge
about the process and a data-driven method lead to a series approach. Similarly, in parallel
methods, physics-based and data-driven approaches are simultaneously considered from
the model. There have been limited research studies that focused on using hybrid methods
to estimate the battery state. The bottleneck that is embedded in the vast adoption of
hybrid model lies beneath the fact that high-fidelity multiphysical and multiscale models
are needed so that it would be possible to train machine-learning models and ultimately
create new opportunities for fusing the advantages of both modelling approaches [129].
The studies that are mentioned here are the most prevalent techniques that have been
developed in the battery management field. A study by Song et al. [29], implemented a
data-driven least-square support vector machine that is combined with a model-based
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unscented-particle filter that can be used to increase SOC and SOH of SSBs and LIBs.
Lyu et al. [130] used a Thevenin model and a data-driven method to estimate the SOH
of batteries. In 2021, Lin et al. [131] proposed a hybrid approach in which a continuous
hidden Markov model was combined with kernel density estimation to estimate the SOH
of batteries.

The summary of the prognostication methods that are commonly used for SSBs that
were discussed above is shown in Table 1.

Table 1. Summary of PHM techniques for solid-state batteries.

Categories Technique

Model-based and Physics-based method

Equivalent circuit model [85]
Electrochemical model [61,62,77]

Electrochemical-mechanical model [63,64,68,70]
Mathematical model [65,72,78]

Data-driven method

ANN [104–107,114,115]
kNN [108]

DDP [111,112]
SVM [113]
RF [109]
PF [87]

BM [86,90]

Hybrid method Series [129,130]
Parallel [131]

4. Challenges, Perspectives, and Conclusions

PHM-augmented schemes provide an essential characterization framework for eval-
uating the availability and reliability of SSBs. Even though many of the PHM methods
are complex procedures that require extensive characterization and interpretations, they
are a crucial component of safety requirements for battery systems. Predictably, the PHM
approaches become more commonplace as the desire to transition from fossil fuels to
sustainable energy is increasing substantially nowadays. However, the road to achieving
this goal is still in need of pavement as the limitations to employing PHM methods for SSBs
are high. For instance, most PHM techniques, particularly ML-based data-driven methods,
require the modeling to be developed for a specific domain and cannot be generalizable to
other instances. This limitation poses a challenge to accurately incorporating the complex
processed in SBBs and batteries in general (such as degradation).

Moreover, another hurdle in adopting PHM methods in SSBs is reproducibility. Al-
though PHM methods have gained significant popularity over the recent decades, a lack
of sufficient quality measures and material science library for establishing robust models
have caused complications in utilizing these methods. A universal solution can be the
willingness of researchers to share the model validations and data to accelerate the PHM
models’ applicability. The lack of reliable data also hurts advances in this area because
because most PHM techniques are based on simulation results and not experimental, which
can be improved by experimentally validating the simulations results.

This review was carried out to present the current state of the PHM modeling of SSBs
with the focus on the application of model-based and ML-based data-driven approaches.
Despite vast limitations and challenges that are still ahead, many encouraging PHM-based
studies have appeared in the literature. With the ever increasing demand for a safer and
more reliable battery module, and ultimately a sustainable energy, PHM frameworks are
attracting more attention due to their capability to facilitate battery health assessment. By
studying the current state of art of PHM techniques for SSBs, the following conclusion
can be made: (1) model-based approaches and data-driven methods are primarily used to
estimate the SOC of SSBs that might not be sufficient for accurate state estimation. This
is due to the fact that available methods focus on the cell battery rather than the battery
pack. This can lead to inaccurate prognostications and health status analysis. In order to
improve the robustness of these models, the battery pack should be considered as a whole.
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(2) Although RUL prediction is one of the most important components in the BMS of SSBs,
very few studies have focused on this field. This can be attributed to the complexity of the
model that needs to be established and the lack of accurate data. (3) Hybrid approaches are
capable of addressing the shortcomings of model-based and data-driven methods in SSBs,
but little information is available in this area.
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