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Abstract: The DC-link capacitors in an electronic power system are the main constraint of the power
density and lifespan of the power converters. Evaluating the load life of capacitors working in
severely adverse circumstances plays an important role in the design stages of the next-generation
power converters. In this article, an improved evaluation system for the capacitors utilized in high-
power three-phase voltage source inverters is proposed. The purpose of this article is to reproduce
the same encountered stresses when a DC-link capacitor is used in a high-power inverter with pulse-
width modulation. Hence, an improved down-scale evaluation system for the DC-link capacitors
used in high-power three-phase inverter systems under balanced and unbalanced load conditions is
proposed. Moreover, AC and DC analyses in the proposed evaluation system are conducted. The
equivalent circuit and transfer functions are derived to verify the proposed evaluation system. Finally,
a prototype system is constructed to facilitate the theoretical results as the verification.

Keywords: DC-link capacitors; three-phase inverters; down-scale evaluation system; unbalanced
load condition; life of capacitors

1. Introduction

Due to the development of renewable energy, more and more high-power and high-
density inverters are being manufactured for PVs, wind power systems and fuel cells,
etc. Therefore, the system testing for high-power and high-density inverters becomes
very important, especially in the limited power-rating testing field. Although the Inter-
national Electrotechnical Commission (IEC) has established some testing standards for
distributed systems, such as IEC 60364-7-712:2017 [1] and IEC 61000-3-3:2013 + AMD1:2017
+ AMD2:2021 [2], and IEC/TS 61000-3-4 [3], etc., there still exist some issues in the testing
field. If the power capacity of the testing field is smaller than that of the equipment under
test (EUT), the high-power EUT cannot be tested under a full-scale power rating. Hence,
some evaluation circuits and/or evaluation methods [4–11] for high-power converters
were proposed. They are intended to reproduce the same encountered stresses for any
components of high-power converters. However, the main constraint of the power density
and lifespan of power converters is the DC-link capacitor. Generally, the life cycle of
capacitors is usually shorter than that of the magnetic components and semiconductor
devices. Therefore, evaluating the load life of capacitors working in severely adverse
circumstances plays an important role in the design stages of the next-generation power
converters, especially in the evaluation of the capacitors in terms of the power loss, ageing,
and failure rate.

Nevertheless, in the past decades, only a single sinusoidal current was used to evaluate
the quality of capacitors, such as 120 Hz and 1 kHz [4]. In addition, a ripple current tester
and a DC bias are used to test the capacitors [5,12]. However, the current that flows from
the converter to the capacitors (EUT) contains multiple frequency components. Although
the frequency components can be correctly analyzed, it should be noted that the power loss
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of capacitors with respect to frequencies is a non-linear characteristic [6–8,13]. In order to
understand the aging characteristics, it is necessary to monitor the aging parameters of the
capacitor under test in the actual scenario. Generally, there are three kinds of estimation
methods, i.e., offline, quasi-online, and online methods. A quasi-online method was
proposed in [14], where a specific switch is used to stop the inverter and an LC resonant
network is introduced. The DC-link capacitor value is estimated by analyzing the collected
current data. However, this method requires additional control design, which limits its
application. In [9], a variable electrical network monitoring method was proposed. During
the inverter shutdown period, the capacitors are discharged through the controlled variable
electrical network, and the capacitance value and equivalent series resistance (ESR) are
estimated, based on the observed discharge curve. Considering that the accelerated aging
test is a long process, frequent shutdowns of the system will increase the burden of the
system, and online estimation can avoid this shortcoming. In [13], a small AC voltage is
injected into the DC link, and the input impedance model of the inverter is adopted to
simplify the measured approaches and calculate the capacitance value to realize online
monitoring, which is suitable for a long-term accelerated life test. However, with the
increasing power rating of inverters used in renewable energy, it will be more difficult to
create a standard field to evaluate the capacitors on-line in full-scale converters and give a
certification. Therefore, a down-scale capacitor evaluation testing circuit for high-power
three-phase inverters was proposed in [11]. By providing a high-voltage DC source to
emulate the voltage across the capacitors in a full-scale voltage rating inverter, a down-scale
voltage rating inverter is used to supply the current rating, which is the same as that of a
full-scale voltage rating inverter. However, in the literature [11], the inductor ripple current
flowing through the capacitor is different from that in a full-scale voltage rating inverter. In
addition, in practical applications, an unbalanced load in a three-phase system is a more
common condition and this condition is not considered in [11], which will cause an error
estimation for the capacitor operated in a high-power inverter system.

In this paper, an improved down-scale power rating evaluation system is proposed
by modifying the inductor value and adding a filter in a series with a low-voltage DC
supply to precisely evaluate the current of the capacitor under the test. Moreover, AC
and DC analyses of the proposed improved down-scale power rating evaluation system
are conducted, and the equivalent circuit and transfer function are derived. Finally, some
simulation and experimental results are provided to verify the validity of the proposed
down-scale evaluation system.

The remainder of this paper is organized as follows. In Section 2, the conventional
down-scale evaluation system is described. Then, an improved down-scale evaluation
system for the DC-link capacitors used in high-power three-phase inverter systems under
balanced and unbalanced load conditions is proposed in Section 3. In Section 4, some simu-
lation and experimental results are given to verify the validity of the proposed evaluation
system. Finally, some conclusions are offered in Section 5.

2. Conventional Down-Scale System

More and more high-power three-phase inverters are widely used in renewable energy
resources. Thus, the reliability of these high-power three-phase inverters becomes more
and more important. A high-power full-scale three-phase inverter is shown in Figure 1,
where a DC-voltage source VH is connected in the DC side and paralleled with a DC-link
capacitor, which is a critical component for reliability in high-power three-phase inverters.

In order to evaluate the DC-link capacitor in a full-scale voltage rating three-phase
inverter, a down-scale voltage rating evaluation system was proposed [11], as shown in
Figure 2, where the voltage and current of the DC-link capacitor are designed to be very
close to that of the DC-link capacitor in a full-scale voltage rating system. However, in an
actual case, the down-scale inverter in Figure 2 will have different inductor current ripples
in the line currents ia, ib and ic compared with the full-scale inverter in Figure 1. In addition,
although the evaluation circuit can work well in a load-balanced condition, it does not
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perform well when the three-phase load is unbalanced. In the three-phase unbalanced load
condition, the difference in the capacitor current iCT between the full-scale VSI and the
evaluation circuit proposed in [11] can be observed. The main problem is that the second-
order harmonic current is not high enough for the inductor LLchoke to block it. Moreover, a
LC resonant circuit loop may be formed, which makes the evaluation results become worse.
Therefore, in this paper, an improved down-scale evaluation circuit for DC-link capacitors
in high-power applications under balanced and unbalanced load conditions is proposed
and analyzed to precisely evaluate the DC-link capacitor in a high-power three-phase
inverter system.
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Figure 1. Full-scale voltage rating evaluation system in a high-power three-phase inverter. 

In order to evaluate the DC-link capacitor in a full-scale voltage rating three-phase 

inverter, a down-scale voltage rating evaluation system was proposed [11], as shown in 

Figure 2, where the voltage and current of the DC-link capacitor are designed to be very 

close to that of the DC-link capacitor in a full-scale voltage rating system. However, in an 

actual case, the down-scale inverter in Figure 2 will have different inductor current ripples 

in the line currents ia, ib and ic compared with the full-scale inverter in Figure 1. In addition, 

although the evaluation circuit can work well in a load-balanced condition, it does not 

perform well when the three-phase load is unbalanced. In the three-phase unbalanced 

load condition, the difference in the capacitor current iCT between the full-scale VSI and 

the evaluation circuit proposed in [11] can be observed. The main problem is that the sec-

ond-order harmonic current is not high enough for the inductor LLchoke to block it. Moreo-

ver, a LC resonant circuit loop may be formed, which makes the evaluation results become 

worse. Therefore, in this paper, an improved down-scale evaluation circuit for DC-link 

capacitors in high-power applications under balanced and unbalanced load conditions is 

proposed and analyzed to precisely evaluate the DC-link capacitor in a high-power three-

phase inverter system. 

Ctest

+
vCT

EUT

S1 S3 S5

S2 S4 S6

La

Lb

Lc

ia

ib

ic

VL

LLchoke

VH

LHchoke

Rdamp

iinv
Cbypass

iHdc iLdciCT

Ra

Rb

Rc

va+

vb+

vc+

CgaCgbCgc

 

 

 

 

 

Figure 2. Down-scale voltage rating evaluation system in a high-power three-phase inverter [11]. 

3. Proposed System Configuration 

In [11], since the current rating of the small inverter is controlled to be same as that 

of the full-scale inverter, the relationship between the power rating of the small inverter 

Psmall and the full-scale inverter PFS is given by 

HV

LV

FSDClink

SDClink

FS

small

V

V

V

V

P

P
==

−

− , 
(1) 

where VDClink-S and VDClink-FS are the DC-link voltages of the down-scale inverter and the full-

scale inverter, respectively. However, the different DC-link voltages will change the actual 

inductor current ripples of the three-phase currents ia, ib and ic. The voltage across the out-

put inductors in the down-scale voltage rating inverter is different from that in the full-

scale voltage rating inverter. Therefore, the DC-link capacitor current in the down-scale 

voltage rating inverter is also different from that in the full-scale voltage rating inverter. 

In this paper, an improved evaluation circuit is proposed in Figure 3. To reach the same 

Figure 1. Full-scale voltage rating evaluation system in a high-power three-phase inverter.

Energies 2022, 15, x FOR PEER REVIEW 3 of 14 
 

 

S1 S3 S5

S2 S4 S6

La

Lb

Lc

Ra

Rb

Rc

CDClink

CgaCgbCgc

iinv

ia

ib

ic

VH

iCT

+
vCT

EUT va+

vb+

vc+

 

 

 

 

 

Figure 1. Full-scale voltage rating evaluation system in a high-power three-phase inverter. 

In order to evaluate the DC-link capacitor in a full-scale voltage rating three-phase 

inverter, a down-scale voltage rating evaluation system was proposed [11], as shown in 

Figure 2, where the voltage and current of the DC-link capacitor are designed to be very 

close to that of the DC-link capacitor in a full-scale voltage rating system. However, in an 

actual case, the down-scale inverter in Figure 2 will have different inductor current ripples 

in the line currents ia, ib and ic compared with the full-scale inverter in Figure 1. In addition, 

although the evaluation circuit can work well in a load-balanced condition, it does not 

perform well when the three-phase load is unbalanced. In the three-phase unbalanced 

load condition, the difference in the capacitor current iCT between the full-scale VSI and 

the evaluation circuit proposed in [11] can be observed. The main problem is that the sec-

ond-order harmonic current is not high enough for the inductor LLchoke to block it. Moreo-

ver, a LC resonant circuit loop may be formed, which makes the evaluation results become 

worse. Therefore, in this paper, an improved down-scale evaluation circuit for DC-link 

capacitors in high-power applications under balanced and unbalanced load conditions is 

proposed and analyzed to precisely evaluate the DC-link capacitor in a high-power three-

phase inverter system. 

Ctest

+
vCT

EUT

S1 S3 S5

S2 S4 S6

La

Lb

Lc

ia

ib

ic

VL

LLchoke

VH

LHchoke

Rdamp

iinv
Cbypass

iHdc iLdciCT

Ra

Rb

Rc

va+

vb+

vc+

CgaCgbCgc

 

 

 

 

 

Figure 2. Down-scale voltage rating evaluation system in a high-power three-phase inverter [11]. 

3. Proposed System Configuration 

In [11], since the current rating of the small inverter is controlled to be same as that 

of the full-scale inverter, the relationship between the power rating of the small inverter 

Psmall and the full-scale inverter PFS is given by 

HV

LV

FSDClink

SDClink

FS

small

V

V

V

V

P

P
==

−

− , 
(1) 

where VDClink-S and VDClink-FS are the DC-link voltages of the down-scale inverter and the full-

scale inverter, respectively. However, the different DC-link voltages will change the actual 

inductor current ripples of the three-phase currents ia, ib and ic. The voltage across the out-

put inductors in the down-scale voltage rating inverter is different from that in the full-

scale voltage rating inverter. Therefore, the DC-link capacitor current in the down-scale 

voltage rating inverter is also different from that in the full-scale voltage rating inverter. 

In this paper, an improved evaluation circuit is proposed in Figure 3. To reach the same 

Figure 2. Down-scale voltage rating evaluation system in a high-power three-phase inverter [11].

3. Proposed System Configuration

In [11], since the current rating of the small inverter is controlled to be same as that of
the full-scale inverter, the relationship between the power rating of the small inverter Psmall
and the full-scale inverter PFS is given by

Psmall
PFS

=
VDClink−S
VDClink−FS

=
VLV
VHV

, (1)

where VDClink-S and VDClink-FS are the DC-link voltages of the down-scale inverter and the
full-scale inverter, respectively. However, the different DC-link voltages will change the
actual inductor current ripples of the three-phase currents ia, ib and ic. The voltage across
the output inductors in the down-scale voltage rating inverter is different from that in the
full-scale voltage rating inverter. Therefore, the DC-link capacitor current in the down-scale
voltage rating inverter is also different from that in the full-scale voltage rating inverter.
In this paper, an improved evaluation circuit is proposed in Figure 3. To reach the same
encountered amplitude of the current ripple in the line currents ia, ib and ic in the full-scale
inverter, the inductor value should be modified according to the down-scale voltage rating
as follows.

vl = L
dil
dt

, (2)

where the vl is the inductor terminal voltage, and il is the inductor current. For example, if
the low-voltage DC supply VL is half of the high-voltage DC supply VH, the inductance of
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the down-scale voltage rating inverter must be half the inductance of the full-scale voltage
rating inverter. Otherwise, the amplitude of the current ripples in the three-phase currents
in the down-scale voltage rating inverter will be half of that in the full-scale voltage rating
inverter. It should be noticed that the more we lower the voltage rating of the small inverter,
the smaller inductance of the output inductors we should select.
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Therefore, an improved down-scale voltage rating evaluation system for DC-link
capacitor is proposed in Figure 3. Compared with Figure 2, the three-phase inductors are
changed and a notch filter is adopted in the low-voltage DC supply path. It should be
noticed that, in order to block the high-frequency ripple current produced by the PWM
inverter to flow through the high-voltage DC supply VH and low-voltage DC supply VL,
the reactance of the two choke inductors must be much larger than that of Ctest and Cbypass,
as follows

ωLchoke �
1

ωCtest
, (3)

whereω = 2π fsw, fsw is the switching frequency of the inverter. LHchoke and LLchoke are the
choke inductors of the high- and low-voltage DC supplies, respectively. However, under
the unbalanced load condition, there exists a double-line frequency in the DC-link capacitor.
The choke inductor cannot block the double-line frequency caused by the unbalanced load
condition. Hence, the LN and CN must satisfy the following

1√
LNCN

= 2ωl , (4)

whereω = 2π fl , fl is the line frequency.
In order to analyze the proposed evaluation system shown in Figure 3, an equivalent

circuit focusing on the inverter current iinv and DC side currents is introduced in Figure 4,
where the low-voltage DC supply VH and high-voltage DC supply VL are set to zero.
The current iinv can be seen as the current source and expressed as the sum of the DC
component Idc and the AC component iac. The AC current iac includes high- and low-
frequency components. The LLchoke and LHchoke are the choke inductors in the low-voltage
DC side and high-voltage DC side, respectively. The RLV and RHV are the equivalent series
resistance corresponding to the low-voltage DC side and the high-voltage DC side circuit
branches, respectively. Note that the damping resistor Rdamp is added into the RHV. For the
convenience of discussion, we assume Z1 and Z4 are the total impedance in the low-voltage
DC side and the high-voltage DC side circuit branches, respectively. The Z2 and Z3 are the
impedance of the bypassing capacitor Cbypass and capacitor Ctest under test, respectively.
Therefore, the impedances Z1 to Z4 can be written as follows:

Z1(s) =
sLN

s2LNCN + 1
+ sLLchoke + RLV , (5)

Z2(s) =
1

sCbypass
, (6)
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Z3(s) =
1

sCtest
, (7)

Z4(s) = sLHchoke + RHV , (8)
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iCT, high voltage DC current iHdc, and low voltage DC current iLdc.

Then the transfer functions G1(s) from iinv to iLdc, and G2(s) from iinv to iCT can be
expressed as follows

G1(s) =
iLdc(s)
iinv(s)

=
Z2(Z3 + Z4) + Z3Z4

Z3Z4 + (Z1 + Z2)(Z3 + Z4)
, (9)

G2(s) =
iCT(s)
iinv(s)

=
Z1Z4

Z3Z4 + (Z1 + Z2)(Z3 + Z4)
, (10)

Under the load-unbalanced condition, the AC component iac in the current iinv contains
a second-order harmonic current and a high-frequency switching current, which are greater
than or equal to 120 Hz. It should be noted that, when the current frequency is 120 Hz or
above, the impedance of Z3 is much smaller than Z4. For instance, if the current frequency
is 120 Hz and the capacitor Ctest, choke inductor LHchoke, and equivalent series resistance
RHV are selected as 2.2 mF, 1.6 mH and 10 ohm, respectively, the impedance Z3 is 0.6 ohm
and Z4 is 11.2 ohm. In this condition, Z3 is much less than Z4. Thus, for AC components
above 120 Hz in current iinv, Z4 can be approximated as an open circuit. Thus, the transfer
functions from iac to iLdc, and from iac to iCT can be written as follows, respectively.

G3(s) =
iLdc(s)
iac(s)

=
Z2 + Z3

Z1 + Z2 + Z3
, (11)

G4(s) =
iCT(s)
iac(s)

=
Z1

Z1 + Z2 + Z3
, (12)

In order to discuss the properties of the conventional and proposed evaluation systems
for capacitors utilized in high-power three-phase inverters, G3(s) and G4(s) in the evaluation
system [11] can be written as Equations (13) and (14)

iLdc(s)
iac(s)

=
1

s2LLchokeCS + sRLVCS + 1
, (13)

iCT(s)
iac(s)

=
s2LLchokeCS + sRLVCS

s2LLchokeCS + sRLVCS + 1
, (14)

where CS is the equivalent series capacitor in the Z2 and Z3 circuit branch. In the following,
the choke inductor LLchoke is discussed under three different inductor values, namely 1 mH,
1.6 mH, and 2.2 mH. The bode plots of G3 and G4 in the conventional evaluation system
are shown in Figure 5a,b, respectively. Note that, in the system, CS and LLchoke will form an
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LC resonant circuit. For the worst case, when the inductance value of the choke inductor
LLchoke is 1.6 mH, the second-order harmonic current, i.e., 120 Hz, will exactly fall on
the peak resonance, where the gain of the transfer function is at the maximum. In this
case, it will seriously influence the current iCT under test because the second-order current
will not only flow into iLdc, but also be amplified due to the LC resonance. To solve this
problem, a filter is adopted and added to the low DC voltage side circuit branch, shown in
Figure 3, to block the second-order harmonic current and change the resonance situation.
For the improved system in this paper, G3(s) and G4(s) are given as Equations (15) and (16),
respectively. The bode plots of G3(s) and G4(s) in the improved evaluation system are
shown in Figure 6. Different from that shown in Figure 5, the gain of the transfer function
G3(s) at 120 Hz is much smaller. Thus, it can be seen from Figures 5 and 6 that, for the
120 Hz ripple current, the impedance of Z1 is high enough to block it. Moreover, the peak
resonance point is set to 66 Hz, as shown in Figure 6a. Note that, under the load-unbalanced
condition, iac does not contain the ripple currents whose frequencies are below 120 Hz.
Figure 6b shows the bode plot of the transfer function G4(s). No matter what inductance
value of LLchoke is selected, the gain of G4(s) stays at 0 dB at 120 Hz and at the switching
frequency, which indicates that the AC component of the capacitor current iCT is equal to
the ripple current flowing from the down-scale and full-scale voltage rating inverter under
the unbalanced load condition.

iLdc(s)
iac(s)

=
s2LNCN + 1

s4LLchokeCSLNCN + s3RLVCSLNCN + s2(LNCN + LLchokeCS + LNCS) + sRLVCS + 1
, (15)

iCT(s)
iac(s)

=
s4LLchokeCSLNCN + s3RLVCSLNCN + s2(LLchokeCS + LNCS) + sRLVCS

s4LLchokeCSLNCN + s3RLVCSLNCN + s2(LNCN + LLchokeCS + LNCS) + sRLVCS + 1
, (16)
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4. Simulation and Experimental Results

To verify the effectiveness of the proposed evaluation system, some simulation results
are executed. Simultaneously, a full-scale voltage rating inverter and a down-scale voltage
rating evaluation system are also constructed. Tables 1 and 2 list the circuit parameters of
the full-scale voltage rating inverter and the down-scale voltage rating evaluation systems
used in the simulation and experiment, respectively.

Table 1. Parameters of the full-scale voltage rating inverter used in simulation and experiment.

Name Symbol Parameter

Power rating P 3 kW

DC link voltage VH 450 V

DC link capacitor CDClink 2.2 mF

AC line voltage (rms) Vline 220 V

Switching frequency fsw 18 kHz

Output frequency fo 60 Hz

Output inductors La Lb Lc 2 mH

Output capacitors Cga Cgb Cgc 22 uF

Balanced load resistors Ra Rb Rc 16 Ω, 16 Ω, 16 Ω

Unbalanced load resistors Ra Rb Rc 12 Ω, 16 Ω, 16 Ω

Table 2. Parameters of the down-scale voltage rating evaluation system used in simulation
and experiment.

Name Symbol Parameter

Power rating of the system P 1.5 kW

High-DC voltage source VH 450 V

Low-DC voltage source VL 225 V

High-voltage choke inductor LHchoke 1.6 mH

Low-voltage choke inductor LLchoke 1.6 mH

Notch filter inductor LN 2.43 mH

Notch filter capacitor CN 0.724 mF

Bypassing capacitor Cbypass 2.2 mF

Capacitor under test Ctest 2.2 mF

Damping resistor Rdamp 10 Ω

AC line voltage (rms) Vline 110 V

Switching frequency fsw 18 kHz

Output frequency fo 60 Hz

Output inductors Lam Lbm Lcm 1 mH

Output capacitors Cga Cgb Cgc 22 uF

Balanced Load resistors Ra Rb Rc 8 Ω, 8 Ω, 8 Ω

Unbalanced load resistors Ra Rb Rc 6 Ω, 8 Ω, 8 Ω

Figures 7a–c and 7d–f shows the simulation and experimental results of the output
voltages Va, Vb, Vc, and the output inductor current ia, respectively. Due to the power
rating of the down-scale voltage rating VSI being half that of the full-scale voltage rating
VSI, it can be seen from Figure 7 that the output inductor values of the down-scale voltage
rating VSI must be modified to half that of the full-scale voltage rating VSI, so that the
amplitude of the line current ripple in the down-scale voltage rating inverter is very
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close to that in the full-scale inverter. Tables 3 and 4 show the simulated and measured
peak-to-peak current ripples at the maximum phase voltage, respectively. As can be
observed from Tables 3 and 4, one can see that the amplitude of the current ripple in the
proposed down-scale voltage rating evaluation system has a value closer to that of the
full-scale voltage rating VSI, when compared with the conventional down-scale voltage
rating evaluation system.
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Figure 7. Simulation (left) and corresponding experimental (right) waveforms of output three-phase
voltages Va, Vb, Vc and output current ia under (a,d) full-scale VSI with output inductor 2 mH,
(b,e) conventional down-scale voltage rating evaluation system with output inductor 2 mH, and
(c,f) proposed down-scale voltage rating evaluation system with output inductor 1 mH.

Table 3. Comparison of simulated line-current ripple at maximum phase voltage.

Ripple
(Peak to Peak) Full-Scale VSI

Conventional
Down-Scale

Evaluation System

Proposed Down-Scale
Evaluation System

Maximum ~1.64 A ~0.79 A ~1.58 A

Table 4. Comparison of measured line-current ripple at maximum phase voltage.

Ripple
(Peak to Peak) Full-Scale VSI

Conventional
Down-Scale

Evaluation System

Proposed Down-Scale
Evaluation System

Maximum ~2.23 A ~0.88 A ~2.41 A
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Figure 8 shows the voltage and current simulated waveforms of the capacitor under
test in the full-scale voltage rating inverter, conventional down-scale voltage rating eval-
uation system, and proposed down-scale voltage rating evaluation system. Figure 8a,b
illustrates the simulated waveforms of the full-scale voltage rating inverter under the
load-balanced and load-unbalanced conditions, respectively. As shown in Figure 8c,d,
although the testing capacitor current iCT of the conventional down-scale voltage rating
evaluation system can be very close to that of the full-scale voltage rating inverter in the
load-balanced condition, it does not perform well in the load-unbalanced condition. By
comparison, the proposed down-scale voltage rating evaluation system can have a similar
testing capacitor current iCT compared with the conventional down-scale voltage rating
evaluation system in both the load-balanced and load-unbalanced conditions, as shown in
Figure 8e,f.
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Figure 8. The simulated voltage vCT and current iCT of the DC-link capacitor under test for
(a,c,e) balanced and (b,d,f) unbalanced load condition in the (a,b) full-scale voltage rating VSI,
(c,d) conventional down-scale voltage rating evaluation system, and (e,f) proposed down-scale volt-
age rating evaluation system.

In order to clarify the difference in the capacitor evaluation results, the corresponding
enlarged view of the simulated current iCT of the DC-link capacitor under test is illustrated
in Figure 9. It follows from Figure 9 that, under the balanced load condition, the conven-
tional and proposed down-scale evaluation systems can obtain a similar DC-link capacitor
current under test compared with the full-scale voltage rating VSI, but it is different un-
der the unbalanced load condition. In addition, the corresponding close-to-120 Hz FFT
results of the simulated iCT of the DC-link capacitor under test are shown in Figure 10.
As can be seen from Figure 10, under the balanced load condition, the amplitude of the
double-line frequency in the full-scale voltage rating VSI, conventional down-scale voltage
rating evaluation system, and proposed down-scale voltage rating evaluation system is
very close to zero. However, under the unbalanced load condition, the amplitude of the
double-line frequency in the conventional down-scale voltage rating evaluation system is
much different from that in the full-scale voltage rating VSI.

Next, by analyzing the iLdc and iCT, one can observe the problem of the previous
system [11] in Figure 11. Figure 11b shows that, when the three phase loads are unbal-
anced, the double-line frequency or second-order harmonic current will flow into iLdc
and be amplified by an LC resonant circuit loop. As shown in Figure 11d, the proposed
down-scale voltage rating evaluation system can block the second-order harmonic current
in the low-voltage DC-side iLdc circuit branch and change the LC resonant circuit loop.
Figures 12 and 13 are the experimental results corresponding to the simulation results in
Figures 8 and 11, respectively. As can be observed from Figures 8 and 11–13, the experi-
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mental results are in very close agreement with the simulation results. Both the simulation
and experimental results verify the validity of the proposed down-scale voltage rating
evaluation system.
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Figure 9. The enlarged view of simulated current iCT of the DC-link capacitor under test for
(a,c,e) balanced and (b,d,f) unbalanced load conditions in the (a,b) full-scale voltage rating VSI
(c,d), conventional down-scale voltage rating evaluation system, and (e,f) the proposed down-scale
voltage rating evaluation system.
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Figure 10. Close-to-120 Hz FFT results of current iCT of the DC-link capacitor under test for
(a,c,e) balanced and (b,d,f) unbalanced load conditions in the (a,b) full-scale voltage rating VSI,
(c,d) conventional down-scale voltage rating evaluation system, and (e,f) proposed down-scale
voltage rating evaluation system.



Energies 2022, 15, 6937 12 of 14

Energies 2022, 15, x FOR PEER REVIEW 12 of 14 
 

 

2A

1A

0
0 50 100 150 200 250

(0.83A,120Hz)

(Hz)

 
0
0 50 100 150 200 250

(1.67A,120Hz)
2A

1A

(Hz)

 
0
0 50 100 150 200 250

(Hz)

2A

1A
(0.83A,120Hz)

 
(b) (d) (f) 

Figure 10. Close-to-120 Hz FFT results of current iCT of the DC-link capacitor under test for (a,c,e) 
balanced and (b,d,f) unbalanced load conditions in the (a,b) full-scale voltage rating VSI, (c,d) con-
ventional down-scale voltage rating evaluation system, and (e,f) proposed down-scale voltage rat-
ing evaluation system. 

(a)

(d)

0A

5A

0A

5A

10A

0A
−5A

5A

0A

5A

10A

iCT

iLdc

iCT

iLdc

5ms

5ms

(b)

0A

5A

0A

5A

10A

iCT

iLdc 5ms

(c)

0A
5A

0A

5A

10A

iCT

iLdc
5ms

−5A

−5A −5A

 
Figure 11. The simulated waveforms of the low-voltage-side dc current iLdc and the testing capacitor 
current iCT for (a,c) balanced and (b,d) unbalanced load conditions in the (a,b) conventional down-
scale voltage rating evaluation system, and the (c,d) proposed down-scale voltage rating evaluation 
system. 

250V
500V

250V
0V

500V

0A
5A

vCT

iCT

2ms

(c)

250V
0V

500V

0A
5A

vCT

iCT

2ms

(e)

0V

0A
5A

vCT

iCT

2ms

(a)

250V
0V

500V

0A
5A

vCT

iCT

2ms

250V
0V

500V

0A
5A

vCT

iCT

2ms

(d)

250V
0V

500V

0A
5A

vCT

iCT

2ms

(f)(b)

−5A −5A −5A

−5A −5A −5A

 

Figure 11. The simulated waveforms of the low-voltage-side dc current iLdc and the testing capac-
itor current iCT for (a,c) balanced and (b,d) unbalanced load conditions in the (a,b) conventional
down-scale voltage rating evaluation system, and the (c,d) proposed down-scale voltage rating
evaluation system.
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Figure 12. The measured voltage vCT and current iCT of the DC-link capacitor under test for
(a,c,e) balanced and (b,d,f) unbalanced load conditions in the (a,b) full-scale voltage rating VSI,
(c,d) conventional down-scale voltage rating evaluation system, and (e,f) proposed down-scale
voltage rating evaluation system.
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5. Conclusions

More and more high-power and high-density inverters are manufactured for renew-
able energy systems to reduce carbon emissions in the world. Therefore, the system testing
and certification for high-power and high-density inverters becomes very important, espe-
cially in the limited power rating testing field. In order to reproduce the same encountered
stresses when a DC-link capacitor is used in a high-power inverter with pulse-width mod-
ulation, in this article, an improved evaluation circuit for the DC-link capacitors used
in high-power three-phase inverters under balanced and unbalanced load conditions is
proposed. A comparison of the down-scale voltage rating evaluation systems is analyzed
and some problems in the conventional evaluation systems are discovered. It was found
that, under an unbalanced load condition, the conventional down-scale voltage rating
evaluation system does not present very closely the testing capacitor current of the full-
scale voltage rating inverter system. In order to more precisely evaluate the current of
the capacitor under test, the output inductors of the conventional evaluation system are
modified, and a filter is added in the low-voltage DC-side circuit branch. From the simula-
tion and experimental results, the proposed down-scale voltage rating evaluation system
presents the closest ripple current waveform and DC bias voltage of the DC-link capacitors
in the full-scale voltage rating inverter system under the balanced and unbalanced load
conditions. The validity of the proposed down-scale voltage rating evaluation system
is verified in this article. In the future, the accelerated life testing of capacitors working
in severely adverse circumstances can be utilized in the proposed improved down-scale
voltage rating evaluation system.
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