
Citation: Wrana, J.; Struzik, W.;

Kwiatkowski, B.; Gleń, P. Release of
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Abstract: The direct release of energy from the groundwater under the building of the Sobieski
Family Palace in Lublin, Poland, and the obtainment of heat and cooling energy for Heating, Ventila-
tion, and Air Conditioning systems (HVAC) provide an opportunity to reduce electricity and heat
consumption and to limit CO2 emissions by 15–50%. The upgrade to the Sobieski Family Palace and
the addition of new educational and administrative functions require state-of-the-art, energy-saving,
and environmentally friendly solutions such as Fuel Cells and Hydrogen for Heating, Ventilation,
and Air Conditioning (FCH HVAC) systems. As part of the program “Research for high-quality air
in architecture and urban studies,” carried out since 2018 at the Institute of Architecture Planning,
Department of Contemporary Architecture, Faculty of Civil Engineering and Architecture of the
Lublin University of Technology, in 2021, further research was carried out in order to prepare for the
potential implementation in 2022 of the project entitled “Development and Upgrade of the Former
Sobieski Family Palace in Lublin. The main body of the building—educational and administrative
function,” whose chief designer was Architect J. Wrana, Lublin University of Technology, 2021. The
objective of this paper is to identify technologies and solutions specifically designed for HVAC
systems in upgraded and renovated historic buildings. This paper is also a call for cooperation among
institutions, scientists, higher education institutions, as well as an expression of appreciation for the
immense energy stored in groundwater. This energy not only has the lowest carbon footprint but also
is the only generally accessible large storage source from which we were unable to obtain ecologically
pure energy before the introduction of FCH technology.

Keywords: innovation; new technologies; very low operating costs; CO2 reduction

1. Introduction

If our CO2 emissions and power demand remain high over the next few years, heat
waves caused by climate change will affect all of Europe [1–3]. According to a report by
the International Energy Agency [4], the demand for energy will only rapidly increase in
the coming years, so we should prepare for this phenomenon in a variety of technical and
economic ways. The European Commission has created a long-term strategy for the climate
economy up to 2050 [5,6]. Given the objectives set by the European Union (EU) in terms of
energy, climate, and air quality policy, district heating systems can contribute to increasing
energy savings and reducing CO2 emissions [7].

An analysis of Figure 1 shows that France uses the most nuclear energy, which remains
controversial as a green solution. Many experts point to the fact that nuclear energy poses
an enormous threat to the natural environment if a disaster happens, as demonstrated by
the cases of Chernobyl and Fukushima [8]. It should also be remembered that nuclear
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power plants produce waste that is harmful to humans and the environment and will
remain toxic for thousands of years [9,10]. Another problem is the age of the currently
operating power plants and their obsolete control and safety systems [8,11]. The above-
described plants and the 75% share of nuclear energy in France’s power generation provide
a complete picture of the energy security of that country. Despite having the largest number
of wind turbines and solar collectors, which allows for the generation of large amounts
of electrical energy, Germany depends on wind and sun energy and grapples with the
problem of energy storage [12].
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Figure 1. The energy sources used by Germany, the United Kingdom, France, and the Czech Republic,
Europe’s major countries until 2018. Source: www.wysokienapięcie.pl (accessed on 11 August
2022) [13].

The United Kingdom, which used to mine enormous amounts of coal, built a number
of nuclear plants at that time, and today, these facilities are close to becoming obsolete [14].
Sweden’s and Finland’s nuclear power plants constructed 40 years ago still account for
about half of the total energy generation in those countries. In Sweden, the other half is
provided by hydro-electric plants and, in Finland, mainly by biomass [15]. Combined heat-
and-power plants using resources from Finland’s large forested areas and high volumes
of forest industry waste have become the Finnish specialty, just like nuclear power plants
“imported” from the Union of Soviet Socialist Republics (USSR) have been for the Czech
Republic, Slovakia, and Hungary [16]. These solutions cover a substantial part of the
energy demand, but they have been used for a long time now and should be modernized
or replaced [17,18].

There is, therefore, one conclusion for Europe. The nuclear power plant is an outdated
solution that is not well aligned with present times [19–21]. Probably in 20 years, we will
take advantage of nuclear fusion, but currently, especially bearing in mind the Chernobyl
and Fukushima disasters, societies are wary of nuclear energy and environmentalists
approach it with a great deal of skepticism. Wind turbines are an excellent solution, but the
amount of energy harvested from wind differs with each day [22]. Similarly, solar collectors
depend on exposure to the sun, and there is a problem with energy storage. Considering
these circumstances, it is best to seek a different energy type from an alternative resource,
and the answer may lie in energy from groundwater [23–27].

www.wysokienapi�cie.pl
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2. Materials and Methods
2.1. The Issue of Energy Storage Effects

The main focus of the research presented in this article is nature and turning our
attention to an alternative natural, green, and energy-efficient resource of energy accu-
mulated in groundwater. It is worth emphasizing that this energy is unlimited, free, and
available across about 70% of this country’s area, making it possible to heat ventilation
air in winter from −20 ◦C to, for example, +7 ◦C, and allowing the cooling of ventilation
air in the summer from an outdoor temperature of +35 ◦C to +22 ◦C. These parameters
form the basis of research and are cause for optimism in considering CO2 reductions in
Heating, Ventilation, and Air Conditioning systems (HVAC) [28,29]. The HVAC system is
exactly the same as a traditional installation, except that in FCH HVAC, installations have
an additional system of lateral air intakes and outlets that reduce electricity consumption by
about 10%. The design has not changed, so rotary exchangers, cross-flow heat exchangers,
and other recovery methods along with mixing chambers can be used in this system. In
the FCH HVAC system, coolers and FCH heaters are introduced in addition. Details of
this solution are available in patent P-229828 [30]. See these differences in Figure 2, which
presents a FCH glycol 35% heater–cooler functioning as a heater in winter (item 5), with a
temperature range from −18 to +7 ◦C, and as a FCH cooler (items 11–17).
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Research and analysis over the years have led to the conclusion that groundwater is a
suitable low-level heating and cooling source, due to its high thermal capacity and stable
temperatures throughout the year [28]. Vertical collectors are used to recover heat and
cold from groundwater, as below the depth of 10 m, the ground temperature is completely
independent of the outdoor air temperature. This allows for obtaining stable heating
power throughout the year. Vertical collectors usually pass through several different
layers of material [31,32], which means that there are virtually no methods, other than
experimental ones, to assess the possibility of boring for heating purposes in a specific
location. Groundwater is, as demonstrated in a further section of this paper, one of the best
low-lying sources of heat. It is characterized by a very high thermal capacity and stable
high temperatures. The vertical collectors built in the zone up to 50 m, according to our
knowledge and experience, are optimal for an FCH air-conditioning system, working in a
closed circuit [33].
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2.2. Energy Store Studies Using the Direct Measurement Method and a PC FCH HVAC 1700 Air
Handling Unit

The results for the summer will be confirmed with direct measurements of the capacity
using the PC FCH HVAC 1700 air handling unit, presented in Figure 3, where the unit
with a full heating load collected actual energy from groundwater at a specific time at the
studied location. The air handling unit is powered by a 20 kW electric heater to ensure
maximum outdoor conditions, which allows for obtaining a temperature of +35 ◦C for
the incoming air, which is the maximum temperature for Polish climate conditions in
the summer.
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2.3. Energy Stores. How to Obtain this Energy and at What Amount for FCH HVAC Systems

This research presents the actual configuration of the systems described using a project
implemented in Mielec as an example, which had an area of 33,000 m2 of commercial
space. An economical system supporting FCH heating and air-conditioning using a low-
lying energy source was provided as a navigator in Mielec. The FCH system is based
on geological boreholes in a closed-circuit along with a distribution manifold well and
a pump unit. According to the projects made by the Geological Survey team, more than
700 complete boreholes have been drilled at locations in Poland. For each of the boreholes,
the data are different, as are the conditions:

Zamość: Gallery with an area of 5000 m2, borehole depth of approximately 50 m,
borehole diameter 250 mm—mud method.

The installation was horizontal, and risers were made of PE pipes and acid pipes only
in the groundwater flow zone approx. 12 m in size.

Pipe diameter: 25, 32; 40 mm; 10 sets; flow temperature summer 18 ◦C. Winter has no
data installation only for cooling.

The installation cooled the outside air from 35 ◦C to 22 ◦C. Under these conditions,
the temperature in the hall measured at a height of 2 m was 25–26◦C.

Gdansk: Gallery with an area of 5000 sq m. well depth, about 70 ◦C.
Poznań: Sports shop in which the installation was discontinued as the investor did

not have the means, area with 5 000 m2 deep wells, about 20 ◦C.
Olsztyn: Gallery with an area of 20,000 m2, well depth ca. 80 m.
Sosnowiec: Gallery with an area of 15,000 m2, well depth ca. 70 m.
Warsaw: Gallery with an area of 15,000 m2, well depth approx. 78 m.
Mielec: Gallery with an area of 33,000 m2, borehole depth approx. 18 m, borehole

diameter 250 mm—mud method.
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The installation was horizontal, and risers were made of PE pipes and acid pipes only
in the groundwater flow zone with a size of about 12 m, pipe diameter 32, 40 mm 280 sets,
supply temperature summer 17–19 ◦C, return temperature 22–25 ◦C.

The system cooled the outside air from 35 ◦C to 22 ◦C. Under these conditions, the
temperature in the hall was measured at 2 m (21–24 ◦C).

These are variable values depending on time and external conditions. Inlet and outlet
temperatures to and from the boreholes vary from 5 ◦C in winter to 18 ◦C.

The FCH system involves a low-lying source of cooling/heating and indoor feed
systems for ventilation air handling units. The FCH system involves recovering heat and
cold from groundwater using a ground heat exchanger equipped with vertical boreholes
to a depth of 20 m. A multi-section distribution manifold is fed through individual wells
connected to circuits with a head, polyethylene pipes (PEHD 100 PN10 SDR17), and steel
inserts of thin-walled acid-resistant pipes to facilitate the exchange of cold and heat in
this system.

At the boundary between the low-lying source and the indoor system, there is a multi-
section manifold located in an external well, e.g., SPIDER manufactured by Energeo (wells
equipped with D600 manhole covers). In every circuit, the connection to the distribution
manifold will feature shut-off ball valves, control valves (Stromax 4017 M manufactured
by Herz), thermometers at return and supply from the low-lying source, and an air vent.
The internal FCH system was constructed as a forced-circulation double-pipe closed-circuit
system. The elements that ensure the desirable flow parameters of the agent in the system
are circulator pumps. The pump unit will feature shut-off ball valves, a return valve, a
screen-filter, and manometers. The design for the return duct includes a shut-off valve
and a manometer. The dn15 safety valve type 1915, manufactured by SYR, with opening
pressure set to 4.0 bar, and the pressure vessel type NG f-my, manufactured by Reflex,
with a capacity of 50 dm3, protect the system against pressure growth. A 35% solution of
ethylene glycol was used as the heating/cooling factor.

The amount of obtained energy and confirmation of results for winter can be read
directly from the BMS chart in Figure 4 (2), where outdoor temperature is −18.3 ◦C and
the amount of air is 9000 m3/h, and inFigure 4 (1), where the temperature behind the FCH
heater is 7.6 ◦C and the power is 0.34 × 9000 × 25.9 = 79.25 kW.
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As shown, energy in this system is free, unlimited, and environment-friendly and has
zero carbon footprint. The parameters and energy consumption can be compared:

• A traditional water chiller system consumes 41 kW of electrical energy to produce
103 kW of cooling energy, COP 2.51.

• An FCH system produces the same amount of cooling energy using only 5 kW of
electrical energy, COP 20.
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Our results leave no room for doubt. HVAC systems, not only in Poland but also any-
where around the world, should be supplied with environment-friendly FCH technologies,
which use only 10% of the electrical energy used by water chillers and reduce the carbon
footprint to a minimum.

2.4. The Application of Environmentally Friendly Low-Emision Technologies for Modernizing
Current Worn-Out Systems

This paper presents the concept of green FCH systems to be introduced in the course of
modernizing current systems that have been used for years at The Sobieski Palace Complex,
13 Bernardyńska Street, Lublin. A visualization of the revitalization project for this site is
shown in Figure 5.
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Revitalization of the Sobieski Palace Complex, 13 Bernardyńska Street in Lublin, for a
new educational function (shown in Figure 6) assumes a functional program: enter from
Bernardyńska Street, between cordegardes buildings C and D. Along the outbuilding E, we
go down to a two-level car park, shown in Figure 7. Building A in Figure 8 is intended for
educational purposes—the three-story main body of the palace with two wings (basement
at −3.15 m) and a five story tower (basement at −6.25 m and basement at −3.15 m)
located centrally.

The building can be entered on the ground floor through the main hall with a
panoramic elevator and a spacious staircase (Figure 7); the corridor on the right leads
from connector E to annex E; the corridor on the left leads from connector B to annex B; on
the right is sales; and on the left is a set of administration rooms.

At the southern elevation, a new building was designed from the side of the slope
(building A’, intended for the auditorium building and a two-level car park after the
foundations of the palace body are built up and secured; the excessive amount of soil on the
slope will be removed along with the existing small buildings of poor technical condition).
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Energies 2022, 15, 6627 8 of 11

Figure 9 shows the auditorium—a multimedia room for 196 viewers with the possi-
bility of organizing lectures, conducting dialogues using audiovisual means at symposia,
and conferences (projection and simultaneous interpreting booths). It is accessible from
the ground floor of building A by a panoramic lift and a staircase, through the hall, and
from the first level of the parking lot through a lock at the level of −3.15 m (the second
level of the car park, the level of the existing foundations of the palace) and 25 m along
the showroom with a panoramic view of the city of Lublin. The two-level underground
parking is accessible by an exit to the courtyard at the −3.15 m level. Access to the parking
lot at the −3.15 m and −6.25 m levels can be obtained through the locks. The technical
level at −9.35 m was designed for technical service of the facility. At this level, a boiler
room, a hydrophore plant, and a ventilation room are located.
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The Sobieski Palace Complex, 13 Bernardyńska Street, Lublin, has a usable area of
6253.05 m2:

A. A-A’ building with a usable area of 4291.45 m2;
B. B-B’ building with a usable area of 819.56 m2;
C. C building with a usable area of 22.81 m2;
D. D building with a usable area of 24.54 m2;
E. E-E’ building with a usable area of 1094.69 m2.

3. Results

For building A–A’, the usable floor area is 4291.45 m2; the assumed V is 35,000 m3/h;
three FCH air handling units cover 12,000 m3/h on average each, with a demand for heat
and cooling from the FCH system of 300 kW. Energy is sourced from 50 boreholes and FCH
units up to 60 m. The boreholes are located in the green zones.

For building B–B’, the usable floor area is 819.56 m2; the assumed V is 7000 m3/h; and
the FCH air handling units covers 7000 m3/h on average each, with a demand for heat and
cooling from the FCH system of 70 kW. Energy is sourced from 10 boreholes and FCH units
up to 60 m. The boreholes are located in the green zones.

For buildings C and D, the usable floor area is 47.35 m2; the assumed V is 500 m3/h;
the FCH air handling units cover 500 m3/h on average each, with a demand for heat and
cooling from the FCH system of 14 kW. Energy is sourced from two boreholes and FCH
units up to 60 m. The boreholes are located in the green zones.

For the E–E’, the usable floor area is 1094.69 m2; the assumed V is 9000 m3/h; and
FCH air handling units cover 10,000 m3/h on average each, with a demand for heat and
cooling from the FCH system of 80 kW. Energy is sourced from 12 boreholes and FCH units
up to 60 m. The boreholes are located in the green zones.

The total usable floor area is 6253.05 m2, the amount of ventilation air V is 51,500 m3/h,
the FCH system power is 464 kW, and the number of boreholes up to 60 m depth is 74. The
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assumed energy consumption reduction in relation to HVAC is up to 50%; the reduced heat
energy consumption is up to 60%; and the operating costs reached EUR 4–5/m2/year for
2021, with previous costs being at EUR 22/m2/year.

Figure 10 shows partial results for outdoor temperatures greater than 35 ◦C. The room
is about 21 ◦C. The high output of the FCH ground heat exchanger is confirmed. The 0.3 ◦C
increase in room temperature is due to the increase in outdoor temperature from 36 ◦C to
37 ◦C between 3:55 p.m. and 4:08 p.m. The supply temperature after 4:10 p.m. automatically
returned to the previous level after the outdoor temperature dropped to 36 ◦C. Based
on the temperature difference after determining the capacity of the opening using the
simplified method, 1700 m3/h of supply air × 0.34 × 13/delta 35 ◦C–22 ◦C = 7.51 kW supply
air temperature.
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4. Discussion

The implementation of environmental regulations through new technologies is a major
factor in mitigating global warming and introducing strategies to reduce carbon dioxide
emissions [34]. The accumulated energy stocks in the buildings will cover 70% of the energy
demand, and thus, the anticipated reduction in CO2 emissions will reach the expected
level. Launch, following waste, route, and power, remain at CO2 informing levels [35].
Ecologically innovative technologies influencing environmental pollution are also reflected
in the business market [36]. During the implementation of the modernization work phase
of the described facility, it is advisable to equip it with additional equipment such as
photovoltaic cells. This will help reduce operating costs along with reducing CO2 emissions.
The burning of fossil fuels has a significant impact on the climate. Consequently, the use of
modern solutions for heating systems will undoubtedly contribute to a significant reduction
in CO2 emissions [37]. The solutions of the energy sources used and presented in this article
significantly reduce CO2 emission and save a significant amount of energy [38,39]. The
side effects of the innovative technology presented in this article are significantly reduced
compared to the current technologies used [40–43]. Introducing this type of technology
can ultimately significantly improve the quality of the environment [44,45]. From the last
few centuries to the present day, the use of fossil fuels has accumulated. CO2 that has been
stored over the years has also returned to the atmosphere at an alarming rate. Therefore,
solutions to reduce emissivity are extremely important [46].

5. Conclusions

The present paper and the results of the studies described open avenues for further
research. The indoor conditions, fresh air, and temperature are identical; the carbon
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footprint of the green system FCH is 10 times lower than that for traditional systems; and
environment-friendly systems emit 10 times less CO2 and have a lower energy demand,
which results in smaller grids, systems, fees, and environmental pollution.

The above considerations, paired with the current situation with CO2 emissions,
provide a lot of space for studies of such environment-friendly systems. The results of
the professional research presented as well as the actual energy consumption reduction
display prime examples of environment-friendly solutions and confirm the huge untapped
potential of groundwater.
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