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Abstract: Optimal power flow (OPF) represents one of the most important issues in the electrical 

power system for energy management, planning, and operation via finding optimal control 

variables with satisfying the equality and inequality constraints. Several optimization methods have 

been proposed to solve OPF problems, but there is still a need to achieve optimum performance. A 

Slime Mould Algorithm (SMA) is one of the new stochastic optimization methods inspired by the 

behaviour of the oscillation mode of slime mould in nature. The proposed algorithm is characterized 

as easy, simple, efficient, avoiding stagnation in the local optima and moving toward the optimal 

solution. Different frameworks have been applied to achieve single and conflicting multi-objective 

functions simultaneously (Bi, Tri, Quad, and Quinta objective functions) for solving OPF problems. 

These objective functions are total fuel cost of generation units, real power loss on transmission 

lines, total emission issued by fossil-fuelled thermal units, voltage deviation at load bus, and voltage 

stability index of the whole system. The proposed algorithm SMA has been developed by 

incorporating it with Pareto concept optimization to generate a new approach, named the Multi-

Objective Slime Mould Algorithm (MOSMS), to solve multi-objective optimal power flow (MOOPF) 

problems. Fuzzy set theory and crowding distance are the proposed strategies to obtain the best 

compromise solution and rank and reduce a set of non-dominated solutions, respectively. To 

investigate the performance of the proposed algorithm, two standard IEEE test systems (IEEE 30 

bus IEEE 57 bus systems) and a practical system (Iraqi Super Grid High Voltage 400 kV) were tested 

with 29 case studies based on MATLAB software. The optimal results obtained by the proposed 

approach (SMA) were compared with other algorithms mentioned in the literature. These results 

confirm the ability of SMA to provide better solutions to achieve the optimal control variables. 

Keywords: optimal power flow; single- and multi-objective functions; slime mould algorithm; 

pareto concept; generation fuel cost; real power losses; voltage stability index; voltage deviation; 

emission 

 

1. Introduction 

Power flow (PF), also known as load flow, is one of fundamental issues in electrical 

power systems. The main idea of power flow analysis is to find out the reactive power 

output in transmission lines, the voltage at buses, and total losses in the whole system at 

operation conditions. In recent decades, optimal power flow (OPF) has been given 

extensive interest by researchers because it is one of the most important tools used in 

power management systems to achieve the reliable operation and planning of electrical 

power systems [1]. To optimize objective functions in the power system, OPF needs to set 
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the control variables while respecting equality and inequality constraints because OPF is 

a non-convex, nonlinear, and large-scale problem. The active power output of the 

generation units without the slack bus, the voltages at PV buses, reactive power 

compensators, and tap transformers settings are the control variables that are tuned. The 

generation fuel cost (GFC), real power loss (RPL) in the transmission lines, emission (Em), 

voltage deviation (VD), and voltage stability index (VSI) in the whole system are the 

objective functions that will be optimized. OPF was first presented by Carpentier in 1962 

[2]. 

Two types of optimization methods that have been proposed to solve OPF problems 

are classical and intelligent optimization methods. Several classical methods have been 

applied, such as linear and nonlinear programming, interior point method, the Newton 

method, quadratic programming, and mixed-integer programming [3,4]. Although these 

techniques provide an optimal solution, their drawbacks cannot reach a local minimum if 

it is assumed that the initial point is not close to the solution. Further, the quality of 

solutions is inversely proportional to a number of control variables. In addition, due to 

increasing the number of non-linear constraints, the problems are more complex. The 

second type of optimization algorithms is intelligent optimization techniques, such as 

grey wolf optimizer (GWO) [5], hunger games search (HGS) [6], Harris hawks 

optimization [7], Nomadic People Optimizer [8], and the honey badger algorithm (HBA) 

[9]. 

A Slime Mould Algorithm (SMA) is one of new optimization algorithms that has been 

proposed to solve the OPF problem in the power system. SMA is a meta-heuristic 

algorithm inspired by the diffusion and foraging conduct of slime mould proposed in 2020 

by S. Li et al. [10]. SMA has many features, such as: 

(i) The mathematical model used in this algorithm is unique. It uses adaptive weights, 

which are allowed to produce positive and negative feedback in the simulation 

process for propagation wave. 

(ii) The form path of connection food is optimal using a bio-oscillator. 

(iii) The ability and propensity for exploration and exploitation is excellent. 

Several articles have solved single-objective OPF problems using intelligent 

optimization techniques, such as differential evolution (DE) [11], modified artificial bee 

colony (MABC) [12], improved differential evolution (IDE) [13,14], Harris hawks 

optimization [15], and the moth swarm algorithm (MSA) [16]. On the other hand, several 

approaches have been proposed to solve multi-objective optimization (MOO), such as a 

weighted sum [17], the penalty function method [18], ε-constant [19], the non-dominated 

sorting genetic algorithm-based approach [20], and the strength Pareto evolutionary 

algorithm [21]. The most popular method used to solve multi-objective optimization 

(MOO) problems is Pareto optimization (PO) [22]. One of the main features of this method 

is a comparison of conflicting objective functions (OFs) to choose favourable solutions 

[23]. The fuzzy membership approach is the approach taken in the decision-making 

process to select the best compromise solution in the Pareto front computations. 

Multi-objective optimal power flow (MOOPF) is most important in power systems 

operation and planning because of its ability to find the best compromise solution for 

more than one objective function simultaneously [24]. The Pareto concept is incorporated 

with many optimization methods to arrange the non-dominated solutions and set the 

generation probability for individuals. Many optimization algorithms have been 

proposed to solve MOOPF in electrical power system, such as the Multi-Objective 

Improved Differential Evolution Algorithm (MOIDEA) [25], multi-objective backtracking 

search algorithm (MOBSA) [26], Jaya Optimization [27], Multi-Objective Manta Ray 

Foraging Optimizer (MOMRFO) [28], Multi-Objective Ant Lion Optimizer (MOALO) [29], 

and Harris Hawks Optimization (HHO) [30]. 

In this paper, a newly proposed algorithm (proposed in 2021), named the Slime 

Mould Algorithm (SMA), is suggested to solve a single-objective function on three 
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systems: IEEE 30 bus and IEEE 57 bus test systems, and one practical system (Iraqi Super 

Grid High voltage 400 kV). In addition, the proposed algorithm SMA was developed by 

incorporating it with Pareto concept optimization to generate a new approach, named the 

Multi-Objective Slime Mould Algorithm (MOSMS), to solve multi-objective (Bi, Tri, Quad, 

and Quinta) optimal power flow problems. The approach used to extract best compromise 

solution is fuzzy set theory. Generation fuel cost (GFC), emission (Em), real power losses 

(RPL), voltage deviation (VD), and voltage stability index (VSI) are the objective functions 

that will be optimized. It can be summarized the main contribution as follows: 

1. The Slime Mould Algorithm was developed to solve single- and multi-objective 

optimal power flow to achieve the economic, environmental, and technical benefits 

of power systems. 

2. The Pareto concept is the approach taken to rank store non-dominated Pareto fronts, 

crowding distance is the mechanism to reduce the Pareto repository, and fuzzy set 

theory is the theory applied to extract the best compromise solution. 

3. Two standard IEEE test systems (IEEE 30 bus IEEE 57 bus systems) and a one 

practical network (Iraqi Super Grid High Voltage 400 kV) were applied with 29 case 

studies for single- and multi-objective (Bi, Triple, Quad, and Quinta) functions. 

4. The optimal results obtained by the proposed algorithm were compared with other 

recent optimization methods in the literature. 

The remainder of this paper can be summarized as follows: Section 2 present the OPF 

problem formulation, including the general OPF formulation, objective functions, and 

operational constraints. Section 3 is the mathematical model of Slime Mould Algorithm 

(SMA). Section 4 introduce the strategy taken in multi-objective solutions. Section 5 

discussed the numerical results for 29 cases and compared them with other recent 

optimization methods. Finally, the conclusions are presented in Section 6. 

2. OPF Problem Formulation 

In power systems, the objective functions can be optimized by set control variables 

as optimally with satisfied the equality and inequality constraints. The mathematical 

model of OPF problems can be described by the following: 

( )

( )

( )

Optimize ,

subjected to  g , 0 1,2,...,m 

, 0 1,2,...,pi

i

f x u

x ih

x u i

u

= =

 =

 (1) 

These vectors can be symbolized as: 

1 1 1
, , , ,

PQ PVG L L G Gx P V V Q Q =
 

 (2) 

2 1 11, , , , , , , , , , ,
P PV NCVG G G G NT C CP P V V T T Qu Q = 

 (3) 

2.1. Objective Functions 

The objective functions will be optimized are generation fuel cost (GFC), real power 

losses (RPL), emission (Em), voltage deviation (VD), and voltage stability index (VSI). 

1- Generation Fuel Cost (GFC) (USD/h) 

The mathematical formula that has been described to GFC is [31]: 

( )2

1

( /  ) 
G

i i

N

i i iG G

i

GFCF USD ha P b P c
=

= + +  (4) 
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2- Real Power Losses (RPL) (MW) 

The mathematical formula that has been described to GFC is [31]: 

( ) ( )2 2
,,

1

    2 cos ( )
nlN

i j i j i ji j
k

RPL GF V V VV MW
=

= + −  (5) 

3- Emission (Em) (ton/h) 

Emission (Em) can be expressed of the mathematical description of greenhouse gases 

emissions, such as 𝑁𝑂𝑥 and 𝑆𝑂𝑥, as follows: 

( ) ( )2 2

1

10 exp ( / )
G

i i i

N

i i i i iG G GEm
i

P P P ton hF     −

=

= + + +  (6) 

4- Voltage Deviation (VD) (p.u.) 

The voltage level at buses is a very important factor to achieve stability and economic 

benefits by keeping the voltages of each bus close to the reference voltage. The formula 

that expressed of voltage deviation is given by [32]: 

1

( . .)
PQN

i ref
i

VD V VF p u
=

−=   (7) 

Here, 𝑉𝑟𝑒𝑓  denotes the rated voltage magnitude, which the value is 1.0 (p.u.). 

5- Voltage Stability Index (VSI) 

The maximum value of the voltage stability indicator (L-index) will be minimized by 

enhancing the voltage stability of the whole system. The following equation represents 

the mathematical formula of VSI [32]: 

( )jVSI Max LF =  (8) 

1

1
GN

i
j ji

ji

V
L F

V
=

 
= −  

 
 

  (9) 

 
1

ji LL LGF Y Y
−

= −    (10) 

2.2. Constraints 

In OPF, equality constraints (active and reactive powers) represent the physical 

structure of the whole system. It can be expressed as [33]: 

( )
1

cos sin

N

gi d i i j ij ij ij ij

j

gP P V V b i N 
=

− = +    (11) 

( )
1

sin cos

N

gi ci d i i j ij ij ij ij

j

Q Q g bQ V V i N 
=

+ −− =    (12) 

The other constraints are inequality constraints (generator, transformer, shunt 

compensator, and security). These constraints represent the operation limit to achieve the 

stable operation of the system. It can be described as follows [33]: 

1- Generator Constraints: 
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min max 1,2,...,gi gi gi gP P P i N  =  (13) 

min max 1,2,...,gi gi gi gQ Q Q i N  =  (14) 

min max 1,2,...,gi gi gi gV V V i N  =  (15) 

2-  Shunt Compensator Constraints: 

min max 1,2,...,
k k kc c c cQ Q Q k N  =  (16) 

3- Transformer Constraints: 

min max 1,2,...,j j j TT T T j N  =  (17) 

4- Security Constraints: 

min max 1,2,...,Li Li Li LV V V i N  =  (18) 

max 1,2,...,
m mL L nlS S m N =  (19) 

3. The Mathematical Model of the Slime Mould Algorithm (SMA) 

The Slime Mould Algorithm (SMA) is a new optimization algorithm inspired by the 

diffusion and behaviour conduct of slime mould in nature and proposed by S. Li et al. in 

2021 [10]. The processes of SMA by approaching food, wrapping food, and oscillating can 

be summarized as follows: 

3.1. Approach Food 

The approaching behaviour can be expressed as mathematical formulae as follows: 

( )( ) ( ) ( ) ,
( 1)

( ),

b A BY t ub V Y t Y t r p
Y t

uc Y t r p

    − 
+ = 

 
 (20) 

The formula of 𝑝 is as follows [10]: 

( )tanh ( )p fit i df= −  (21) 

where 𝑖 ∈ 1,2, …, 𝑛. It can be expressed as follows: 

arctanh 1
_ max

t
a

t

  
= − +   

  
 (22) 

The formula of 𝑉 is as follows: 

( )
1 log 1 ,

(SmIndex( ))
( )

1 log 1 ,

bf R i
r condition

bf wf
W i

bf R i
r other

bf wf

  −
+  +  

−  
= 

 −
−  +  − 

 (23) 

SmIndex = sort(R)  (24) 

3.2. Wrap Food 

To update the slime mould location, the mathematical formula can be expressed as: 
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( )
( )

,

( ) ( ) ( ) ,

( ),

b A B

ub lb lb rand z

Y Y t V Y t Y t r p

Y t r p

rand

ub

uc

 − + 


+   − 
  



=  (25) 

3.3. Oscillation 

The variations of slime mould will be simulated to find the food by the parameters 

𝑉, 𝑢𝑏, and 𝑢𝑐. To select the best food source, the slime mould should be improved by the 

oscillation frequency, which is mathematically expressed by 𝑉 . The velocity of slime 

mould to discover food depends on the concentration of food. If the concentration of food 

is high, then the velocity of slime mould will be faster, but the velocity of slime mould will 

be slow if the concentration of food is low. 𝑢𝑏  oscillates in the interval [−𝑎, 𝑎]  as 

randomly and decreased to zero when the iteration is increased. In addition, 𝑢𝑐 oscillates 

in the range [−1,1] and gradually decreases to zero when the iteration increases. The 

flowchart and Pseudo-code of SMA are expressed in Figure 1 and Algorithm 1.

Start

Initialize system data, No. of pop., 

Max_iter, z, Size of dim.

Initialize positions of Slime Mould

Calculate fitness values of all SM

Sort all fitness and determine the 

best and worst fitness 

Calculate the W by (23) and update 

the best of position and fitness

Update a by (22)

rand < z
No

Yes

Update Y by (25)(1)

r < p
Yes

Update p by (21), ub, uc

No

Update Y by (25)(2) Update Y by (25)(3)

Make all components no more 

than the lower or upper limit

Evaluate fitness value

Iter =Max_iter
No

End

Yes

It
e
r
 =

 I
te

r 
+

 1

 

Figure 1. Flowchart of the SMA. 

Algorithm 1. Pseudo-code of the Slime Mould Algorithm (SMA) 

1.  Select the values of parameters 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒, 𝑀𝑎𝑥_𝑡 

2.  Determine the positions of slime mode 𝑌𝑖  (i =  1, 2, ⋯ , N)  

3.  While (𝑡 ≤  𝑀𝑎𝑥_𝑡) 

4.   Calculate 𝑅(𝑖) of all slime mode 

5.   Update 𝑏𝑓, 𝑌𝑏  
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6.   Calculate 𝑊 Equation (23) 

7.   For 𝑒𝑎𝑐ℎ 𝑠𝑒𝑎𝑟𝑐ℎ 𝑝𝑜𝑟𝑡𝑖𝑜𝑛 

8.    Update 𝑝, 𝑢𝑏, 𝑢𝑐  

9.    Update positions by Equation (25) 

10.   End (For) 

11.   𝑡 =  𝑡 +  1 

12.  End (While)  

13.  Return 𝑏𝑓, 𝑌𝑏  

4. Multi-Objective Slime Mould Algorithm (MOSMA) 

The main purpose of using multi-objective optimization is to optimize two or more 

objectives simultaneously (mostly conflicting and non-commensurable objectives) in 

power systems. In MOSMA, the concept used for classification the dominated and non-

dominated solutions, based on objective functions, is Pareto dominance. The fuzzy 

decision-maker is the strategy taken to extract the best compromise solution. 

4.1. Pareto Optimization Approach 

The Pareto optimization approach can solve the problems related to single-objective 

optimization directly. Therefore, it is much more difficult to determine a suitable solution 

for problems related to multi-objective optimization. One of the popular solutions to solve 

multi-objective optimization problems is simplified into single-objective optimization by 

determining the different weights of each objective and summing these objectives. Due to 

the conflicting objective functions, it is not easy to determine the optimal solution to multi-

objective optimization problems. In other words, if a solution is not superior to other 

solutions based on the objective function, the solution is not dominated, then these 

solutions are called the non-dominated solutions. The Pareto dominates solutions 

achieved when: 

  ( ) ( )

  ( ) ( )

1 2

1 2

1,2,..., :

1,2,..., :

i i

j j

i n F X F X

j n F X F X

  

  
 (26) 

where 𝐹𝑖(𝑋1) and 𝐹𝑖(𝑋2) are the 𝑖𝑡ℎ objective function values of solutions 𝑋1 and 𝑋2. 

Based on Equation (26), the solution 𝑋1  should be dominated solution 𝑋2  to satisfy 

Pareto front non-dominated solutions. In Pareto concept optimization, the fitness of 

objective function will be compared with each other for all solutions. The dominated 

solutions are achieved when the fitness of objective function for a solution is higher than 

the fitness of objective function of any other solutions. On the contrary, the obtained 

solutions called dominated solutions. The main aim of Pareto concept optimization is to 

obtain the set of non-dominated solutions of multi-objective optimization problems. 

Therefore, the solutions obtained by Pareto optimization do not represent the optimal 

solution of each objective function. The Pareto fronts non-dominated (PFND) solutions 

represent a set of non-dominated solutions that are plotted as curve in the solutions space. 

The set of solutions that could not dominate each other are called Pareto optimal 

solutions. These sets will be continuously updated and stored to solve multi-objective 

problems. 

4.2. Best Compromise Solution 

It necessary to unify the values of objective function in a similar range because there 

are different ranges. The incompatibility with the sets can be indicated as value 0, while 

the full compatibility indicated as value 0, as shown in Figure 2. Each objective function 

has a membership function as follows: 
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k

i
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k

i
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u

u

u

=

= =

=





 (28) 

The maximum value of 𝑢𝑘 represents the best compromise solution [27]. 

1

u(f)

f
f maxf min

0

 

Figure 2. Membership function. 

4.3. Phases of MOSMA 

The stages of MOSMA can be summarized as follows: 

Step 1: Initialize the main parameters, such as the no. of population, no. of control 

variables, no. of non-dominated solutions, max iterations, etc... 

Step 2: Initialize the population of slime mould. 

Step 3: Calculate the fitness function of each individual of the initial population. 

Step 4: Sort the initial population according on the fitness function of each individual 

and save the non-dominated solutions into initial repository. 

Step 5: Calculate the best and the worst compromise solution of the initial population 

according to Equation (28). 

Step 6: Calculate the weight of slime mould of non- dominant solutions by (24). 

Step 7: Calculate the parameter 𝑎 by (22). 

Step 8: Update the position of slime mould according to (25). 

Step 9: Update the position of the slime mould to be within lower or upper bounds. 

Step 10: Calculate the fitness value of each slime mould position. 

Step 11: Sort the non-dominated solutions of slime mould position and store them in 

the slime mould repository. 

Step 12: Combined the non-dominated solutions in the initial repository with the non-

dominated solutions in the slime mould repository to find new non-dominated solutions. 

Step 13: Verify the stopping criteria and check if the new non-dominated solutions 

are equal to or more than the number of non-dominated that have been suggested. If this 

is the case, then the program will end. Otherwise, store the new non-dominated solutions 

as in the initial repository and return to Step 5. 

The process of the multi-objective slime mould algorithm (MOSMA) to solve multi-

objective optimal power flow can be described in the flowchart in Figure 3 
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Start

Initialize system data, No. of 

pop., No. of non-dom., Max_iter, 

z, Size of dim.

Initialize positions of Slime Mould

Calculate fitness values of all SM

Calculate the best and the worst 

compromise solution by (28)

Calculate the W by (23) and update 

the best of position and fitness

Update a by (22)

Make all components no more than the 

lower or upper limit

Evaluate fitness value

No

End

Yes

Sort non-dominated solutions and 

store it into initial repository

Sort non-dominated solutions and store it 

into slime mould  repository

Combined the non-dominated solutions in 

the initial and the slime mould repository 

to find new non-dominated solutions. 

non-dominated solutions >= 

No. of non-dominated 

Store new non-dominated solutions in the 

initial repository 

r < p
Yes

Update p by (21), ub, uc

No

Update Y by (25)(2) Update Y by (25)(3)

Make all components no more than the 

lower or upper limit

Evaluate fitness value

rand < z
No

Yes

Update Y by (25)(1)

 

Figure 3. Flowchart of MOSMA. 

4.4. Crowding Distance 

A crowding distance is a strategy used to reduce the non-dominate solutions by 

calculating the average distance for two neighbouring solutions. First, the fitness value of 

the objective function must be sorted in ascending order depending on the nearest 

neighbours. Then, the fitness values of the boundary solutions are evaluated as the infinite 

distance value. The fitness value of the intermediate solutions is equal to the distance of 

the corresponding diagonal length. Figure 4 represents the diagonal length of the cuboid 

to calculate the crowding distance. It is expressed as follows: 

( ) ( )
1

,min

1 1
, 1,2, ,

m
n i n i

i b
n

n

F X F X
CD i N

F=

+ − −
=  =   (29) 

where 𝐶𝐷𝑖 denotes the crowding distance, 𝐹𝑛,𝑚𝑖𝑛 represents the minimum value of nth 

objective function, and 𝑁𝑏 is the number of candidate solutions. 
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f2

f1 

Cuboid
diag

i -1

i +1

i 

 

Figure 4. The estimation of crowding distance. 

5. Simulation Results 

To demonstrate the effectiveness and performance of SMA to solve OPF problems, 

two standard systems (IEEE-30 bus system and IEEE 57-bus test system) and one practical 

system (Iraqi Super Grid High Voltage ISGHV 400 kV) were used to test with 29 cases for 

various objective functions. The characteristics of these systems are presented in Table 1. 

Table 2 describes the studies that have been applied. 

Table 1. The main characteristics of the systems applied in this study. 

System Characteristics IEEE-30 IEEE 57 ISGHV 400 kV 

Buses 30 57 28 

Branches 41 80 44 

Generators 9 (Buses:1, 2, 5, 8, 11 and 13) 7 (Buses: 1–2–3–6–8–9–12) 14 (Buses: 1–14) 

Generator voltage limits 0.9–1.1 [p.u.] 0.9–1.1 [p.u.] 0.9–1.1 [p.u.] 

Load voltage limits 0.95–1.05 [p.u.] 0.95–1.05 [p.u.] 0.95–1.05 [p.u.] 

Limit of tap changer setting 0.9–1.1 [p.u.] 0.9–1.1 [p.u.] - 

Limit of VAR 0–5 [p.u.] 0–20 [p.u.] - 

Shunts 
9 (Buses: 10, 12, 15, 17, 20, 21, 23, 

24 and 29) 
3 (Buses: 18–25–53) - 

Transformers 4 (Buses: 11, 12, 15 and 36) 

17 (Buses: 19–20–31–35–36–37–

41–46–54–58–59–65–66–71–73–

76–80) 

- 

MW demand  283.4 [MW] 1250.8 [MW] 5994 [MW] 

Control variables  24 33 27 

Table 2. Various case studies. 

Type of System Type of OF(s) Case # FC Em RPL VD VSI 

IEEE 30-bus  

Single OF(s) 

Case #1      

Case #2      

Case #3      

Case #4      

Case #5      

Bi-OF(s) 

Case #6      

Case #7      

Case #8      

Case #9      

Case #10      
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Case #11      

Case #12      

Triple-OF(s) 

Case #13      

Case #14      

Case #15      

Case #16      

Case #17      

Case #18      

Case #19      

Quad-OF(s) 
Case #20       

Case #21      

Quinta-OF(s) Case #22      

IEEE 57-bus Single OF(s) 

Case #23      

Case #24      

Case #25      

ISGHV 400 kV (28 bus) Single OF(s) 

Case #26      

Case #27      

Case #28      

Case #29      

5.1. IEEE 30-Bus Power System 

The data of the IEEE 30 bus system are given in [34]. The main characteristics of IEEE 

30-bus power system are given in Table 1. The coefficients of cost and emission of 

generators are given in Table A1. Figure A1 represents the single-line diagram of the IEEE 

30 bus test system. 

5.1.1. Single-Objective OPF on IEEE 30-Bus Power System 

Five objective functions were optimized to solve OPF problem— the generational 

fuel cost (GFC), real power loss (RPL), emission (Em), voltage deviation (VD), and voltage 

stability index (VSI)—by setting the parameters of the control variables (active power 

output of generators except for the slack bus, the voltage of PV bus, tap ratio of 

transformers, and shunt VAR compensator). In total, 1000 iterations and 250 population 

sizes were the values chosen in SMA to solve OPF problem. The finest settings of optimal 

control variables to find the optimal objective function for five cases are reported in Table 

3. 

Table 3. Optimal control variables obtained by SMA for Cases 1–5. 

Item 
Limit 

Initial [35] Case 1 Case 2 Case 3 Case 4 Case 5 
Max Min 

𝑃 𝑔
 [

M
W

] 

P1 50 200 99.223 176.9638 52.66583 67.23830 122.9787 153.8864 

P2 20 80 80 48.54495 79.60434 71.62589 45.29825 23.85954 

P5 15 50 50 21.21892 49.92812 49.99828 47.87340 36.47932 

P8 10 35 20 21.38800 34.60913 34.97310 29.73724 34.96892 

P11 10 30 20 11.92001 29.92682 29.99790 21.98221 20.91042 

P13 12 40 20 12.02793 39.65335 33.16002 21.74010 19.63984 

𝑉 𝑔
 [

p
.u

.]
 

V1 0.95 1.1 1.05 1.09999 1.09997 1.07207 0.99759 1.09925 

V2 0.95 1.1 1.04 1.09786 1.09672 1.09211 0.98059 1.09803 

V5 0.95 1.1 1.01 1.08201 1.09541 1.03596 1.06050 1.08448 

V8 0.95 1.1 1.01 1.08952 1.08871 1.04344 1.04797 1.08762 

V11 0.95 1.1 1.05 1.09966 1.09989 1.08511 1.09352 1.09901 

V13 0.95 1.1 1.05 1.09959 1.09955 1.04750 1.06366 1.09924 
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S
h

u
n

t 
E

le
m

en
t 

[M
V

A
r]

 Qc10 0 5 0 3.47456 4.90651 0.01712 4.99757 4.17957 

QC12 0 5 0 3.78440 4.71029 0.14186 0.03554 4.07682 

Qc15 0 5 0 2.76611 3.61236 0.02957 1.18163 4.17146 

Q17 0 5 0 2.99716 0.01457 0.00000 0.72789 4.83945 

Qc20 0 5 0 4.57258 4.58251 2.02777 4.97550 2.86524 

Q21 0 5 0 4.98153 4.04716 0.00000 4.98735 3.04483 

Qc23 0 5 0 2.50862 0.01196 0.00457 4.95938 4.94036 

Q24 0 5 0 4.99707 4.28293 3.02812 4.96797 4.95660 

Q29 0 5 0 2.10969 3.95118 0.63863 3.30036 4.99499 

T
ap

 

P
o

si
ti

o
n

 T11 0.9 1.1 1.078 1.03080 1.04738 1.05597 1.01913 1.05077 

T12 0.9 1.1 1.069 1.03860 1.03586 1.00876 1.04096 1.01569 

T15 0.9 1.1 1.032 0.95241 0.99520 1.01355 0.95167 1.04096 

T36 0.9 1.1 1.068 0.98279 1.00199 1.00406 0.97008 0.95084 

GFC [USD/h] 901.639 799.2557 964.5746 936.1166 868.0514 834.0165 

RPL [MW] 5.6891 8.6691 2.9934 3.5935 6.2099 6.3446 

Em [ton/h] 0.2253 0.3681 0.2213 0.2175 0.2569 0.31 

VD [p.u.] 1.1747 1.4192 1.4677 0.4754 0.1097 1.7545 

VSI 0.1727 0.1237 0.1229 0.1483 0.1371 0.1136 

Reduction rate  - 11.36% 47.38% 3.46% 90.66% 34.23% 
The optimal values of the objective functions are given in bold. 

• Case #1: To the optimal operating point, the generation fuel cost (GFC) used to 

operate generation units should be minimized by setting the control variables. 

Therefore, the first objective function of this study is to achieve generation fuel cost 

(GFC) minimization using the Slime Mould Algorithm (SMA). Table 3 illustrated that 

generation fuel cost has (GFC) been minimized to 799.2557 (USD/h). The remainder 

results of this case are 8.6691 (MW), 0.3681 (ton/h), 1.4192 (p.u.), and 0.1237 of RPL, 

Em, VD, and VSI. 

• Case #2: The second objective function is to minimize the real power losses (RPL) in 

the transmission lines. The real power losses (RPL) will be reduced from 5.6891 (MW) 

at the initial case to 2.9934 (MW) at the optimal case with a reduction rate equal to 

47.38%. The values of GFC, Em, VD, and VSI of this case are equal to 964.5746 

(USD/h), 0.2213 (ton/h), 1.4677 (p.u.), and 0.1229, respectively. 

• Case #3: Recently, emission (Em) studies have received growing attention due to 

environmental pollution and global warming. In this case, reducing emissions is the 

primary aim of the proposed SMA. The best result obtained by SMA to reduce 

emission is 0.2175 (ton/h). The reduction rate between the optimal case 

(0.2175(ton/h)) and the initial case (0.2253 (ton/h)) is 3.46%. 

• Case #4: The fourth objective function in this paper is voltage deviation (VD) 

minimization. The aim of this minimizing is to improve voltage profiles at each load 

bus. The reduction rate of this case is 90.66% (compared between the initial case, 

which is 1.1747 (p.u.), and the optimal case, which is 0.1097 (p.u.)). The rest values of 

this case are 868.0514 (USD/h), 6.2099 (MW), 0.2569 (ton/h), and 0.1371 of GFC, RPL, 

Em, and VSI, respectively. 

• Case #5: To achieve more stability of whole power system, the voltage stability 

indicator (Lmax) was minimized using the SMA. In this case, the VSI was minimized 

from 0.1727 at initial case to 0.1136 at the optimal case with a reduction rate equal to 

34.23%. The remainder results of GFC, RPL, Em, and VD are 834.0165 (USD/h), 6.3446 

(MW), 0.31 (ton/h), and 1.7545 (p.u.), respectively, as given in Table 3. 

To demonstrate the effectiveness and superiority of SMA, the results of the objective 

function for five cases abstained by proposed approach SMA were compared with other 
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meta-heuristics algorithm results reported in the literature. Table 4 and The values 

obtained by the proposed algorithm are given in bold. 

Table 5 prove the effectiveness of performance SMA over the other recent 

algorithms. Figure 5a–e illustrates the convergence speed of single objective functions 

using the SMA optimization method to solve the OPF problem in the IEEE 30 bus test 

system. These figures prove the superiority and efficiency of the proposed approach by 

providing a good characteristics rate. 

Table 4. Comparison of the results obtained by the SMA with other recent methods for Case 1 and 

Case 2. 

Case 1 Case 2 

Method GFC [USD/h] Method RPL (MW) 

Initial 901.6391 Initial 5.830 

MSA [16] 800.5099 GWO [30] 3.51 

SCA [36] 800.1018 SSA [30] 3.50 

SSO [37] 802.2580 WOA [30] 3.50 

DSA [38] 800.3887 MF [30] 3.50 

JAYA [39] 800.479 HHO [30] 3.49 

GPU-PSO [40] 800.53 SSO [37] 3.8239 

SP-DE [41] 800.4131 EM [42] 3.1775 

MGOA [43] 800.4744 EGA-DQLF [44] 3.2008 

TLBO [45] 800.4604 ASO [46] 3.1600 

AMTPG-Jaya [45] 800.1946 EGA-EA [47] 3.2601 

GWO [48] 802.7924 GWO [48] 4.2905 

ABC [49] 800.6850 PSO [50] 5.1957 

IABC [49] 800.4215 HPSO-DE [50] 5.1476 

EGA [51] 802.06 FAHSPSO-DE [50] 4.9989 

IGA [52] 800.805 IPSO [53] 5.0732 

AGAPOP [54] 799.8441 SMA 2.9934 

ABC [55] 800.66   

PSOGSA [56] 800.49859   

GA [57] 800.5272   

IHS [57] 800.5202   

MFO [57] 800.7134   

ISSA [57] 800.4752   

SOS [58] 801.5733   

SMA 799.2557   
The values obtained by the proposed algorithm are given in bold. 

Table 5. Comparison of the results obtained by the SMA with other recent methods for Cases (3, 4, 

and 5). 

Case 3 Case 4 Case 5 

Method Em [ton/h] Method VD [p.u.] Method VSI 

Initial 0.3661 Initial 1.1747 Initial 0.1727 

GWO [30] 0.2960 HFPSO [59] 0.1467 SSO [37] 0.1267 

SSA [30] 0.2950 EJADE-SP [60] 0.3752 NISSO [37] 0.12547 

WOA [30] 0.2950 MABC [61] 0.1292 Jaya [39] 0.1243 

MF [30] 0.2950 SMA 0.1097 TLBO [45] 0.12444 

HHO [30] 0.2850   AMTPG-Jaya [45] 0.1240 

SSO [37] 0.2315   ARCBBO [62] 0.1369 

BSA [63] 0.2425   ECHT-DE [64] 0.13632 

SMA 0.2175   SPEA [65] 0.1247 
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    DE [66] 0.1246 

    SMA 0.1136 

The values obtained by the proposed algorithm are given in bold. 

  

(a) (b) 

  

(c) (d) 

 
(e) 

Figure 5. The convergence characteristics of the SMA algorithm for Cases 1–5. (a) Case 1, (b) Case 

2, (c) Case 3, (d) Case 4, (e) Case 5. 

5.1.2. Multiple-Objective OPF on IEEE 30-Bus Power System 

To demonstrate the performance of the SMA on multi-objective optimization 

problems, MOSMA was applied to solve MOOPF problems. The number of populations 

is 500, and the stopping criteria of simulation running when no. of non-dominated 

solutions is equal to 500 or the no. of iterations equal to 500.  

First, seven bi-objective functions (Cases 6–12) were studied and presented as 

follows: 
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• Case #6: In this case, MOSMA was applied to optimize the GFC and Em 

simultaneously. The best compromise solutions of GFC and Em are (832.8647 

(USD/h), 0.2514 (ton/h)). 

• Case #7: The GFC and RPL were optimized simultaneously. The best compromise 

solutions of GFC and RPL are (840.960 (USD/h), 4.8762 (MW)). 

• Case #8: In Case 8, the two objectives function that were minimized and considered 

simultaneously are GFC and VD. The best compromise solution of this case is 

802.0533 ($/h) and 0.3267 (p.u.) of GFC and VD, respectively. 

• Case #9: The minimum GFC and VSI were simultaneously considered. The best 

compromise solutions obtained by MOSMA in this case are 800.1309 (USD/h) and 

0.1172. 

• Case #10: This case shows the minimization of Em and VD simultaneously. The 

proposed MOSMA provided the best compromise solutions, which are 0.2184 (ton/h) 

and 0.2074 (p.u.). 

• Case #11: The RPL and VD were optimized simultaneously. The best compromise 

values obtained by the proposed MOSMA of RPL, and VD are 3.1922 (MW) and 

0.5417 (p.u.), respectively. 

• Case #12: The last case of the bi-objective functions type is the minimization of VD 

and VSI simultaneously. The proposed MOSMA provided the best compromise 

values for VD and VSI, which are 0.3102 (p.u.) and 0.1284, respectively. 

The Pareto front, according to non-dominated solutions obtained by the proposed 

MOSMA of bi-objective functions, is shown in Figure 6a–g. 

  

(a) (b) 

  
(c) (d) 
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(e) (f) 

 
(g) 

Figure 6. The convergence characteristics of the MOSMA algorithm for Cases 6–12. (a) Case 6, (b) 

Case 7, (c) Case 8, (d) Case 9, (e) Case 10, (f) Case 11, (g) Case 12. 

The Triple-objective functions are considered and presented as follows: 

• Case #13: The GFC, RPL, and Em were presented as objective functions to optimize 

simultaneously. The best compromise of GFC, RPL, and Em obtained by the 

proposed MOSMA are 867.5282 (USD/h), 4.3416 (MW) and 0.2300 (ton/h), 

respectively. 

• Case #14: In this case, the minimization of GFC, Em, and VD have been optimized 

simultaneously as objective functions. The best compromising GFC, Em, and VD 

obtained by the proposed approach are 841.554 (USD/h), 0.2531 (ton/h) and 0.2214 

(p.u.), respectively. 

• Case #15: In Case 15, the three objectives function that were minimized considered 

simultaneously are GFC, RPL, and VD. The best compromise values of this case are 

844.6107 (USD/h), 6.0058 (MW), and 0.2279 (p.u.) of GFC, RPL, and VD, respectively. 

• Case #16: The minimization of GFC, RPL, and VSI were optimized simultaneously. 

The best compromising of GFC, RPL, and VSI obtained by the proposed MOSMA are 

841.4057 (USD/h), 5.0766 (MW) and 0.1176, respectively. 

• Case #17: This case shows the minimization of GFC, Em, and VSI simultaneously. The 

proposed MOSMA provided the best compromise values, which are 850.7178 

(USD/h), 0.2476 (ton/h), and 0.1158. 

• Case #18: The GFC, VD, and VSI are optimized simultaneously. The best compromise 

values obtained by proposed MOSMA of GFC, VD, and VSI are 804.4035 (USD/h), 

0.5409 (p.u.), and 0.1291 respectively. 

• Case #19: The last case of triple-objective functions type is the minimization of Em, 

RPL, and VD simultaneously. The proposed MOSMA provided the best compromise 

values for Em, RPL, and VD are 0.2183 (ton/h), 3.9925 (MW) and 0.2414 (p.u.), 

respectively. 
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The Pareto front, according to non-dominated solutions obtained by the proposed 

MOSMA of triple-objective functions, is shown in Error! Reference source not found.a–

g. The red diamonds indicate the best compromise solution of the triple objective 

functions for Cases 13–19. 

  

(a) (b) 

  
(c) (d) 

  
(e) (f) 
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(g) 

Figure 7. The convergence characteristics of the MOSMA algorithm for Cases 13–19. (a) Case 13, (b) 

Case 14, (c) Case 15, (d) Case 16, (e) Case 17, (f) Case 18, (g) Case 19. 

Finally, the Quad and Quinta-objective functions are considered and presented as 

follows:  

• Case #20: In this case, the GFC, Em, RPL, and VD were optimized simultaneously. 

The best compromise solutions obtained by the developed framework are 832.3665 

(USD/h), 0.2675 (ton/h), 6.4495 (MW) and 0.2189 (p.u.), of GFC, Em, RPL, and VD, 

respectively. 

• Case #21: The GFC, Em, RPL, and VSI were optimized simultaneously. The best 

compromising of GFC, Em, RPL, and VSI obtained by the proposed MOSMA are 

847.723 (USD/h), 0.2466 (ton/h), 5.1423 (MW) and 0.1183, respectively. 

• Case #22: The last case of the multiple-objective functions type is the minimization of 

GFC, Em, RPL, VD, and VSI simultaneously. The proposed MOSMA provided the 

best compromise values for GFC, Em, RPL, VD, and VSI, which are 824.7751 (USD/h), 

0.2753 (ton/h), 6.3599 (MW), 0.5111 (p.u.) and 0.1290, respectively. 

Table 6 and The best compromise solutions for objective functions are given in bold. 

Table 7 present the results of optimal control variables and objective functions 

obtained by the proposed MOSMA for Cases 6–22. 

Table 6. Optimal control variables obtained by MOSMA for Cases 6–13. 

Item Case 6 Case 7 Case 8 Case 9 Case 10 Case 11 Case 12 Case 13 

𝑃 𝑔
 [

M
W

] 

P1 126.521 139.156 177.458 177.570 70.974 58.480 170.349 92.703 

P2 57.394 48.924 46.455 50.162 70.791 77.896 70.719 68.717 

P5 26.635 28.495 20.722 19.629 49.648 48.772 17.612 37.093 

P8 34.242 34.955 21.449 18.869 34.749 33.597 19.081 34.532 

P11 24.051 21.583 12.920 14.099 29.757 29.299 10.539 29.626 

P13 20.555 16.447 14.204 12.017 32.509 39.018 14.182 25.070 

𝑉 𝑔
 [

p
.u

.]
 

V1 1.098 1.100 1.045 1.099 0.988 1.042 0.958 1.097 

V2 1.098 1.100 1.045 1.099 1.011 1.048 1.097 1.097 

V5 1.098 1.100 1.045 1.099 1.079 1.017 0.959 1.097 

V8 1.098 1.100 1.045 1.099 1.056 1.048 1.097 1.097 

V11 1.098 1.100 1.045 1.099 1.098 1.095 1.035 1.097 

V13 1.098 1.100 1.045 1.099 1.098 1.095 1.090 1.097 

S
h

u
n

t 
E

le
m

en
t 

[M
V

A
r]

 

Qc10 0.001 1.014 0.279 0.047 0.001 0.001 0.486 1.097 

QC12 0.055 0.316 1.045 1.812 0.057 0.000 0.765 1.097 

Qc15 0.000 0.326 0.440 0.116 0.004 0.005 0.179 0.124 

Q17 0.485 0.469 0.015 0.229 0.000 0.000 1.097 0.976 

Qc20 1.675 4.991 2.378 4.926 0.000 0.000 4.915 2.925 
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Q21 0.070 4.991 2.846 4.975 0.144 0.000 4.915 2.095 

Qc23 0.325 4.991 2.916 4.972 0.000 0.007 4.915 3.283 

Q24 0.003 4.991 1.608 4.972 0.001 1.029 4.915 2.774 

Q29 0.043 2.394 0.775 4.972 1.335 0.000 4.915 0.822 

T
ap

 

P
o

si
ti

o
n

 T11 1.023 0.999 1.007 1.005 1.014 1.022 1.063 1.027 

T12 0.967 0.968 0.977 0.968 0.976 0.961 1.028 1.041 

T15 1.006 0.989 0.962 1.022 0.965 1.006 0.971 0.952 

T36 0.987 0.992 0.952 0.952 0.952 0.954 0.951 0.980 

GFC [USD/h] 832.8647 840.960 802.0533 800.1309 935.1719 965.5084 866.5512 867.5282 

RPL [MW] 5.4534 4.8762 9.6647 8.9461 5.0218 3.1922 15.0962 4.3416 

Em [ton/h] 0.2514 0.2465 0.3826 0.3698 0.2184 0.2214 0.2713 0.2300 

VD [p.u.] 0.9403 1.5133 0.3267 1.6453 0.2074 0.5417 0.3102 1.3322 

VSI 0.1329 0.1243 0.1447 0.1172 0.1452 0.1370 0.1284 0.1288 
The best compromise solutions for objective functions are given in bold. 

Table 7. Optimal control variables obtained by MOSMA for Cases (14–22). 

Item Case 14 Case 15 Case 16 Case 17 Case 18 Case 19 Case 20 Case 21 Case 22 

𝑃 𝑔
 [

M
W

] 

P1 113.137 118.406 117.802 103.918 170.859 71.869 129.158 111.560 135.012 

P2 72.911 57.143 46.295 79.270 47.625 72.514 56.560 61.157 43.921 

P5 28.035 36.667 34.245 21.055 25.984 49.962 36.327 34.110 29.727 

P8 30.461 25.476 34.859 34.696 16.724 34.973 25.233 22.732 30.329 

P11 24.979 22.381 29.887 29.757 17.284 29.979 22.187 29.610 24.467 

P13 20.555 29.333 25.389 20.181 13.752 28.095 20.384 29.372 26.304 

𝑉 𝑔
 [

p
.u

.]
 

V1 1.023 1.043 1.099 1.098 1.094 1.040 1.041 1.097 1.078 

V2 0.985 1.043 1.099 1.098 1.094 1.027 1.041 1.097 1.073 

V5 1.003 1.043 1.099 1.098 1.094 0.997 1.041 1.097 1.052 

V8 1.074 1.043 1.099 1.098 1.094 1.009 1.041 1.097 1.064 

V11 1.074 1.043 1.095 1.098 1.094 1.100 1.041 1.097 1.016 

V13 1.061 1.043 1.099 1.098 0.968 1.036 1.041 1.097 1.039 

S
h

u
n

t 
E

le
m

en
t 

[M
V

A
r]

 Qc10 1.385 1.043 0.558 0.024 0.154 0.006 0.220 0.464 3.800 

QC12 0.294 1.043 1.034 0.316 0.127 0.043 1.041 0.965 1.808 

Qc15 4.090 1.043 1.081 1.098 0.349 0.009 0.557 0.069 3.370 

Q17 1.014 1.043 0.246 0.875 0.465 0.001 0.859 0.000 4.664 

Qc20 1.994 3.095 4.972 4.939 1.710 3.970 1.570 0.877 3.839 

Q21 0.010 3.095 4.227 4.939 0.083 0.792 2.404 4.903 4.180 

Qc23 0.053 3.095 4.972 4.939 1.400 0.076 3.047 4.903 1.270 

Q24 2.928 3.095 4.972 4.939 4.289 0.755 2.089 4.575 1.575 

Q29 0.210 3.095 4.919 4.939 4.341 3.209 3.047 4.903 4.640 

T
ap

 

P
o

si
ti

o
n

 T11 0.967 0.963 0.991 1.037 0.963 0.988 1.036 1.000 1.021 

T12 1.049 0.985 1.029 0.990 1.097 0.971 0.979 0.957 0.990 

T15 0.981 1.050 1.024 0.999 0.958 0.995 0.961 0.959 0.993 

T36 0.953 0.953 0.963 0.951 0.952 0.961 0.965 0.954 0.956 

GFC [USD/h] 841.554 844.611 841.4057 850.7178 804.4035 928.292 832.3665 847.723 824.7751 

RPL [MW] 6.6773 6.0058 5.0766 5.4772 8.8206 3.9925 6.4495 5.1423 6.3599 

Em [ton/h] 0.2531 0.2545 0.2502 0.2476 0.3495 0.2183 0.2675 0.2466 0.2753 

VD [p.u.] 0.2214 0.2279 1.6214 1.7186 0.5409 0.2414 0.2189 1.6979 0.5111 

VSI 0.1436 0.1370 0.1176 0.1158 0.1291 0.1440 0.1408 0.1183 0.1290 
The best compromise solutions for objective functions are given in bold. 

Figure 7 shows the voltage profiles of all buses for Cases 1–22. Figure 7a shows the 

voltage profiles of all buses for Cases 1–5. Figure 7a proves that the proposed algorithm 
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is effective only in Cases 3 and 4, but the results extracted from Cases 1, 2, and 5 are 

infeasible solutions because many load buses have voltage values exceeding the 

maximum limit for load buses, 1.05 (p.u.). Figure 7b shows the voltage profiles of the bi-

objective function for Cases 6–12. Figure 7b proves that the proposed algorithm is effective 

only in cases in which the voltage deviation is considered an objective function, namely 

in Cases 8, 10, 11, and 12. However, the results obtained from cases that the voltage 

deviation is not considered an objective function for Cases 6, 7, and 9 are infeasible 

solutions because many load buses have voltage values exceeding the maximum limit for 

load buses, 1.05 (p.u.). Figure 7c shows the voltage profiles of the triple-objective function 

for Cases 13–19. The proposed approach was effective for Cases 14, 15, 18, and 19. The 

cases that the voltage load bus exceeded the maximum limit for load buses, 1.05 (p.u.), are 

13, 16, and 17. Figure 7d shows the voltage profiles of Quad and Quinta objective function 

for Cases 20–22. The results obtained by Case 21 are infeasible solutions because many 

load buses have voltage values exceeding the maximum limit for load buses, which is 1.05 

(p.u.). The results obtained from cases (20,22) are effective because the value of the voltage 

load bus is within the range [0.95–1.05] (p.u.).  

  

(a) (b) 

  
(c) (d) 

Figure 7. The voltage profile for single- and multi-objective optimal power flow on the IEEE 30-bus 

test system. (a) Single OF, (b) Bi OF, (c) Tri OF, (d) Quad and Quinta OF. 

Figure 8 illustrates the reactive power output of generation units. From this figure, it 

can be observed that generator 1 exceeded the limits [ −20 to 200 MVAr] in Cases 4, 5, 6, 

10, 12, 16, and 17, while in the remaining cases, the constraints were not violated. The 

generators (2 and 8) violated the constraints in Case 12 only. The remaining generators (5, 

11, and 13) satisfied all constraints in this study. 
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(a) (b) 

  

(c) (d) 

  
(e) (f) 

Figure 8. The reactive power output of generators for Cases 1-22 on the IEEE 30-bus system. (a) 

Generator 1, (b) Generator 2, (c) Generator 5, (d) Generator 8, (e) Generator 11, (f) Generator 13. 

5.2. IEEE 57-Bus Power System 

In this subsection, the IEEE 57- bus power system was applied to validate of 

performance of proposed MOSMA. The total generation capacity of this system is 1975.9 

MW [34]. The main characteristics of IEEE 57- bus power system is given in Table 1. Figure 

A2 represents the single-line diagram of the IEEE 57 bus system. The coefficients of the 

cost and emission of generators are given in Table A2. 
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Single-Objective OPF  on IEEE 57-Bus Power System 

To demonstrate the superiority and performance of the proposed method on IEEE 

57- bus power system, three single objective functions (Cases 23–25) were considered. The 

number of iterations and population sizes are 1000 and 250, respectively. Table 8 

represents the optimal setting of control variables and optimal results of objective 

functions obtained by proposed method. The convergence speed of proposed method is 

illustrated in Error! Reference source not found.a–c. 

• Case #23: The GFC is the objective function that has been considered. The minimum 

of GFC obtained by the proposed method is 41633.61 (USD/h). The remainder results 

of this case are 14.3018 (MW), 1.3624 (ton/h), 2.4684 (p.u.), and 0.2561 of RPL, Em, 

VD, and VSI, respectively. The reduction rate between the optimal case and the initial 

case is 18.93%. 

• Case #24: The minimization of Em is the objective function of this case. The optimal 

result obtained from this case is 0.9595 (ton/h) using the proposed approach. The 

reduction rate of emission reaches 60.24% when compared to the initial case (2.4129 

(ton/h)) and the optimal case (0.9595 (ton/h)). The rest values of GFC, RPL, VD, and 

VSI are 45157 (USD/h), 14.7671 (MW), 2.5298 (p.u.), and 0.2890, respectively. 

• Case #25: The main objective function of this case is the reduction of RPL. The best 

result obtained by the proposed approach is 9.2874 (MW) with a reduction rate equal 

to 66.67%. The remainder values of GFC, Em, VD, and VSI are 44911 (USD/h), 1.1126 

(ton/h), 3.8873 (p.u.), and 0.2145, respectively. 

Table 8. Optimal control variables obtained by the SMA algorithm for Cases 23-25 on the IEEE 57-

bus system. 

Item Max Min Initial Case 23 Case 24 Case 25 

[M
W

] 

𝑃1 0.0 576 478 142.26 188.27 188.26 

𝑃2 30.0 100 0 89.97 99.58 22.33 

𝑃3 40.0 140 40 45.18 139.66 139.83 

𝑃6 30.0 100 0 70.04 99.56 99.80 

𝑃8 100.0 550 450 463.46 276.00 300.14 

𝑃9 30.0 100 0 94.12 99.95 99.78 

𝑃12 100.0 410 310 359.91 362.06 409.74 

[p
.u

.]
 

𝑉1 0.95 1.10 1.040 1.08 1.07 1.10 

𝑉2 0.95 1.10 1.010 1.08 1.08 1.10 

𝑉3 0.95 1.10 0.985 1.08 1.06 1.10 

𝑉6 0.95 1.10 0.980 1.09 1.05 1.10 

𝑉8 0.95 1.10 1.005 1.10 1.07 1.10 

𝑉9 0.95 1.10 0.980 1.09 1.08 1.09 

𝑉12 0.95 1.10 1.015  1.08 1.07 1.09 

T
ap

 P
o

si
ti

o
n

 

𝑇4−18 0.90 1.10 0.97 0.97 0.99 1.07 

𝑇4−18 0.90 1.10 0.978 1.00 1.02 0.98 

𝑇21−20 0.90 1.10 1.043 0.95 1.06 1.04 

𝑇24−25 0.90 1.10 1 0.97 1.04 1.01 

𝑇24−25 0.90 1.10 1 0.95 1.04 0.97 

𝑇24−26 0.90 1.10 1.043 0.97 1.05 1.02 

𝑇7−29 0.90 1.10 0.967 0.98 1.03 0.98 

𝑇34−32 0.90 1.10 0.975 0.98 0.97 1.01 

𝑇11−41 0.90 1.10 0.955 0.99 1.08 1.00 

𝑇15−45 0.90 1.10 0.955 1.00 1.05 0.96 

𝑇14−46 0.90 1.10 0.9 1.00 1.07 0.96 

𝑇10−51 0.90 1.10 0.93 1.01 1.03 0.97 
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𝑇13−46 0.90 1.10 0.895 0.97 1.00 0.95 

𝑇11−43 0.90 1.10 0.958 0.96 1.04 0.98 

𝑇40−56 0.90 1.10 0.958 0.97 0.98 1.02 

𝑇39−57 0.90 1.10 0.98 0.96 1.03 1.04 

𝑇9−55 0.90 1.10 0.94 0.99 1.06 0.98 

[M
V

A
r]

 

𝑄𝑐18 0.00 20.0 10 12.11 0.00 20.00 

𝑄25 0.00 20.0 5.9 5.04 11.87 14.57 

𝑄53 0.00 20.0 6.3 15.29 19.68 12.81 

FC [USD/h] 51353 41633.61 45157 44911 

Em [ton/h] 2.4129 1.3624 0.9595 1.1126 

RPL [MW] 27.868 14.3018 14.7671 9.2874 

VD [p.u.] 1.1264 2.4684 2.5298 3.8873 

VSI  0.2561 0.2890 0.2145 

Reduction rate - 18.93% 60.24% 66.67% 
The optimal values of objective function are given in bold. 

 

To prove the superiority and performance of the SMA on the IEEE 57-bus system, the 

optimal results of the objective function obtained by the proposed approach SMA were 

compared with the optimal results obtained by other recent optimization methods 

reported in the literature. Table 9 proved the effectiveness of proposed algorithm over the 

other recent algorithms. Error! Reference source not found.a–c shows the convergence 

rate of single-objective functions using the SMA optimization method to solve the OPF 

problem in the IEEE 57-bus test system. These figures prove the superiority and efficiency 

of the proposed approach by providing a good characteristics rate. 

 

 

(a) (b) 

 
(c) 

Figure 10. The convergence characteristics of the SMA for Cases 23–25. (a) Case 23, (b) Case 24, (c) 

Case 25. 
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5.3. Iraqi Super Grid High Voltage 400 kV (ISGHV 400 kV) 

The Iraqi Super Grid High Voltage 400 kV (ISGHV 400 kV) has been chosen as 

practical system to prove the ability and applicability of the proposed SMA as shown in 

Figure A3[67]. The main characteristics of ISGHV is given in Table 1. The bus number 01 

(MUSP) represents the swing bus, and the total load demand is 5994 MW. Table A3 

presents the cost coefficients of the ISGHV network. The nodes and lines data of the 

ISGHV (400 kV) [68] are detailed in Table A4 and Table A5 respectively. 

Single-Objective OPF  on ISGHV 400 kV 

• Case #26: The objective function in this case is the minimization of GFC of the ISGHV 

network. The GFC was reduced from 39565 (USD/h) in the initial case to 20740 

(USD/h) in the optimal case, with a reduction rate equal to 47.58%. The GFC, VD, and 

VSI are equal to 45.2254 (MW,) 0.4678 (p.u.) and 0.0826, respectively, as tabulated in 

The optimal values of objective function are given in bold. 

• Table 10. 

• Case #27: In this case, the objective function that was optimized is RPL by means of 

SMA. The optimal result of RPL was reduced to 18.6087 (MW) compared with the 

initial case, which was equal to 42.3834 (MW) The reduction rate of this case is 

56.09%. The rest results of GFC, VD, and VSI are equal to 36784 (USD/h), 0.7725 (p.u.) 

and 0.0815, respectively, as tabulated in The optimal values of objective function are 

given in bold. 

• Table 10. 

• Case #28: The third objective function of this subsection is to improve the voltage 

profiles by minimizing the voltage deviation (VD) at the load bus from 1.0 (p.u.) The 

VD was minimized from 0.2013 (p.u.) in the initial case to 0.0625 (p.u.) in the optimal 

case. The reduction rate of VD is 68.95%. 

The remainder results of GFC, RPL, and VSI are equal to 49843 (USD/h), 54.8430 

(MW), and 0.0917, respectively, as tabulated in Table 10. 

• Case #29: The last case of this article is the voltage stabilization reinforcement by 

minimization of the maximum voltage stability index (L-index) of the system load 

buses. The VSI is minimized to 0.0749 in the optimal case compared with 0.0886 in 

the initial case. The reduction rate of VSI is 15.46%. The GFC, RPL, and VD are equal 

to 45500 (USD/h), 19.9760 (MW), and 1.2955 (p.u.), respectively, as tabulated in The 

optimal values of objective function are given in bold. 

• Table 10. 

Error! Reference source not found.a–d illustrates the convergence rate single-

objective functions using the SMA optimization method to solve the OPF problem in the 

ISGHV 400 kV network. The optimal control variables obtained by the proposed method 

provide the optimal objective functions tabulated in The optimal values of objective 

function are given in bold. 

Table 10. 
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Figure 11. The convergence characteristics of the SMA algorithm for Cases 26–29 on the ISGHV 

400 kV network. (a) Case 26, (b) Case 27, (c) Case 28, (d) Case 29. 

5.4. Performance Comparison 

This subsection presents the performance and efficiency of the proposed approach 

(SMA and MOSMA) to solve single- and multi-objective optimal power flow problems. 

The standards and all their variants were evaluated to solve real-world problems. The 

SMA and MOSMA were carried out on all cases to achieve the best solutions for single- 

and multi-objective problems. The researchers faced two main challenges to solve single- 

and multi-OPF problems: the speed convergence toward the global optimum (single and 

multi OF) and the good distribution of the Pareto front (Multi OF). In other words, the 

balance between convergence and coverage should be found to determine the 

effectiveness of the algorithm. For example, the results obtained by the proposed 

algorithm from Cases 1–5 were compared with other recent algorithms as shown in Table 

4, The values obtained by the proposed algorithm are given in bold. 

Table 5 and Table 9. These results confirmed the efficiency and superiority of the 

proposed algorithm. It is worth mentioning that none of the meta-heuristics algorithms 

can be superior to all optimization algorithms in solving all optimization problems, 

according to the no free lunch theorem (NFL) [69]. This is the main reason leading to no 

superior algorithm on all sides (coverage and convergence). This is very clear when 

applying the proposed approach to multi-objective functions. Therefore, it is difficult to 

compare the proposed approach MOSMA with other methods in terms of the results. 

Based on the above, the simulation results obtained by the SMA and MOSMA for 

both single- and multi-objective functions have a high performance and provide high-

quality solutions to solve OPF problems. The computational times of proposed approach 
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(SMA and MOSMA) are competitive compared to other recent algorithms. In the multi-

objective function and based on high-quality random search property of MOSMA, the 

objective functions (despite conflict with each other) provide the trade-off solutions 

among of each objective function. In Pareto fronts, the MOSMA provides good 

convergence, high efficiency, and a good distribution of two and three dimensions. 

Table 9. Comparison of the results obtained by SMA with other methods from Cases 23-25 on the 

IEEE 57-bus system. 

Case 23 Case 24 Case 25 

Method FC [USD/h] Method Em [ton/h] Method RPL [MW] 

Initial 51353 Initial 2.4129 Initial 27.8683 

TLBO [43] 41683 PSO [27] 1.19 PSO [27] 13.6673 

GA [43] 41685 GA [27] 1.189  GA [27] 13.3983 

GOA [43] 41680 Jaya [27] 1.1111  ABC [49] 12.6260 

ABC [55] 41694 SSO [37] 1.7024 MICA [70] 11.8826 

MO-DEA [71] 41683 NISSO [37] 1.03927 SMA 9.2874 

GSA [72] 41695 ABC [49] 1.2048   

NPSO [73] 41699.52 IABC [49] 1.0484    

KHA [74] 41709.3 MICA [70] 1.2246   

EADDE [75] 41713.6 MTLBO [76] 1.0772   

fuzzy GA [77] 41716.3 GBBICA [78] 1.1724   

SMA 41633.61 SKHA [79] 1.08   

  SMA 0.9595   
The optimal values of objective function are given in bold. 

Table 10. Optimal control variables obtained by the SMA for four cases on the ISGHV network. 

Item Max Min Initial Case 26 Case 27 Case 28 Case 29 

[M
W

] 

𝑃1 150 1200 159.383 1096.691 813.1153 1158.4575 888.0881 

𝑃2 130 988 690 987.9720 325.8517 447.2378 351.6373 

𝑃3 250 750 250 250.0141 384.4645 434.8705 284.2415 

𝑃4 120 1320 406 120.0362 395.7200 563.6893 305.5577 

𝑃5 120 636 591 120.0380 170.0734 310.7864 614.2338 

𝑃6 50 260 240 50.2201 73.2614 127.6456 65.0107 

𝑃7 180 910 735 732.5920 896.2568 449.9110 879.2067 

𝑃8 60 660 203 659.9335 427.6555 281.8446 166.4127 

𝑃9 50 500 369 67.3979 152.3144 216.3835 155.9652 

𝑃10 250 1320 478 250.0869 559.2488 645.6229 416.5426 

𝑃11 250 1250 600 583.3062 288.9408 619.7411 406.4446 

𝑃12 210 840 775 635.0647 837.6637 442.9369 813.4249 

𝑃13 100 440 332 435.5222 439.0323 225.7120 425.6579 

𝑃14 50 250 208 50.3508 248.9596 123.9482 241.5635 

[p
.u

.]
 

𝑉1 0.95 1.1 1.04 1.0394 1.0592 1.0055 1.0937 

𝑉2 0.95 1.1 1.02 1.0305 1.0609 1.0055 1.0937 

𝑉3 0.95 1.1 1.01 1.0089 1.0586 1.0055 1.0937 

𝑉4 0.95 1.1 1.02 1.0182 1.0604 1.0055 1.0937 

𝑉5 0.95 1.1 1.02 1.0180 1.0604 1.0055 1.0937 

𝑉6 0.95 1.1 1.02 1.0281 1.0562 1.0055 1.0937 

𝑉7 0.95 1.1 1.01 1.0305 1.0567 1.0055 1.0937 

𝑉8 0.95 1.1 1.02 1.0286 1.0614 1.0055 1.0937 

𝑉9 0.95 1.1 1.02 1.0398 1.0582 1.0055 1.0937 

𝑉10 0.95 1.1 1.03 1.0507 1.0652 1.0055 1.0937 
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𝑉11 0.95 1.1 1.03 1.0530 1.0594 1.0055 1.0937 

𝑉12 0.95 1.1 1.02 1.0647 1.0682 1.0055 1.0937 

𝑉13 0.95 1.1 1.01 1.0448 1.0459 1.0055 1.0937 

𝑉14 0.95 1.1 1.01 1.0448 1.0497 1.0055 1.0937 

FC [USD/h] 39565 20740 36784 49843 45500 

RPL [MW] 42.3834 45.2254 18.6087 54.8430 19.9760 

VD [p.u.] 0.2013 0.4678 0.7725 0.0625 1.2955 

VSI 0.0886 0.0826 0.0815 0.0917 0.0749 

Reduction rate - 47.58% 56.09% 68.95% 15.46% 
The optimal values of the objective function are given in bold. 

 

 

6. Conclusions 

In this paper, a new meta-heuristic optimization algorithm inspired by the diffusion 

and foraging conduct of slime mould, called the Slime Mould Algorithm, was proposed to 

solve single- and multi-objective OPF problems. The objective functions that were 

considered are the generation fuel cost (GFC), real power losses (RPL) in the transmission 

lines, total emission (Em) issued by fossil-fuelled generation units, voltage deviation (VD) 

at buses, and voltage stability index (VSI) of whole system. The Pareto concept is the 

approach proposed to solve multi-objective OPF problems by determining the set of non-

dominated solutions (Pareto front). The theory used to extract the best compromise 

solution is fuzzy set theory. In multiple-objective functions, MOSMA was developed to 

find optimal solution for two to five conflicting objective functions simultaneously. To 

validate the MOSMA performance, three different power systems were applied, two 

standard IEEE test systems (IEEE 30-bus and IEEE 57- bus power systems) and one 

practical system (Iraqi Super Grid High Voltage 400 kV), with 29 case studies of single- 

and multi-objectives functions. The simulations results confirmed that the convergence 

speed of SMA is impressive. To demonstrate the robustness and superiority of SMA, the 

optimal results of objective function was compared with other recent meta-heuristics 

optimization methods. The SMA provides a favourable performance, competitive 

optimizer, and better convergence speed to solve OPF problems in the power system. 
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Abbreviations 

OPF Optimal power flow 

OF Objective function 

SMA Slime Mould Algorithm 

MOSMA Multi-Objective Slime Mould Algorithm 

MOSMA Multi-Objective Slime Mould Algorithm 

GFC Generation fuel costs 

RPL Real power losses 

Em Emission 
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VD Voltage deviation 

VSI Voltage stability index 

ISGHV Iraqi Super Grid High Voltage 

NFL No free lunch theorem 

Nomenclature  

𝑓, 𝑔𝑖, and ℎ𝑖 Objective functions, equality, and inequality constraints, respectively 

u and x The control and state variables, respectively 

n, m, and p 
Number objectives functions, number of equality constraint, and 

number of inequality constraint, respectively 

GP and GQ   The real and reactive power output of generation units, respectively 

GV and LV   The voltages magnitude at PV and PQ buses, respectively 

𝑇  The tap setting ratio of transformers 

𝑄𝑐  The source VAR compensators 

GN , TN , CN , LN , 

BN , and nlN  

The numbers of generators, regulating transformers, shunt 

compensators units, load buses, all buses, and transmission lines, 

respectively 

𝑎𝑖 , 𝑏𝑖  and 𝑐𝑖   Generation fuel cost coefficients of generators 

ijG  and 
ijB  The conductance and susceptance, respectively 

mLS   The apparent power flow in each transmission line 

i , i , i , i ,and i   The emission coefficients of generators 

LY  and GY   The submatrix of the original admittance busY , respectively 

t   The current iteration 

δ  The angle difference between phase 𝑖 and phase 𝑗 

𝑢𝑏 The parameter in the range [−𝑎, 𝑎] 

𝑢𝑐 decreases linearly [1−0] 

𝑌𝑏 
The population position according to the highest concentration of 

odour currently found 

𝑌 The slime mould location 

𝑌𝐴 and 𝑌𝐵  
The individuals have been chosen as randomly of slime mould, 

respectively 

𝑊 The weight of slime mould 

𝑓𝑖𝑡, and 𝑑𝑓 The fitness and best fitness value of 𝑌, respectively 

𝑡_𝑚𝑎𝑥 The maximum iteration 

𝑅(𝑖) The ranks first half of the population 

𝑟𝑎𝑛𝑑 and 𝑟  denotes the random value within [0, 1] 

𝑏𝑓, and 𝑤𝑓 denotes the optimal and worst fitness, respectively 

𝑆𝑚𝐼𝑛𝑑𝑒𝑥 refers to the sequence of fitness values sorted 

𝑙𝑏 and 𝑢𝑏 indicate to the limit of lower and upper boundaries 

𝑧 The value of the parameter-setting experiment that will be discussed 

𝐹𝑖
𝑚𝑖𝑛 and 𝐹𝑖

𝑚𝑎𝑥 Minimum and maximum value of objective function 

𝑢𝑘 The membership function 

𝑀  The total number of non-dominated solutions 

𝑢𝑖
𝑘 The weight factor of the 𝑖 − 𝑡ℎ objective function 

Appendix A 

Table A1. The coefficients of cost and emission of generators for the IEEE 30-bus test system. 

Coefficient Generating Unit 

 G1 G2 G5 G8 G11 G13 

Fuel cost coefficient 

a 0 0 00 0 0 0 

b 2 1.75 1 3.25 3 3 
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c 0.00375  0.0175 0.0625 0.00834 0.025 0.025 

Emission coefficient 

α 4.091 2.543 4.258 5.326 4.258 6.131 

β −5.554 −6.047 −5.094 −3.55 −5.094 −5.555 

γ 6.49 5.638 4.586 3.38 4.586 5.151 

ζ 2.00 × 10−4 5.00 × 10−4 1.00 × 10−6 2.00 × 10−3 1.00 × 10−6 1.00 × 10−5 

λ 2.857 3.33 8 2 8 6.67 

 

29

30

27

26 25

2423

15 18 19

2017

1614

13 12

11 9

10

21

22

1 3 4 6 8

7

2 5

28

 

Figure A1. Single-line diagram of the IEEE 30-bus system. 

Table A2. The coefficients of cost and emission of generators for the IEEE 57-bus test system. 

Coefficient Generating Unit 

 G1 G2 G3 G6 G8 G9 G12 

Fuel cost coefficient 

a 0 0 0 0 0 0 0 

b 2 1.75 3 2 1 1.75 3.25 

c 0.00375 0.0175 0.025 0.00375 0.0625 0.0195 0.00834 

Emission coefficient 

α 4.091 2.543 6.131 3.491 4.258 2.754 5.326 
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β −5.554 −6.047 −5.555 −5.754 −5.094 −5.847 −3.555 

γ 6.49 5.638 5.151 6.39 4.586 5.238 3.38 

ζ 2.0 × 10−4 5.0 × 10−4 1.0 × 10−5 3.0 × 10−4 1.0 −6 4.0 × 10−4 2.0 × 10−3 

λ 2.857 × 10−1 3.33 × 10−1 6.67 × 10−1 2.66 × 10−1 8.0 × 10−1 2.88 × 10−1 2.0 × 10−1 
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Figure A2. Single-line diagram of the IEEE 57-bus system. 

Table A3. The cost coefficients of generators for the ISGHV network. 

Gen a b c Gen a b c 

1 275 0.35 0.0012 8 0 0 0 

2 0 0 0 9 250 0.5 0.02 

3 200 3.5 0.04 10 300 2.2 0.003 

4 2581 2.155 0.05 11 200 0.652 0.002 

5 1698 11.91 0.03 12 159 0.561 0.002 

6 154 7.05 0.0136 13 120 0.8 0.0025 

7 200 0.64 0.0017 14 685 3.1 0.0158 

Table A4. The node’s data of ISGHV (400 kV). 
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Bus 

No. 
Type Bus Name 

Voltage Load Generation 
Q 

Injection 
Mag 

[p.u.] 

Angle 

Deg. 
MW MVAr MW MVAr 

1 Slack MUSP 1.04 0 206 56 159.4 2347.4 0 

2 PU MMDH 1.015 9.525 0 0 690 −92.4 0 

3 PU GNENW 1.01 7.695 150 75 250 −120.3 0 

4 PU BAJP 1.02 6.74 125 93 406 −203.8 −155 

5 PU BAJG 1.02 6.792 0 0 591 −91 0 

6 PU KRK4 1.017 5.691 130 10 240 −194 −100 

7 PU QDSG 1.01 −0.773 0 0 735 115.6 0 

8 PU HDTH 1.02 2.645 200 50 203 −198.7 0 

9 PU MUSG 1.02 0.243 0 0 369 −2082.4 0 

10 PU KUTP 1.03 −0.654 0 0 478 −70 0 

11 PU GKHRP 1.025 1.618 0 0 600 −295.4 0 

12 PU NSRP 1.02 −2.117 423 101 775 −230.3 −100 

13 PU HRTHP 1.01 −9.663 155 72 332 69.9 −50 

14 PU KAZG 1.0096 −9.48 200 101 208 24.6 −50 

15 PQ MSL4 1.0119 7.252 650 302 0 0 −50 

16 PQ BGS4 1.0246 −0.671 0 0 0 0 0 

17 PQ BGW4 1.0084 −0.563 576 302 0 0 −150 

18 PQ BGE4 1.0075 −1.678 849 295 0 0 −50 

19 PQ BGN4 1.0086 −1.053 413 149 0 0 −50 

20 PQ AMN4 1.0183 −1.248 127 56 0 0 0 

21 PQ BGC4 1.0099 −0.671 50 182 0 0 0 

22 PQ DYL4 1.0029 −2.029 84 22 0 0 −50 

23 PQ KUT4 1.0249 −4.277 260 108 0 0 −100 

24 PQ QIM4 1.0132 1.222 109 40 0 0 −50 

25 PQ BAB4 1.033 0.041 308 185 0 0 0 

26 PQ KDS4 1.0316 −0.695 213 152 0 0 −50 

27 PQ AMR4 0.9988 −10.44 311 161 0 0 −100 

28 PQ BSR4 1.0052 −10.26 455 145 0 0 0 

Table A5. The line data of ISGHV (400 kV). 

Line 
Bus 

Line R [p.u.] X [p.u.] Charging [p.u.] 
From To 

L1 15 2 2 0.00144 0.01177 0.36439 

L2 15 3 1 0.001777 0.016154 0.478634 

L3 15 4 1 0.0042 0.03437 1.06426 

L4 15 6 1 0.004984 0.04531 1.34251 

L5 3 4 1 0.003294 0.02994 0.887224 

L6 4 5 1 0.00002 0.0002 0.00584 

L7 4 17 2 0.00483 0.04393 1.30165 

L8 4 8 1 0.00345 0.03132 0.92808 

L9 5 6 1 0.0018 0.01635 0.48447 

L10 6 18 1 0.00496 0.04511 1.333667 

L11 17 19 1 0.00093 0.00847 0.25099 

L12 17 21 1 0.000607 0.005516 0.163436 

L13 17 8 1 0.005049 0.045901 1.360021 

L14 16 20 2 0.00082 0.00749 0.22181 

L15 16 21 1 0.000953 0.00866 0.25682 

L16 16 1 1 0.00122 0.01015 0.31897 
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L17 16 9 1 0.001094 0.009106 0.286176 

L18 16 26 1 0.00308 0.02795 0.82827 

L19 18 19 1 0.00029 0.00262 0.07763 

L20 18 20 1 0.00043 0.00394 0.11674 

L21 18 22 1 0.00087 0.00788 0.23348 

L22 19 7 2 0.00015 0.00138 0.04086 

L23 20 10 1 0.002427 0.022064 0.653744 

L24 23 10 1 0.001734 0.01576 0.46696 

L25 23 12 1 0.00432 0.03928 1.1639 

L26 23 27 1 0.00479 0.04354 1.28998 

L27 8 24 1 0.00292 0.02391 0.74035 

L28 1 9 1 0.000125 0.001043 0.032791 

L29 1 25 2 0.00081 0.00673 0.21165 

L30 25 11 1 0.000898 0.00736 0.227 

L31 25 26 1 0.00233 0.01935 0.60812 

L32 11 26 1 0.002267 0.01857 0.5752 

L33 26 12 1 0.00383 0.03485 1.03256 

L34 12 14 1 0.00439 0.03993 1.18316 

L35 27 13 1 0.0029 0.0264 0.78216 

L36 13 14 2 0.00118 0.01076 0.3187 

L37 13 28 1 0.000672 0.006107 0.180947 

L38 14 28 1 0.000563 0.005122 0.151762 

L39 15 2 2 0.00144 0.01177 0.36439 
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Figure A3. Single-line diagram of ISGHV (400 kV). 
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