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Abstract: An MILP-based distributed energy management for the coordination of networked micro-
grids is proposed in this paper. Multiple microgrids and the utility grid are coordinated through
iteratively adjusted price signals. Based on the price signals received, the microgrid controllers (MCs)
and distribution management system (DMS) update their schedules separately. Then, the price
signals are updated according to the generation–load mismatch and distributed to MCs and DMS for
the next iteration. The iteration continues until the generation–load mismatch is small enough, i.e.,
the generation and load are balanced under agreed price signals. Through the proposed distributed
energy management, various microgrids and the utility grid with different economic, resilient, emis-
sion and socio-economic objectives are coordinated with generation–load balance guaranteed and
the microgrid customers’ privacy preserved. In particular, a piecewise linearization technique is
employed to approximate the augmented Lagrange term in the alternating direction method of
multipliers (ADMM) algorithm. Thus, the subproblems are transformed into mixed integer linear
programming (MILP) problems and efficiently solved by open-source MILP solvers, which would
accelerate the adoption and deployment of microgrids and promote clean energy. The proposed
MILP-based distributed energy management is demonstrated through various case studies on a
networked microgrids test system with three microgrids.

Keywords: distributed optimization; energy management; networked microgrids, mixed integer
linear programming (MILP); distributed energy resources

1. Introduction

A microgrid is a local energy system with locally installed distributed energy resources
(DERs), such as distributed generators (DGs) and energy storage systems (ESSs), which
provide low-cost and clean energy to local consumers. Generally, a microgrid interconnects
with a distribution grid at a Point of Common Coupling (PCC). When grid-connected,
a microgrid can make profit through arbitrage, utilizing the temporal price discrepancies of
the utility grid. In addition, a microgrid could facilitate the secure and efficient operation
of the utility grid by providing operational supports in many aspects, e.g., frequency
and voltage regulation, virtual inertia, etc. [1–4]. As a unique virtue, a microgrid could
seamlessly transit from grid-connected to islanding operation and continue to supply
its local customers independently [5,6]. Thus, microgrids could effectively enhance the
resilience of power supply [7]. With due consideration of these benefits, microgrids have
been increasingly deployed all over the world [8].

While the advantages of a single microgrid for improving energy efficiency and en-
hancing resilience have been well-recognized, connecting multiple adjacent microgrids
to form a distribution system with networked microgrids provides a more efficient and
resilient alternative. During normal operation, these microgrids could exchange electricity
for more efficient and economical operation; while under emergency scenarios, intercon-
necting individual microgrids could facilitate maximizing the overall system resilience
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through sharing capacities and flexibilities with each other. In addition, networked mi-
crogrids could be designed to protect not only the critical loads inside the microgrids but
also neighboring loads as well. For these benefits, networked microgrids have attracted
growing attention [9].

The coordinated energy management of networked microgrids is necessary for achiev-
ing both economic benefits and resiliency improvements. Generally, existing research work
on the energy management of networked microgrids could be classified into two categories:
centralized energy management and distributed energy management [10,11]. Centralized
energy management systems are usually formulated as a two-level hierarchical framework.
In the lower level, each microgrid schedules internal DERs and loads, while in the upper
layer, multiple microgrids are coordinated through a centralized optimal power flow [12].
In [13], the dispatching strategy of networked microgrids in distribution grids is formu-
lated as a bi-level optimization. A more general nested scheduling strategy with multiple
levels was formulated for the energy management of networked microgrids in [14]. In [15],
a three-phase unbalanced optimal power flow model is presented for networked microgrids
coordination and solved by semidefinite programming (SDP). Considering uncertainties of
renewable DERs and loads, a bi-level stochastic programming is put forward to schedule
the energy and reserve of distribution grids in the presence of renewable-based microgrids
and other autonomous players in [16]. A robust counterpart considering various uncer-
tainties is proposed in [17,18]. A low-carbon economic dispatch model for multi-energy
microgrids is proposed to effectively reduce the carbon emission while greatly decreasing
the operation cost in [19].

Although these centralized methods are straightforward to formulate and have the
potential to achieve global optimality, they may suffer from computational scalability and
privacy issues. Distributed methods ensure coordination between individual microgrids
with privacy, which addresses the scalability issue. Thus, distributed energy management
is more popular than centralized energy management for networked microgrids coordi-
nation. The multi-agent system (MAS)-based game theoretical framework is a common
distributed approach used for optimizing energy trading among networked microgrids [20].
In [21], a non-cooperative Stackelberg game is proposed for the Peer-to-Peer (P2P) energy
trading among grid-connected networked microgrids. Another widely used distributed
optimization method is dual decomposition, which is suitable to the situation in which the
distribution grid and microgrids are owned by different entities, and these entities need to
conduct negotiations among all entities based on their own objectives and policies [22–24].
Dual decomposition enables the autonomy and privacy of users and the parallel processing
of individual microgrid energy management. However, the convergence of dual decompo-
sition requires a strict convexity or finiteness, and its robustness is worse. For this reason,
the alternating direction method of multipliers (ADMM), which adds an augmented La-
grange term to improve the convergence without convexity or finiteness assumptions,
has gained more popularity than dual decomposition [25–30]. In [27–29], the original
non-convex optimal power flow problem is equivalently transformed into a convex second-
order cone programming problem, which could be efficiently solved by commercial solvers.
In [31], a consensus algorithm is employed to reach a nodal price agreement among micro-
grids while complying with the energy balance constraint. Nevertheless, the marginal cost
functions of microgrids are assumed to be known and linear, which is not always available
in practice.

The existing literature on ADMM-based distributed energy management for coordina-
tion networked microgrids mostly decomposed the centralized optimization into parallel
subproblems of microgrid controllers (MCs) and a distribution management system (DMS).
Due to the added augmented Lagrange term, both subproblems are formulated as mixed
integer quadratic programming (MIQP), which are solved by commercial MIQP solvers,
such as CPLEX [32] or GUROBI [33]. To improve the efficiency and avoid the expensive
license cost of commercial solvers, an MILP-based distributed energy management for the
coordination of networked microgrids is proposed in this paper. To be specific, a piecewise
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linearization technique is employed to approximate the augmented Lagrange term in the
ADMM algorithm. As a result, both subproblems are transformed into mixed integer
linear programing (MILP), which could be efficiently solved by a free and open-source
MILP solver, e.g., COIN Branch and Cut solver (CBC), without compromising the solution
accuracy [34]. The solution of the proposed MILP-based distributed energy management co-
ordinates various microgrids and the utility grid with generation–load balance guaranteed
and microgrid customers’ privacy preserved.

For simplicity, the proposed MILP-based distributed energy management system is
compared with existing distributed energy management systems for networked microgrids
in Table 1. As can be seen, all these distributed energy management converge well for
convex optimization problems except dual decomposition. However, only ADMM and
the proposed MILP-based distributed energy management mostly converge with modest
accuracy for non-convex optimization problems. Given the fact that ADMM introduced an
augmented Lagrange term in the subproblems to drive the convergence, ADMM requires
commercial MIQP solvers, such as CPLEX or GUROBI. The proposed MILP-based dis-
tributed energy management, by contrast, could be more efficiently solved than MIQP models.
More importantly, the proposed MILP-based method could be solved by free and opensource
MILP solvers, which facilitates the adoption and deployment of networked microgrids.

The main contributions are listed as follows:

1. An MILP-based distributed energy management through approximating the aug-
mented Lagrange term in ADMM with a piecewise linearization technique is proposed
for the coordination of networked microgrids. Comparing with ADMM, the proposed
MILP-based distributed energy management is more efficient. Unlike ADMM, the pro-
posed MILP-based distributed energy management could be solved by open-source
MILP solvers.

2. The effectiveness and efficiency of the proposed MILP-based distributed energy
management system are validated through comparing with the case study results of
both centralized optimization and ADMM-based distributed energy management.

As to the structure of this paper, the microgrid components and networked microgrids
are introduced in Section 2. Section 3 describes the centralized energy management for
the coordination of networked microgrids. The ADMM-based and proposed MILP-based
distributed energy management systems are presented in Section 4. In Section 5, the results
of case studies are presented and analyzed. Finally, Section 6 concludes the paper.

Table 1. Comparison of distributed energy management for networked microgrids.

Algorithms Convergence for
Convex Problem

Convergence for
Non-Convex

Problem

Optimization
Model References

Stackelberg Game Yes Mostly No MILP/MIQP [20,21]

Consensus Algorithm Yes No MILP [31]

Dual Decomposition Mostly Yes No MILP [22–24]

ADMM Yes Mostly Yes MIQP [25–30]

Proposed MILP-Based Approach Yes Mostly Yes MILP This Paper

2. Modeling
2.1. Microgrid

A microgrid generally includes locally installed DGs, ESSs and various loads. Nor-
mally, the operation of a microgrid is supervised by an MC, which monitors system states
and sends dispatch orders to controllable components. There are two types of DGs in
microgrids: dispatchable or undispatchable. Diesel generators, microturbines, fuel cells,
etc., are dispatchable DGs, which are able to respond to the request of MCs and change
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its power output accordingly. On the contrary, wind turbines and PV are typical undis-
patchable DGs, whose power outputs are largely affected by the uncertain nature of the
environmental condition and could not be controlled completely. In reality, the power
outputs of these undispatchable DGs are forecasted with limited accuracy. The hour-ahead
forecast error of the wind turbine output is around 10% [35]. The forecasting of PV output
is more difficult because of the random cloud coverage and changing ambient temperature.
Both could significantly affect the generation of PV [36]. To mitigate these uncertainties,
ESSs are generally installed on-site. For simplicity, the wind and PV power forecast errors
have been neglected in this work.

2.2. Networked Microgrids

In the past, DGs and ESSs are very rare in distribution grids. Depending on the
ownership status, these active components might be directly owned and controlled by the
utility or owned by third parties and worked as autonomous entities. Generally, these
active components are independent from each other. As the traditional passive distribution
network is transforming into a modern active distribution network with the increasing
deployment of various types of microgrids, multiple microgrids become interconnected.
Under this situation, the mutual influences of them are not neglectable. Nevertheless,
these adjacent microgrids could be networked at both communication and control layers
and become directly or indirectly interoperable networked microgrids. An example of
networked microgrids in the distribution grid is shown in Figure 1. The DMS communicates
with each microgrid and coordinates their dispatching. In the proposed distributed energy
management, each microgrid makes their own decisions with minimum information
exchange. In normal operation, they exchange power with the utility grid for economic
benefits and provide various ancillary services, while during utility grid outages, they
support each other and provide emergency power to as many loads as possible.

Figure 1. Example of networked microgrids.

3. Centralized Energy Management

A centralized optimization-based energy management is formulated for networked
microgrids coordination in this section as in (1)–(16). The objective is to minimize the total
operating cost of the networked microgrids. To be specific, the system total operating costs
include the piecewise linear operating cost of DGs in microgrids (line 1), startup costs of
DGs in microgrids (line 2), degradation cost of ESSs in microgrids (line 3), load-shedding
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cost of microgrids (line 4), penalty cost of PV spillage (line 5), penalty cost of wind spillage
(line 6), and the energy exchanging cost/benefit at the distribution substation (line 7).

min
NT

∑
t=1

NM

∑
m=1

Nm
G

∑
g=1

[
NI

∑
i=1

λmgt(i)pmgt(i) + κmgumgt

]

+
NT

∑
t=1

NM

∑
m=1

Nm
G

∑
g=1

SUmgt
(
umgt, umg,t−1

)
+

NT

∑
t=1

NM

∑
m=1

Nm
B

∑
b=1

Cmbt

(
PC

mbt + PD
mbt

)
+

NT

∑
t=1

NM

∑
m=1

Nm
L

∑
l=1

CmltPLS
mlt

+
NT

∑
t=1

NM

∑
m=1

Nm
V

∑
v=1

Cmvt

(
PPV,max

mvt − PPV
mvt

)
+

NT

∑
t=1

NM

∑
m=1

Nm
W

∑
w=1

Cmwt

(
PW,max

mwt − PW
mwt

)
+

NT

∑
t=1

λSB
t PSB

t (1)

s.t.

Pmgt =
NI

∑
i=1

pmgt(i) + umgtPmin
mg ∀m, ∀g, ∀t (2)

0 ≤ pmgt(i) ≤ pmax
mg (i) ∀m, ∀g, ∀t, ∀i (3)

umgtPmin
mg ≤ Pmgt ≤ umgtPmax

mg ∀m, ∀g, ∀t (4)

0 ≤ PC
mbt ≤ PC,max

mb uC
mbt ∀m, ∀b, ∀t (5)

0 ≤ PD
mbt ≤ PD,max

mb uD
mbt ∀m, ∀b, ∀t (6)

uC
mbt + uD

mbt ≤ 1 ∀m, ∀b, ∀t (7)

SOCmbt = SOCmb,t−1 + PC
mbtη

C
mb4t− PD

mbt
1

ηD
mb
4t ∀m, ∀b, ∀t (8)

SOCmin
mbt ≤ SOCmbt ≤ SOCmax

mbt ∀m, ∀b, ∀t (9)

0 ≤ PLS
mlt ≤ αmlt%Pmlt ∀m, ∀l, ∀t (10)

0 ≤ PPV
mvt ≤ PPV,max

mvt ∀m, ∀v, ∀t (11)

0 ≤ PW
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mwt ∀m, ∀w, ∀t (12)

PPCC
mt +

Nm
G

∑
g=1

Pmgt +
Nm

B

∑
b=1

(
PD

mbt − PC
mbt

)
+

Nm
V

∑
v=1

PPV
mvt

+
Nm

W

∑
w=1

PW
mwt =

Nm
L

∑
l=1

(
Pmlt − PLS

mlt

)
∀m, ∀t (13)

− PPCC,max
mt ≤ PPCC

mt ≤ PPCC,max
mt ∀m, ∀t (14)
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NM

∑
m=1

PPCC
mt = PSB

t ∀t (15)

− PSB,max
t ≤ PSB

t ≤ PSB,max
t ∀t (16)

The objective is subject to constraints of DGs, ESSs, load shedding, microgrid generation–
load balance, etc. The cost of dispatchable DGs is estimated through piecewise linearization.
The real power of dispatchable DGs is divided into multiple blocks as in (2). The maximum
value of each power block is enforced by (3). The real power of DGs is constrained by the
minimum and maximum output of DGs as in (4). For ESSs, the charging and discharging
power limits of ESSs are enforced by (5) and (6). These two states are mutually exclusive,
which is enforced by (7). The state of charge (SOC) of an ESS between any two consecutive
time intervals is expressed as (8). The minimum/maximum SOC of ESSs are ensured by (9).
The amount of load shedding for each load is limited by a maximum percentage, which
is represented in (10). Considering the possible spillage of PV power, the output of PV
is limited by its maximum available power during that time period as in (11). Similarly,
the output of wind power generation is limited by its maximum available power during
that time period as in (12). The power balance of microgrid m is represented as in (13).
The power limits of each microgrid at PCC are specified in (14). The overall generation and
load balance of networked microgrids is guaranteed by Equation (15). The power injection
at the substation is constrained by (16) for peak load reduction or other purposes.

The centralized energy management for the coordination of networked microgrids
could be reformulated as a mixed-integer linear programming (MILP) by recasting the
startup cost of DGs, i.e., SUmgt into mixed-integer linear (MIL) form, then solved by various
MILP solvers. Please refer to [37] for details.

4. Distributed Energy Management

As mentioned earlier, the centralized energy management is straightforward to formu-
late but suffers from computational scalability and privacy issues since the DMS requires
access to the information of all components inside the microgrids. This is not allowed in
many practical cases because of different ownerships of microgrids. Thus, designing dis-
tributed and scalable energy management systems for networked microgrids with customer
privacy preserved is imperative.

4.1. ADMM-Based Method

The distributed counterpart of the centralized energy management for networked
microgrids is formulated based on the ADMM algorithm [38]. Given that only (15) is
complicating constraint involving variables from both the distribution grid level and
microgrid level, the ADMM algorithm could be employed to decompose the centralized
energy management into subproblems at the DMS level and MCs level. The subproblems
are solved by DMS and the corresponding MCs, separately. Their solutions are coordinated
through price signals in an iterative way.

Rt = PSB
t −

NM

∑
m=1

PPCC
mt ∀t (17)

First, MCs of microgrids dispatch their internal resources randomly; then, they send
their calculated PCC power to DMS. Meanwhile, DMS initializes the price curve and
then determines the power injection at the substation. For iteration k, DMS updates
the generation–load mismatches (i.e., primal residuals) based on Equation (17) and then
sends both primal residuals R(k)

t and price signals λ
(k)
t to corresponding MCs. After that,

the following two subproblems are solved.
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The MCs of each microgrid solve the MCs subproblem as the following:

min
NT

∑
t=1

Nm
G

∑
g=1

[
NI

∑
i=1

λmgt(i)pmgt(i) + κmgumgt

]

+
NT

∑
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Nm
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∑
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SUmgt
(
umgt, umg,t−1

)
+

NT

∑
t=1

Nm
B

∑
b=1

Cmbt

(
PC

mbt + PD
mbt

)
+

NT

∑
t=1

Nm
L

∑
l=1

CmltPLS
mlt

+
NT

∑
t=1

Nm
V

∑
v=1

Cmvt

(
PPV,max

mvt − PPV
mvt

)
+

NT

∑
t=1

Nm
W

∑
w=1

Cmvt

(
PW,max

mwt − PW
mwt

)
−

NT

∑
t=1

λ
(k)
t

[
R(k)

t + PPCC,(k)
mt − PPCC

mt

]
+

ρ

2

∥∥∥R(k) + PPCC,(k)
m − PPCC

m

∥∥∥2

2
(18)

s.t. (2)–(14)
The DMS solves the DMS subproblem as the following:

min
NT

∑
t=1

λSB
t PSB

t

−
NT

∑
t=1

λ
(k)
t

[
R(k)

t − PSB,(k)
t + PSB

t

]
+

ρ

2

∥∥∥R(k) + PSB,(k) − PSB
∥∥∥2

2
(19)

s.t. (16)
After solving all subproblems, MCs send the updated PCC power PPCC,(k)

mt to DMS;

then, DMS updates the primal residual R(k+1)
t and price signal λ

(k+1)
t based on Equation (17)

and (20), separately. The k-th iteration is completed. The next iteration begins until
convergence.

λ
(k+1)
t = λ

(k)
t − ρR(k+1)

t ∀t (20)

A detailed explanation of the ADMM-based distributed energy management for a
networked microgrid is listed in Algorithm 1. Note that both subproblems are formulated
as MIQP, which could be solved by commercial MIQP solvers, such as CPLEX or GUROBI.
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Algorithm 1 ADMM-based distributed energy management for networked microgrids.
initialization k← 0. MCs dispatch their internal resources randomly and then send their
calculated PCC power to DMS. DMS initializes price curves and then determines the power
injection at the substation.
repeat
DMS updates the primal residual at each bus phase R(k)

t and sends the two signals R(k)
t and

λ
(k)
t to corresponding MCs.

MCs update the schedules of DGs and ESSs by solving the MCs subproblem.
DMS updates the power injection at the substation by solving the DMS subproblem.
MCs send the updated PCC power PPCC,(k)

mt to DMS; then, DMS updates R(k+1)
t and λ

(k+1)
t .

k← k + 1.
until

(∣∣∣R(k+1)
t

∣∣∣ ≤ Rmax
)

4.2. MILP-Based Method

As can be seen in (18) and (19), an augmented Lagrange term has been added in the
ADMM algorithm to improve the convergence even in the case of non-convex optimization
problems. In fact, this added augmented Lagrange term is the square of the Euclidean
norm or 2-norm of the primal residual vector in each iteration. By defining a new variable
χt = R(k)

t + PPCC,(k)
mt − PPCC

mt , the augmented Lagrange term could be reformulated as a
quadratic function of χt as shown in (21).

‖χ‖2
2 =

∥∥∥R(k) + PPCC,(k)
m − PPCC

m

∥∥∥2

2

=
NT

∑
t=1

(
R(k)

t + PPCC,(k)
mt − PPCC

mt

)2

=
NT

∑
t=1

(χt)
2 (21)

In this paper, a piecewise linearization technique is proposed to approximate the
quadratic function of χt. Since variable χt could be positive or negative, we directly
linearize its absolute value |χt| as in (22). By dividing |χt| into NI segments, a linear
function is used to approximate the original quadratic function for each segment as shown
in Figure 2, where st(i) is the slope of segment i. Thus, the quadratic (χt)

2 could be
represented in linear form as in (23). Since the quadratic function is convex, no binary
variable is needed here.

Figure 2. Piecewise linearization of a quadratic function.

Note that the division of linear segments, i.e., determining χ̄t(1), . . . χ̄t(NI) and calcu-
lation of slope st(i), are performed offline and kept as constants for each iteration. χt(i),
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i.e., the value of the i-th segment of the piecewise linearization of the quadratic function of
χt, represents new continuous variables, which will be determined at each iteration.

0 ≤ χt(1) ≤ χ̄t(1)
0 ≤ χt(2) ≤ χ̄t(2)− χ̄t(1)
0 ≤ χt(3) ≤ χ̄t(3)− χ̄t(2)
· · ·
0 ≤ χt(NI) ≤ χ̄t(NI)− χ̄t(NI − 1)

∑NI
i=1 χt(i) ≥ χt, ∑NI

i=1 χt(i) ≥ −χt

|χt| = ∑NI
i=1 χt(i)

(22)

(χt)
2 =

NI

∑
i=1

χt(i)st(i) ∀t (23)

With the proposed piecewise linearization technique, the original MIQP-based MCs
subproblem as in (18) could be transformed into MILP as in (24).

min
NT

∑
t=1

Nm
G

∑
g=1

[
NI

∑
i=1

λmgt(i)pmgt(i) + κmgumgt

]

+
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∑
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Nm
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∑
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SUmgt
(
umgt, umg,t−1

)
+

NT

∑
t=1

Nm
B

∑
b=1

Cmbt

(
PC

mbt + PD
mbt

)
+

NT

∑
t=1

Nm
L

∑
l=1

CmltPLS
mlt

+
NT

∑
t=1

Nm
V

∑
v=1

Cmvt

(
PPV,max

mvt − PPV
mvt

)
+

NT

∑
t=1

Nm
W

∑
w=1

Cmvt

(
PW,max

mwt − PW
mwt

)
−

NT

∑
t=1

λ
(k)
t

[
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t + PPCC,(k)
mt − PPCC

mt

]
+

ρ

2

NT

∑
t=1

NI

∑
i=1

χt(i)st(i) (24)

s.t. (2)–(14), and (21)–(23)
Similarly, the original MIQP-based DMS subproblem as in (19) could be transformed

into MILP as in (25).

min
NT

∑
t=1

λSB
t PSB

t

−
NT

∑
t=1

λ
(k)
t

[
R(k)

t − PSB,(k)
t + PSB

t

]
+

ρ

2

NT

∑
t=1

NI

∑
i=1

χt(i)st(i) (25)

s.t. (16), and (21)–(23)
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It should be noted that the solution procedure of the proposed MILP-based dis-
tributed energy management for the coordination of networked microgrids is the same as
in Algorithm 1, except the subproblems are all MILP as in (24) and (25), which could be
solved more efficiently by either commercial or open-source MILP solvers.

Both commercial (e.g., CPLEX and GUROBI) and open-source (e.g., CBC) MILP solvers
utilize the branch and cut algorithm to solve MILP problems [39]. It is a very successful
algorithm for solving a variety of integer programming problems, and it also can provide a
guarantee of optimality. The branch and cut algorithm is the exact algorithm consisting of
a combination of a cutting plane method and a branch and bound algorithm.

It should also be noted that ADMM cannot guarantee the global optimum for non-
convex optimization problems. Nevertheless, ADMM can usually converge with modest
accuracy within a few tens of iterations [38]. The proposed MILP-based distribution en-
ergy management equivalently linearizes the augmented Lagrange term in ADMM; thus,
it has the same convergence property as ADMM. Therefore, the proposed MILP-based
distribution energy management should converge with modest accuracy within a few tens
of iterations.

5. Case Studies
5.1. Test System

The proposed distributed energy management for the coordination of networked
microgrids is demonstrated on a modified Oak Ridge National Laboratory (ORNL) Dis-
tributed Energy Control and Communication (DECC) networked microgrids test system,
as shown in Figure 3 [17]. This system consists of three microgrids. Both dispatchable
DGs and renewable generation as well as batteries are installed in the network microgrids
test system. Both wind and PV inverters are controlled using the maximum power point
tracker (MPPT) with curtailment available upon requested by the MCs. More details on the
control and power of the ORNL DECC networked microgrids could be found in [40].

Figure 3. Modified ORNL DECC networked microgrids test system.
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The parameters of dispatchable DGs are listed in Table 2. The costs function of DGs
between the minimum power output and maximum power output are equally divided into
three blocks. The linear marginal cost of each block is shown in Table 2.

Table 2. Parameters of dispatchable DGs.

DG Type Pmin

(kW)
Pmax

(kW)
Start-Up
Cost ($)

Cost at Pmin

($/h)
λmgt(1)
($/kWh)

λmgt(2)
($/kWh)

λmgt(3)
($/kWh)

Microturbine 1 10 30 1 3.39 0.2172 0.2644 0.3016

Microturbine 2 10 30 1 2.31 0.1324 0.1552 0.1880

Diesel 3 10 30 1.5 2.68 0.1284 0.1412 0.1541

The parameters of batteries are listed in Table 3. Without loss of generality, these three
batteries are assumed to be identical.

Table 3. Parameters of batteries.

Battery Type Power Capacity
(kW)

Energy Capacity
(kWh) SOCmax (%) SOCmin (%)

Lithium ion 10 20 95 25

Degradation
Cost ($/kWh)

Charging
Efficiency (%)

Discharging
Efficiency (%) Initial SOC (%) End SOC (%)

0.02 0.95 0.95 50 50

The forecasted wind and PV power of the three microgrids are directly taken from [17].
The total load of each microgrid is forecasted as in Figure 4. For each microgrid, the total
load is equally divided into two loads. The maximum percentage of load shedding is
assumed to be 80%. The cost of load shedding is assumed to be 1 $/kWh.

Figure 4. Load of each microgrid.

The hourly utility rates, i.e., prices of energy supplied by the utility at the distribution
substation, are shown in Table 4 [41]. The utility rates are normally provided by the
utility operator and used as input to the proposed distributed energy management system.
For each microgrid, the maximum power at PCC is assumed to be 200 kW.
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Table 4. Utility rates.

Hour λSB (ct/kWh) Hour λSB (ct/kWh) Hour λSB (ct/kWh)

1 8.65 9 12.0 17 16.42

2 8.11 10 9.19 18 9.83

3 8.25 11 12.3 19 8.63

4 8.10 12 20.7 20 8.87

5 8.14 13 26.82 21 8.35

6 8.13 14 27.35 22 16.44

7 8.34 15 13.81 23 16.19

8 9.35 16 17.31 24 8.87

The time span of case studies is set as one day, i.e., 24 h, with hourly resolution.
The initial price is set as 0.1 $/kWh for the whole scheduling horizon. The penalty factor
ρ is assumed to be 0.1. The optimization model is programmed in MATLAB and solved
by the mixed-integer quadratic programming (MIQP) solver CPLEX 12.6 and open-source
MILP solver CBC, separately.

5.2. Comparing Costs and Solution Time of Different Cases

The total costs of networked microgrids calculated by centralized energy management,
ADMM-based distributed energy and the proposed MILP-based distributed energy man-
agement in both grid-connected and islanded modes are listed in Table 5. Comparing with
the results of centralized energy management, the total operating costs calculated by both
ADMM-based and MILP-based distributed energy management are slightly increased (less
than 0.5%) in both grid-connected and islanded modes. In other words, both ADMM-based
and proposed MILP-based distributed energy management could reach the same level of
optimality as centralized energy management. These tiny differences of objective function
values between centralized and distributed methods are due to the fact that the distributed
optimization cannot guarantee a global optimum for non-convex optimization problems.

Table 5. Comparison of costs and solution time of different methods.

Cases Total Operating Costs ($) Solution Time (Seconds)

Grid-connected

Centralized 190.37 2.81

ADMM-based Distributed 190.78 57.36

MILP-based Distributed 190.65 54.92

Islanded

Centralized 377.41 2.43

ADMM-based Distributed 378.25 48.77

MILP-based Distributed 378.07 40.85

The solution times of centralized energy management, ADMM-based distributed en-
ergy and the proposed MILP-based distributed energy management in both grid-connected
and islanded modes are compared in Table 5. It can be obviously seen that the solution
time of centralized optimization is the least due to the relatively small size of the prob-
lem. Comparing the solution time between ADMM-based and MILP-based distributed
energy management, the MILP-based distributed energy management is a little better
than ADMM-based distributed energy management. This is largely due to the fact that
MILP models could be more efficiently solved than MIQP models. More importantly,
the proposed MILP-based method could be efficiently solved by a free and open-source
MILP solver, which could facilitate the deployment of networked microgrids.
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5.3. Convergence of Distributed Energy Management

A reasonable stopping criterion for the distributed energy management is that the
generation–load mismatch Rt should be small enough [38], i.e., the generation and con-
sumption are well balanced for any time interval. The unbalanced power Rt could be calcu-
lated according to Equation (17). The stopping criteria used in this work is |Rt| ≤ 0.1 kW.
To investigate the effects of different types of Lagrange terms on the convergence of the dis-
tributed energy management, three types of Lagrange terms of Rt, i.e., square of one-norm,
square of two-norm (ADMM), and linearized square of two-norm (proposed MILP-based
method), are tested for both grid-connected and islanded mode.

The converging process of distributed methods with different types of Lagrange terms
in grid-connected and islanded mode are compared in Figures 5 and 6, separately. As can be
seen, the square of one-norm type of Lagrange term cannot yield convergence, while both
the square of two-norm and linearized square of two-norm types of Lagrange term yield
convergence in less than 10 iterations. Note that the ADMM can be very slow to converge
to high accuracy. However, it is often the case that ADMM converges to modest accuracy
within a few tens of iterations [38]. In addition, the proposed MILP-based distributed
energy management with linearized square of two-norm type of Lagrange term has the
same convergence property as ADMM with square of two-norm type of Lagrange term.

(a) (b) (c)

Figure 5. The generation–load mismatch Rt of different methods in grid-connected mode. (a) Square
of 1-norm. (b) Square of 2-norm. (c) Linearized square of 2-norm.

(a) (b) (c)

Figure 6. The generation–load mismatch Rt of different methods in islanded mode. (a) Square of
1-norm. (b) Square of 2-norm. (c) Linearized square of 2-norm.

As can be seen in Figures 5 and 6, the calculated generation–load mismatch Rt for
each iteration is alternating between positive and negative values. If Rt is positive, the
power supply at the distribution substation is greater than the total power consumption
of all microgrids through PCC based on (17). Then, according to (20), the price will be
reduced, leading to more power consumption and less power supply in the next generation.
While Rt is negative, i.e., the power supply at the distribution substation is less than the
total power consumption of all microgrids through PCC based on (17). According to (20),
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the price will be increased, leading to less power consumption and more power supply
in the next generation. If the algorithm is convergent, the magnitude of generation–load
mismatch Rt will be reduced every iteration and eventually converges to a very small value;
i.e., the generation and load are balanced.

5.4. Solutions of MILP-Based Distributed Energy Management

To further validate the accuracy of the proposed MILP-based distributed energy man-
agement for the coordination of networked microgrids, the PCC power of each microgrid
and power injection at the substation in both grid-connected and islanded modes are
compared between the proposed MILP-based distributed energy management and the
centralized energy management in Figures 7 and 8, separately.

(a) (b)

Figure 7. Calculated PCC power by different methods in grid-connected mode. (a) Centralized
optimization. (b) MILP-based distributed optimization.

(a) (b)

Figure 8. Calculated PCC power by different methods in islanded mode. (a) Centralized optimization.
(b) MILP-based distributed optimization.

Generally, the results of the proposed MILP-based distributed energy management are
the same as those of the centralized energy management except for some tiny differences.
In grid-connected mode, as can be seen in Figure 7, the networked microgrids export power
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to the utility grid during the early afternoon when the PV power is high, while they import
power from the utility grid during the evening and night when the PV power is zero.
In islanded mode, as can be seen in Figure 8, the power injection at the substation bus is
forced to be zero. Thus, the PCC power of all networked microgrids are complementary;
i.e., the summation of them always equals zero.

Although the results of proposed MILP-based distributed energy management gen-
erally follow the same trend as the results of centralized energy management, there are
some differences. For example, the total power injection at the substation by microgrids in
grid-connected mode is around 150 kW by the centralized energy management, as shown
in Figure 7a. However, the same injected power calculated by the proposed MILP-based
distributed energy management is around 110 kW, as shown in Figure 7b. This issue also
exists in the results of islanded mode. This is due to the fact that the proposed MILP-based
distributed energy management has the same convergence property as ADMM, which
cannot guarantee converging to the global optimal for non-convex problems.

The converged price signal in both grid-connected and islanded modes is compared
between the proposed MILP-based distributed energy management and the ADMM-based
distributed energy management in Figures 9 and 10, separately. Generally, the results of
the proposed MILP-based distributed energy management are the same as those of the
ADMM-based distributed energy management except for some small differences. The net
demand of each microgrid, i.e., total load minus renewable generation, and net demand of
network microgrids, i.e., the summation of net demand of all microgrids, have also been
calculated and shown in Figures 9 and 10.

In grid-connected mode, the converged price signal and net demand of microgrids
are shown in Figure 9. As can be seen, the converged price signal has very little to do
with the total net demand of networked microgrids, but it mainly follows the utility
rates at the distribution substation. This is due to the fact that the utility rate at the
distribution substation bus is generally much lower than the marginal generation cost of
DGs except for peak price hours (Hour 12–14 and hour 22–23) as shown in Tables 2 and 4.
Meanwhile, during peak price hours, the DGs with lower marginal cost than the utility
rate are committed at rated power. The distribution substation bus will cover the rest of
the demands like a slack bus. Thus, the converged price signal is generally the same as the
utility rates at the distribution substation.

(a) (b)

Figure 9. Converged price signal and net demand of networked microgrids by different distributed
methods in grid-connected mode. (a) ADMM-based distributed optimization. (b) MILP-based dis-
tributed optimization.
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(a) (b)

Figure 10. Converged price signal and net demand of networked microgrids by different distributed
methods in islanded mode. (a) ADMM-based distributed optimization. (b) MILP-based distributed.

In islanded mode, the converged price signal generally follows the profile of net
demand of the networked microgrids, as shown in Figure 10. Since the power injection
at the substation bus is forced to be zero in islanded mode, the net demand of networked
microgrids is purely supplied by the dispatchable DGs in the system. As a result, the profiles
of the converged price and total net demand match very well, as presented in Figure 10.
With greater total net demand, the DGs with higher marginal cost needs to be committed.
Thus, the converged price is higher. The peak price corresponds to the peak net demand.

6. Conclusions

An MILP-based distributed energy management for the coordination of networked
microgrids is proposed in this paper. Given the price signals and the generation–load
mismatch, the microgrid controllers (MCs) and distribution management system (DMS)
update their schedules, separately. Then, the price signals and generation–load mismatch
are updated and distributed for another iteration until convergence. The proposed dis-
tributed energy management coordinates various microgrids and the utility grid with
generation–load balance guaranteed and microgrid customers’ privacy preserved. In par-
ticular, a piecewise linearization technique is employed to approximate the augmented
Lagrange term in the ADMM and transform the MIQP subproblems into MILP, which
could be solved more efficiently and by open-source solvers. The soundness, accuracy and
efficiency of the proposed model are proved with the results of various case studies.

Future work includes integrating the operational objectives and constraints of the
distribution grid into the proposed model, e.g., volt/var optimization (VVO), loss reduc-
tion, power flow constraints, power factor constraints, voltage constraints, phase balance
constraints, even stability constraints in islanded mode, etc. In addition, to keep the dis-
tributed energy management in MILP format, techniques to linearize these objectives and
constraints will be investigated.
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Nomenclature

The main symbols used in this paper are defined below. A bold symbol stands for its
corresponding vector/matrix. A symbol with (k) on the upper right position stands for its
value of the k-th iteration.

Indices

m Index of microgrids, running from 1 to NM.

g Index of distributed generators (DGs) in microgrid m, running from 1 to Nm
G .

l Index of loads in microgrid m, running from 1 to Nm
L .

b Index of batteries in microgrid m, running from 1 to Nm
B .

w Index of wind turbines in microgrid m, running from 1 to Nm
W .

v Index of PV in microgrid m, running from 1 to Nm
V .

i Index of linear pieces of piecewise linearization, running from 1 to NI .

t Index of time periods, running from 1 to NT .

k Index of iterations.

Variables
Binary Variables

umgt 1 if unit g in microgrid m is scheduled on during period t and 0 otherwise.

uC
mbt, uD

mbt 1 if battery b in microgrid m is scheduled for charging/discharging during
period t and 0 otherwise.

Continuous Variables

pmgt(i) Power output scheduled from the i-th linear piece of energy offer by DG g in
microgrid m during period t.

Pmgt Power injection of DG g in microgrid m during period t.

PPCC
mt Power injection at point of common coupling (PCC) of microgrid m during

period t.

PC
mbt, PD

mbt Charging/discharging power of battery b in microgrid m during period t.

SOCmbt State of charge (SOC) of battery b in microgrid m during period t.

PW
mwt Power output of wind turbine w in microgrid m during period t.

PPV
mvt Power output of PV panel v in microgrid m during period t.

http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
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PLS
mlt Load shedding of load l in microgrid m during period t.

λt Lagrange multiplier of power balance equation during period t.

Rt Generation–load mismatch during period t.

PSB
t Power injection at the substation bus during period t.

χ Vector of generation–load mismatch in subproblems.

χt Generation–load mismatch during period t in subproblems .

χt(i) Value of the i-th segment of the piecewise linearization of the quadratic function
of χt.

Constants

λmgt(i) Marginal cost of the i-th linear piece of energy offer by DG g during period t.

λSB
t Purchasing price of power from distribution substation during period t.

Cmbt Degradation cost of battery b in microgrid m during period t.

Cmlt Curtailment cost of load l in microgrid m during period t.

Cmvt Curtailment cost of PV v in microgrid m during period t.

Cmwt Curtailment cost of wind turbine w in microgrid m during period t.

pmax
mg (i) Maximum power limits from the i-th piece of energy offer by DG g in microgrid

m.

Pmin
mg , Pmax

mg Minimum/maximum power of DG i in microgrid m.

PPV,max
mvt Maximum output power of PV v in microgrid m during period t.

PW,max
mwt Maximum output power of wind turbine w in microgrid m during period t.

PPCC,max
m Maximum input/output power of microgrid m at PCC.

PSB,max
t Maximum exchanged power at the substation bus during period t.

PC,max
mb , PD,max

mb Maximum charging/discharging power of battery b in microgrid m.

SOCmin
mbt , SOCmax

mbt Minimum/maximum SOC of battery b in microgrid m during period t.

ηC
mb, ηD

mb Battery charging/discharging efficiency factor.

Pmlt Forecasted power consumption for load l in microgrid m during period t.

αmlt Maximum percentage of allowed shedding of load l in microgrid m during
period t.

κmg Operating cost of DG g in microgrid m at the point of Pmin
mg .

ρ Penalty parameter of augmented Lagrange function.

4t Time duration of each period.

Rmax Maximum allowed generation–load mismatch for convergence.

χt(i) Upper limit of the i-th segment of the piecewise linearization of the quadratic
function of χt.

st(i) Slope of i-th segment of the piecewise linearization of the quadratic function of χt.
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