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Abstract: Edge devices and their associated computing techniques require energy efficiency to
improve sustainability over time. The operating edge devices are timed to swap between different
states to achieve stabilized energy efficiency. This article introduces a Cognitive Energy Management
Scheme (CEMS) by considering the offloading and computational states for energy efficacy. The
proposed scheme employs state learning for swapping the computing intervals for scheduling or
offloading depending on the load. The edge devices are distributed at the time of scheduling and
organized for first come, first serve for offloading features. In state learning, the reward is allocated
for successful scheduling over offloading to prevent device exhaustion. The computation is therefore
swapped for energy-reserved scheduling or offloading based on the previous computed reward. This
cognitive management induces device allocation based on energy availability and computing time to
prevent energy convergence. Cognitive management is limited in recent works due to non-linear
swapping and missing features. The proposed CEMS addresses this issue through precise scheduling
and earlier device exhaustion identification. The convergence issue is addressed using rewards
assigned to post the state transitions. In the transition process, multiple device energy levels are
considered. This consideration prevents early detection of exhaustive devices, unlike conventional
wireless networks. The proposed scheme’s performance is compared using the metrics computing
rate and time, energy efficacy, offloading ratio, and scheduling failures. The experimental results show
that this scheme improves the computing rate and energy efficacy by 7.2% and 9.32%, respectively,
for the varying edge devices. It reduces the offloading ratio, scheduling failures, and computing time
by 14.97%, 7.27%, and 14.48%, respectively.

Keywords: edge computing; energy efficiency; reward function; state learning

1. Introduction

An edge computing device is a type of hardware that drives edge computing applica-
tions in various industries. Edge computing devices are mainly used to accomplish specific
tasks given by software applications [1]. The primary purpose of an edge computing device
is to manage the application closer, which prevents unwanted data loss [2]. Edge devices
are also used to control data flow that occurs among functions and operations. Energy
efficiency is the level of energy that is used to perform a task. The energy efficiency level is
an important variable in every application and system. Edge computing devices mostly
reduce the overall energy consumption rate in a network, which enhances the efficiency
of the system [3]. Edge computing devices provide better privacy-preserving policies that
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reduce energy consumption rates in the authentication process. A key agreement scheme is
mostly used in edge computing devices that identify the actual users of devices [4]. A key
agreement or value reduces the time consumption rate in the identification process, which
improves the effectiveness and reliability of an application. Energy efficiency levels in edge
computing devices are high, which reduces the error rate and latency rate in providing
services for the users [5].

An edge network is a place where local networks and devices are interfaced with a
network connection. An internet connection plays a major role in edge networks. Energy
efficiency analysis is performed in the edge network [6]. The efficiency analysis process an-
alyzes the datasets that are available in the database, and provides the necessary set of data
for the edge network to perform particular tasks. The energy efficiency analysis process
also analyzes the content and time needed to perform a certain task in a network [7]. The
energy efficiency analysis process reduces the overall energy consumption rate in the com-
putation process, enhancing the edge network’s sustainability and reliability. The energy
efficiency analysis process provides an appropriate set of data to provide accurate services
for the users [8]. The efficiency analysis process reduces the latency rate in the computation
process and improves the speed level of the process. Energy efficiency computing creates a
safe path to obtain datasets that reduce the latency rate in the searching and identification
process. The computing system enhances the quality of service and information in the edge
network. Energy efficiency computing is mainly used in edge networks to improve the
privacy and security of users’ data and protect them from attackers [9,10].

Machine learning (ML) techniques are primarily used in various fields for prediction,
recognition, and detection. ML techniques improve the overall accuracy rate in the predic-
tion process, providing an accurate dataset for multiple functions. ML techniques are used
in edge devices to reduce the computation cost and latency rate in the computation pro-
cess [11]. Edge networks are mostly used in industries and smart devices to provide proper
services for users. Convolutional neural network (CNN)-based wireless sensors are used in
edge devices [12]. CNN reduces the time consumption rate in the identification process
and improves the accuracy rate in the edge node detection process [13]. CNN also increases
edge devices’ energy efficiency rate, enhancing device efficiency. The deep reinforcement
learning (DRL) algorithm is also used for energy efficiency-based edge devices [14]. DRL
predicts the exact resources required to perform tasks that reduce the energy consumption
rate in the allocation and classification process. DRL improves edge devices’ performance
and sustainability rate, providing necessary data for further processes in an application
and system [15]. This study makes the following significant contributions:

• Designing a cognitive energy management scheme for edge devices by assimilating
the machine learning paradigm.

• Introducing a joint scheduling and offloading process for preventing energy conver-
gence across distributed edge devices.

• Performing a comparative analysis study for verifying the proposed scheme’s perfor-
mance with precise metrics and existing methods.

The paper’s concept is designed for managing energy efficacy of edge devices through
precise selection of scheduling and offloading concepts. The energy efficacy is predomi-
nant over increasing the user/application density. After the energy harvesting techniques,
fundamental conservation is required for balancing the edge device operations over pro-
longed time.

The rest of the paper is structured as follows: Section 2 expands on the findings of
related work on AI-based approaches for energy management schemes. Section 3 describes
the proposed machine learning-based cognitive energy management scheme. Section 4
discusses implementation and results analysis, while Section 5 delves into the conclusion
and future directions.
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2. Related Works

Ali et al. [16] introduced a deep learning (DL)-based resource allocation approach for
Mobile Edge Computing (MEC) systems. The power Migration Expand (powMigExpand)
algorithm is used here for the resource allocation process that identifies the critical set of
data. The powMigExpand algorithm provides the necessary resources for the allocation
process by analyzing the exact device requirement. The proposed method achieves a high
accuracy in the allocation process that increases the quality of service (QoS) rate of the
MEC system.

Ale et al. [17] proposed a deep reinforcement learning (DRL) algorithm-based energy-
efficiency computation offloading method for MEC systems. DRL is mainly used here to
determine the exact need and requirements for the computation process. DRL identifies the
exact edge nodes and servers for offloading and resource allocation. The proposed method
reduces the computation process’s time and energy consumption rates. The proposed
approach also improves the performance and reliability of the system.

Irtija et al. [18] designed an energy-efficient edge computing system for multi-access
edge computing. The proposed method is also used for a fully autonomous aerial system
(FAAS) by using a deep neural network (DNN). The DNN-based approach identifies the
area of interest (AOI) that provides the necessary set of data for the satisfaction process.
From the AOI, the energy information is observed for leveraging deployment. These
deployment issues are addressed by projecting energy-efficient devices across the AOI.
Therefore, the energy utilization and improvements are linear for the available computing
through multiple accesses (V1). The proposed method achieved a high accuracy rate,
enhancing the efficiency and sustainability of the MEC and FASS systems.

Lu et al. [19] introduced a scheduling algorithm named the energy-aware double-
fitness particle swarm optimization (EA-DFPSO) method for MEC. The PSO algorithm
identifies both computation and edge nodes, providing an optimal dataset for the com-
putation process. PSO reduces the energy consumption rate in the computation process,
enhancing the MEC reliability and stability. The proposed EA-DEPSO method reduces
the latency rate in the computation process and improves the energy efficiency rate of the
MEC system.

Wen et al. [20] developed a cluster-based wireless sensor network (WSN) for edge
computing. The main aim of the proposed method is to develop an energy-efficient
task allocation process. The genetic algorithm (GA) algorithm is used here to identify
the requirements necessary for the load balancing process. The proposed WSN method
reduces the computation process’s energy and time consumption rate, enhancing the edge
network’s load balancing level.

Xie et al. [21] introduced a minimal retention energy harvesting (MREH) method for
edge devices. The proposed method is mainly used for Internet of Things (IoT)-based
devices and applications. The MREH method focuses on swapping edge nodes that are
needed for energy harvesting. MREH identifies the edge nodes and provides a possible
dataset for the computation process. This supplied data equips multiple observation se-
quences for identifying the swapping instances. Considering the available edge nodes, IoT
computations are required for enhancing the EH. The proposed MREH method improves
energy efficiency.

Dai et al. [22] proposed a deep reinforcement learning (DRL) algorithm-based partition
approach for an edge computing system. Game theory and Deep Neural Network (DNN)
approaches are used here to identify the resource required for resource allocation. DNN
improves the accuracy rate in partitioning, where it provides possible services for users.
The Dai approach reduces the computation processes, time, and energy consumption.
Added to it, DRL improves the scalability and efficiency of an edge computing system.

Zhang et al. [23] developed a dynamic programming-based energy-saving offload-
ing (DPESO) for the mobile edge computing offloading (MECO) system. Identifying an
offloading decision problem is a complicated task to perform in an edge computing sys-
tem. The proposed method is mainly used to determine the offloading decision problem



Energies 2022, 15, 8273 4 of 16

presented in a computing system. DPESO minimizes the latency rate in the computation
process, improving the MECO system’s effectiveness and scalability. The proposed DPESO
increases the energy efficiency rate in an edge computing system.

Alsubhi et al. [24] designed a Mobile Energy Augmentation for smart devices using
Cloud Computing (MEACC). MEACC is used to find the inefficient energy consumption
source and produce a proper dataset for further process. Smart devices utilize more
energy to perform specific tasks. MEACC reduces the communication cost and latency
rate in the offloading process. The proposed MEACC method reduces the overall energy
consumption rate in the computation process, providing a better load balancing level for
an edge computing system.

Li et al. [25] introduced a multi-edge collaborative computation offloading strategy
for MEC systems. The proposed method calculates the execution time to perform a specific
task in the MEC system. A migration strategy is used here that analyzes the datasets that
are required for the computation process. The mitigation strategy identifies the previous
state utilization and energy drains for preventing failures. The computations are restricted
to the energy availability of the devices through multiple remaining energy metrics. Due
to the overheads in migration, the overloading tasks are confined using MEC offloading.
The proposed method reduces the computation energy demands.

Zhou et al. [26] proposed an edge intelligent energy-efficient model (ECMS) for MEC
systems. When compared with other methods, the proposed method improves the perfor-
mance and feasibility of the MEC system. The Elman neural network (ENN) algorithm
is used here that identifies the energy consumption rate to perform tasks in MEC. ENN
predicts accurate energy consumption. This energy consumption feature is estimated across
different intervals where the communication is either consistent or varying, provided the
energy exhaustions are identified.

Liu et al. [27] introduced an energy-aware allocation method for MEC systems. An
MEC server identifies the access points (AP) presented in MEC that provide necessary
data for the offloading process. The proposed method reduces the complexity and time
consumption rate in the computation process. The complexity of the varying multiple
access switchovers is addressed using offloading procedures. This process reduces the
computations over different intervals to prevent energy drops. The proposed method
provides high-quality services for users and reduces the energy consumption rate in the
computation process.

Xie et al. [28] proposed an energy-efficient collaborative computation method for
MEC networks. The block coordinate descent (BCD) method is used to find the coordinates
available in the MEC network. The proposed method is used primarily for reconfigurable
intelligent surface (RIS)-assisted MEC networks. In the reconfiguration process, the remain-
ing energy-based allocations are provided across multiple coordinates, preventing MEC
delegations. Therefore, energy utilization is reformed in order to avoid various device uti-
lizations. In this process, the variations are provided using available devices. The proposed
method improves the energy efficiency level by reducing the energy consumption rate in
the computation process.

The methods discussed above rely on assisted networks as in [20,24,28] for energy
conservation by incorporating the conventional WSN strategies. Independent processes
such as in [18,19,23] provide optimization alongside learning paradigms that increase the
complexity during iterated training. The proposed energy management scheme steers
between the offloading and scheduling decisions using different state models. In particular,
the state model is incorporated into this work due to its action and reinforcement strategies.
The action represents the allocation, scheduling, and offloading computed using the avail-
able energy and drain. The transitions between the states are required for limited intervals,
i.e., before offloading and scheduling. Therefore, recurrent training machine learning is
less required for this energy management scheme.

The aforementioned methods and techniques optimize the energy efficiency through
harvesting, conservation, and device changeovers. These methods are conventional for
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improving the current transmissions across multiple shared devices in an edge computing
scenario. However, the knowledge of service demands is unknown for the varying intervals,
due to which the allocation and prolonged device operations are mandatory. As the energy
drain is accepted, the convergence, device failure, or recharging intervals are frequent.
Therefore, the device and task swapping instances are confined through pre-exhaustion
identification and proper device selection. Considering the energy levels and tasks, the
balancing takes place with considerable learning procedures in this proposed scheme. This
prevents scheduling failures due to periodic device switching based on energy complexities.

3. Proposed Energy Management Scheme

The edge computing device-based energy efficiency processes specific tasks that differ-
ent users and software applications observe. The edge computing device model maintains
the application closer and requires data storage and a computation process to perform
a certain task and enhance the system’s efficiency. The challenges in operating the edge
devices, such as scheduling, offloading, and allocation, are considered factors for improv-
ing the energy efficacy of edge computing to satisfy user needs and demands. The edge
computing devices are highly competitive in achieving stabilized energy efficiency between
different states considering their energy efficiency. The edge devices and their associated
computing are used in many industries for improving energy conservation and distribution,
along with allocating time for scheduling and offloading based on the sustainability of the
proposed scheme to improve energy availability. However, addressing energy convergence
at the time of cognitive management generates the edge device allocation that relies on
carbon emissions, deforestation, pollution, and enormous energy consumption. These
impacts augment concerns for swapping the edge computing time intervals for offloading
or scheduling depending on the load needed to reduce failures. Offloading is one of the
solutions used to identify the offloading features when scheduling edge devices through
state learning. Offloading is identified in edge computing and requires diverse perfor-
mances to reallocate the offloading features to save the minimum energy. An enormous
amount of user needs and demands are available in energy management, which is feasible
in scheduling failures, and computation of device exhaustion is a paramount consideration
in edge computing. Figure 1 portrays the proposed CEMS in an edge environment.

Figure 1. Proposed CEMS in edge environment.

The proposed energy management scheme mainly focuses on consideration by identi-
fying rewards for all successful scheduling over the offloading in edge computing through
Q-learning. In this scheme, edge computing is administered to control the data flow when
performing functions and operations. The proposed scheme reduces the edge computing
latency rate and augments the process’s speed (refer to Figure 1). Energy efficiency com-
puting generates a safe path to obtain datasets from edge devices. It prevents latency in
identifying and searching processes. In this proposed scheme, the edge computing systems
increase the quality of information, and services in the edge network are analyzed to
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determine any existing edge computing modifications to augment the privacy and security
of users’ datasets from attackers. Machine learning is a combination of performing the
prediction analysis that requires a set of data for various operations in edge computing.
State learning is used in this proposed scheme to identify the accurate edge nodes that are
aided in performing tasks. Learning reduces the time consumption in the identification
process and increases the overall accuracy of the edge node detection process. The energy
availability is classified as conservation, and distribution depends on available datasets.
In this proposed scheme, the edge computing devices reduce the energy consumption in
an edge network, which enhances the sustainability and reliability of the edge network.

The edge devices and their associated techniques improve the speed level of the edge
computing process depending on the user’s demands through state learning. The energy
efficiency analysis is based on the learning process content and computing time to perform a
certain task in an edge network. The offloading and computational states for energy efficacy
consideration are made. The energy efficiency analysis is based on the edge devices (Ed)
in that network. Therefore, the scheduling or offloading based on the load is designed into
three segments: scheduling, offloading, and allocating content and time to perform a task.
The energy management scheme varies based on users’ needs or demands to handle energy
availability in that edge network. The initial function of edge device computing is keen on
maintaining the quality of service and information, relying on the objective as in Equation (1).

maximize
N∈tk

Ed(c) ∀ Scl = O f l = Alloc

and

maximize DL∀(
Scl
O f l

)

N∈Ed(c)

 (1)

where:

DL = Ed(c)(CT − IdP] (2)

DL = minimize
n∈i

Ed(c)tk ∀ N ∈ Scltk (3)

As per Equations (1)–(3), the variables Ed(c), Scl, O f l, and Alloc represent the edge
computing process of performing N tasks depending on scheduling, offloading, and allo-
cation, respectively. In the following next edge device computing, the variables DL, CT ,
and IdP are used to denote the unwanted data loss, time consumption rate, and identifica-
tion process, respectively. The third objective is to minimize the data flow that occurs in
functions and operations using the Ed(C)tk ∀ N ∈ Scltk condition. If US = (1, 2, . . . , us}
represents the set of users in edge computing devices, the overall energy consumption in
the computation process that enhances the reliability and sustainability of the edge network
is based on Ed(c)× CT , whereas an appropriate set of data provides service for the users
of us × Ed(c). The overall energy efficiency analysis is based on us × Ed(c) and Ed(c)× CT
for energy availability. The control of data flow and offloading is used to perform a certain
task. The scheduling of offloading relies on the load to provide better privacy-preserving
policies that reduce energy consumption in the authentication process. In this edge comput-
ing, energy efficiency analysis is essential to identify data flow, time slots, and devices in
that network. The user needs or demands are based on improving the sustainability (stb)
of performing N tasks. The remaining energy consumption time for scheduling and orga-
nizing for FCFS for available offloading features relies on energy efficacy for improving
device exhaustion. The cognitive management for the available N tasks is performed using
machine learning. Later, the edge devices are distributed at the time of scheduling; the
edge computing analysis is the improving factor to provide accurate services for the users.
From this scheduling or offloading based on the edge, devices are the prevailing instance
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for the required computation process. The reliability and sustainability level of the system
predicting the energy consumption rate for considering the energy-aware allocation are
essential in the following section. The offloading process is illustrated in Figure 2.

Figure 2. Offloading illustration.

The user tasks (requests) are streamlined from CT for identifying scheduling proba-
bility. If the allocation does not fit the identified CT (i.e.,) N

CT
> Alloc, then the offloading

probability is high. Therefore, an edge device (s) is identified as satisfying energy manage-
ment conditions for offloading. In the offloading process, the energy conditions defined in
Equations (1) and (2) are to be satisfied to prevent DL (refer to Figure 2). The identification
process in edge device computing for performing a particular task, which relies on the state
learning of (Ed(c)× CT) and is computed for improving energy consumption for all N
tasks on the basis of sustainability overtime, is the considering factor. The probability of
offloading

(
ρO f

)
in an edge device computation is given as:

ρO f =
(

1− ρEd(c)

)CT−1
, N ∈ CT (4)

where:

ρEd(c) =

(
1− Ed(c) ∈ N

Ed(c) ∈ CT

)
(5)

From Equations (4) and (5), the continuous energy consumption in edge computing relies
on the offloading and computational states of N tasks. Therefore, the remaining tasks are
performed to swap between different states; hence, the scheduling time is substituted as in
Equation (1). Therefore, the offloading computation for ρEd(c) follows:

O f (N(tk)] =
1

(Scl + O f l − Alloc| .
(

ρEd(c)

)
CT

, N ∈ CT (6)

In Equation (6), the edge computing for the N load depending on the scheduling or of-
floading as in Equation (6) is to satisfy both the condition of us × Ed(c) and Ed(c)× CT ,
improving the energy efficiency of edge devices. The offloading process in edge com-
puting is processed using state learning to assign different states for time consumption
to reduce the impact of the data flow and reallocation for generating minimum energy
based on (us × Ed(c)) > (Ed(c)× CT), and the computational states for energy efficacy
descriptively use machine learning. Therefore, the successful scheduling over the offload-
ing, which follows us > CT and ρEd(c) for minimal energy consumption, is to satisfy
Equation (1). The various states depend on ρEd(c) and hence the edge computing, resulting
in an offloading process for reallocation.

In an edge device computing scenario, the data flow and identification process are
performed for the condition us × Ed(c) to maximize energy availability, and the time
consumption rate and scheduling failures are invariant. The maximum and minimum
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scheduling in edge computing identify the offloading along with the reward allocated
through Q-learning of N tasks, and the reward allocation is the considering factor here.
The probability of reward allocation (ρRw) is computed as:

ρRw =

ρO f . DL(N(tk)].
(
(Scl −O f l) ∗ ρEd(c) −

(
Scl −O f l

N

)]
F(SL).N

(7)

where:

F(QL) = ∑N=1

(
(Scl −O f l) ∗ ρEd(c) ∗ ρDL

DL(N)

)
(8)

Based on Equations (7) and (8), the variable F(QL) represents the function of Q-learning at
different time intervals. For all of the edge device computing processes, the sustainability
over time of energy availability is analyzed for N tasks required for allocating the reward.
As in Equation (1), the data flow identification requires more energy efficiency. The state
models with reward allocations are illustrated in Figure 3.

Figure 3. State models with reward allocation.

The Q-learning states are defined for “Alloc”, “O f l”, and “Scl” based on different
conditions satisfying Equations (1) and (2). This state modeling is distinguished as device-
based and allocation-based. The RW is estimated for ρO f = 1 and Idp = True conditions
is the device-based one; the N(tk) and c 6= 0 validations are performed in the allocation-
based method. The ρRW is used for computing the feasibility that prevents DL and high CT .
This state modeling is induced for Us until resource allocation is made (Figure 3). The con-
tinuous edge computing analysis, the energy conservation, and distribution outcomes
depend on identifying the minimum or maximum time consumption for swapping the
computing intervals for scheduling or offloading of us > CT , and N task performance and
computing time are the considered metrics. These metrics are addressable using Q-learning
and energy management to mitigate the data flows through reward allocation. The decision
to allocate rewards to scheduling relies on FCFS for offloading features. The following
section represents the energy management scheme for edge computing to reduce edge
devices’ data flows and time consumption.

Energy Management: Energy availability is classified as conservation and distribution
based on performing certain tasks. This scheme is used to control the economy evaluation
time for both sequential and individual factors. The energy efficiency analysis is computed
to identify the data flows and reallocates tasks in edge devices using machine learning.
The edge computing process relies on energy management to reduce the data flows and
time consumption when performing a task. Therefore, the condition for energy availability
is different for each task in edge devices that follows individual computation processes for
enhancing the sustainability of the edge device. The learning process is used for computing
the time consumption rate for the N tasks and available offloading features. The first
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energy availability relies on maximum edge device computing (Ed(c)ea) and F(QL) is
computed as:

F(QL, Ed(c)ea) =

((
ρEd(c)

ρec + ρed

)
× 1

n

]
− DL(n) + 1 (9)

In Equation (9), the variables ea, ec, and ed represent the energy availability, energy con-
servation, and energy distribution in edge computing, respectively, depending on energy
efficiency analysis as in ρEd(c) and DL(n) for swapping the states between edge devices.
The state learning and reward estimation for ea, ec, and ed are illustrated in Figure 4.

Figure 4. State learning and reward estimation for ea, ec, and ed.

The energy management processes for state modeling and ρRW are different from that
of the device-based process. This model limits the “Alloc” based on the RW and ec phases.
For the ea model, Ed(c) is alone validated for ρED(c) = max; this induces offloading fewer
computations. In the ed phase, if c = 0, then RW for “O f l” is estimated ∀ 0 ρED(c) < 1
such that “Scl” is temporarily halted. Considering the ec, the ea is determined by identifying
N(tk) and RW for “Scl” to “O f l”, preventing any new “Alloc” (refer to Figure 4). Here,
the chances of device exhaustion through previous reward achieving continuous energy
distribution is computed as:

ρed =
1√
2N

experssion
(Scl − ρEd(c)

N

)
(10)

In Equation (10), the probability of edge computing, the objective is to balance users and
time is to minimize the data flow; hence, the actual energy distribution in that edge network
is computed as:

Scl = max
(

ρEd(c)

DL(N)− ρec

)
(11)

Therefore, the energy distribution in the edge device is validated as
(

1−
( ρEd(c)

DL(N)−ρec

))
and the time consumption of the energy management process in the device allocation in-
stance depends on the scheduling process. The exceeding time slot and edge devices require
different states and hence the energy availability is demandingly improved. The energy
availability, conservation, and distribution probability are considered in edge computing.
The offloading occurred in the edge network for the condition (Scl, O f l) is differentiated
based on ρed for F(QL), and is given as:

DL(N) =


N − (ρESG ∗ Ed)

n +
(

ρR f

) ∀ Scl = Ed(c)

N − ρEd(c)

N +
(
ρed + ρec − ρDL

) ∀ Scl < Ed(c)
(12)
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In Equation (12), the edge computing process of
(
ρed + ρec − ρDL

)
is the idle probability

for energy conservation, and energy distribution is performed based on the edge network
using state learning through DL(N) analysis. Finally, the differentiation scheduling is
presented in Figure 5.

Figure 5. Differentiation scheduling.

The F(QL) generates RW for device- and energy-based allocations. These allocations
are discussed in Figures 3 and 4; the energy constraints determine the RW for different
state models post the ec phase. Therefore, leaving out ec (due to no “Alloc”), Scl ∈ ea and
Scl ∈ ed are performed. It is to be noted that “O f l” is active ∀ Scl ∈ ed alone where device-
and energy-dependent RW are computed. This increases the ρRW and ed, augmenting
F(QL, Ed(c)ea) (refer to Figure 5). Therefore, the energy availability performs the remaining
user demands for energy-reserved scheduling or offloading, i.e., the remaining reward,
identifying until the device exhaustion is prevented. Therefore, the remaining edge device
computing is processed in this continuous manner, reducing the data flows and time
consumption in the edge network.

4. Results and Discussion

The results and discussion section presents the self and comparative analysis of the
metrics used in the CEMS. First, the scheme was experimentally verified using a Contiki
Cooja environment with 110 edge devices and N = 1200. The scheduling interval was
varied between 5 and 60 min, with a maximum time-out of 12 s. In this scenario, six
resource servers were used for computing and allocating requests and resources for the Us.

Figure 6 presents the self-analysis on DL(%) for the varying N and ρo f and ρED(c).
The proposed scheme relies on two distinct RW for device and energy for performing
allocations. For confining DL, the Idp in CT is performed using ρo f probability. In the
process, c 6= 0 and N > (CT ∗ c] conditions are validated for concurrent allocations.
The allocations are performed with the Rw maximization ∀ (tk) = true and ρo f = 1 (max)
conditions. Therefore, the DL facing conditions are suppressed through increasing ρo f and
hence allocations are maximum. The continuous computation and energy allocations are
performed using the ea and ed phases. In particular, RW is estimated to ec for preventing
failures. This means that the Idp = True is satisfied using ”Scl” or “O f l” and hence
the us > CT is handled. Therefore, the continuous allocations endure the available edge
devices for N tasks. The energy distribution and allocation are concurrent with preventing
DL in these state models, achieving fair consumption. The ec phase is instigated after
this allocation and “Scl”. In Figure 7, the energy and Scl analysis for the varying ρRw are
presented.
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Figure 6. Analysis of DL and ρEd(c) for the varying N.

Figure 7. Analysis of energy (%) and Scl (min) for the varying ρRw.

The self-analysis for energy (%) and “Scl” for the varying ρRW is presented in Figure 7.
The energies (%) ∀ ea, ed, and ec are analyzed in this analysis, and the ea is high for the
varying rewards due to ρED(c) and N ∈ CT . In the “Alloc ”-based state model, the “Scl”
and “O f l” are induced for an increasing (N ∗ CT) rate. Therefore, the ed increases; the
ec case is different from the other two phases. Depending on the allocation, less CTec
is performed. This computation determines the devices and remaining N for allocation.
Therefore, as the need for ec arises to a mid ed andea, it is unstable throughout CT .
The “Scl” time demands are varying based on “Alloc”; if ρED(c) is high, then “Scl” is high.
In particular, the DL(N) is increased post the ec observed. This is intermittent for the
distinguishable “Scl”.

4.1. Comparative Analysis

Depending on the experimental information, the metrics of computing rate, energy
efficacy, offloading ratio, scheduling failure, and computing time are comparatively ana-
lyzed. The methods DPESO [23], E2E_DRL [17], and EA-DFPSO [18] are used alongside
the proposed CEMS in the comparative analysis.

4.2. Computing Rate

As shown in Figure 8, edge device computing performs certain tasks depending on
the time consumption rate of energy efficiency and did not control data flow between
the different states to swap the allocated timing. The offloading and computational state
requires user needs and demands used for identifying the scheduling failure and computing
time. The analysis of scheduling and offloading is performed to augment edge devices’
sustainability to control functions and operations for energy efficacy using the state learning
process. This offloading problem is identified for different edge devices in that network
depending on the load for the condition us × Ed(c) and Ed(c)× CT used for performing
remaining tasks. The continuous edge devices distributed in the network achieve successive
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scheduling over the offloading. The cognitive energy management preventing device
exhaustion and therefore further edge device computation for energy efficiency are not
presented. The state learning satisfies maximum energy efficiency based on the time slot
and devices in that network, preventing data flows. Therefore, a high computing rate is
achieved due to operating different edge devices.

Figure 8. Computing rate analysis.

4.3. Energy Efficacy

This proposed scheme achieved high energy efficacy for operating and controlling
edge devices through state learning at different time intervals for identifying the scheduling
failures in edge computing (refer to Figure 9). The scheduling failures and offloading
are mitigated relying on user demands and energy consumption for sustainability over
time of edge device allocation based on energy availability and computing time through
state learning. The successful scheduling is due to unwanted data flow in edge device
computing at different allocated time intervals for energy convergence and reducing the
scheduling failures compared to the other factors in this proposed scheme. The offloading
feature processing relies on scheduling or offloading, which requires the output for energy
efficiency of edge device computing to identify the reward through a Q-learning process.
Therefore, the energy efficacy of the edge device was analyzed for increasing the allocation
within the time consumption depending on other factors. Hence, the energy efficacy is high
in this proposed scheme.

Figure 9. Energy efficacy analysis.

4.4. Offloading Ratio

In this proposed scheme the scheduling failure and offloading ratio in edge device
computing between different states for time consumption and identification processes
do not process three segments depending on the load. The computation time of energy
management in that edge network relies on the scheduling and offloading of an appropriate
set of data to provide service for the users of us × Ed(c) and is computed for identifying
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scheduling failures in edge device computing. The offloading feature is processed for
performing certain tasks for reward allocation at different time intervals for Ed(c)× CT
the condition. The successful scheduling over the offloading depends on the edge devices
through state learning for performing three segments. The reliable working of the edge
devices is analyzed with energy availability through state learning, preventing scheduling
failures. The computation states and offloading for improving energy efficacy in the edge
network are used to control the convergence that incorporates the previous reward com-
puted for different states for detecting offloading without increasing the reward function.
The proposed scheme performs edge computing based on the process reallocation to save
the minimum energy for which energy availability achieves a lower offloading ratio as
presented in Figure 10.

Figure 10. Offloading ratio analysis

4.5. Scheduling Failure

The probability of energy conservation and energy distribution based on the edge
device computing analysis for the sustainability of that network is illustrated in Figure 11.
In this proposed scheme swapping the computing intervals for scheduling or offloading
requires less computing time. The time consumption rate and identification process rely on
energy management at various allocated time intervals. In these scheduling failures and
offloading based on previous validated rewards, us > CT and N task performance and
computing are the considering metrics for edge computing. The offloading mitigates the
individual allocation of rewards depending on the edge device computing and features
vary for device exhaustion, wherein the swapping of energy-reserved scheduling based
on maximum energy efficiency is preceded using Equations (4)–(9) computations. In this
proposed energy management scheme, the minimum and maximum energy distribution
in edge computing depend on reward identification. These edge devices are distributed
to prevent scheduling failures under independent computing (as in Equations (10)–(12)).
Therefore, the scheduling failure identification used for controlling energy management
is high compared to the other factors. Based on these processes in the edge network,
the scheduling failure is reduced at different time intervals.



Energies 2022, 15, 8273 14 of 16

Figure 11. Scheduling failure analysis.

4.6. Computing Time

As shown in Figure 12, the probability of edge device computing performed for
energy efficiency analysis using energy management is processed for operating edge
devices in that network and does not swap different states at allocated time intervals.
The scheduling failure identification is organized for performing certain tasks from the
previous reward computed and the offloading ratio is considered for improving computing
time. Based on the scheduling, offloading, and allocation for energy management based

on the condition
(

Scl−ρEd(c)
N

)
, the probability is analyzed in a consecutive manner of

improving energy efficiency. This scheduling failure identification is computed from the
edge devices using the state learning paradigm in current scheduling and relies on allocated
time and analysis, preventing offloading. The energy conservation and distribution are
analyzed and processed based on the scheduling over the offloading, and the reward
is allocated through the Q-learning process at different intervals for maximizing energy.
The device allocation relies on energy availability considering the successful scheduling
in energy management for which the proposed scheme requires less computing time.
The above analysis’s summary is tabulated with the findings in Tables 1 and 2 for the
varying edge devices and scheduling intervals.

Figure 12. Computing time analysis.

This scheme improves the computing rate and energy efficacy by 7.2% and 9.32%,
respectively. It reduces the offloading ratio, scheduling failures, and computing time by
14.97%, 7.27%, and 14.48% respectively.

This scheme improves the computing rate and energy efficacy by 7.43% and 9.36%,
respectively. It reduces the offloading ratio, scheduling failures, and computing time by
15.81%, 7.81%, and 14.93% respectively.
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Table 1. Analysis summary for edge devices.

Metrics DPESO E2E_DRL EA-DFPSO CEMS

Computing Rate (Scheduling/Devices) 22 41 51 67
Energy Efficiency 54.96 64.78 73.66 83.11
Offloading Ratio 43.25 32.36 27.52 19.406
Scheduling Failures 0.158 0.113 0.094 0.049
Computing Time (ms) 1193.1 879.2 491.2 112.21

Table 2. Analysis summary for scheduling interval.

Metrics DPESO E2E_DRL EA-DFPSO CEMS

Computing Rate (Scheduling/Devices) 22 39 52 68
Energy Efficiency 55.34 65.25 74.47 83.746
Offloading Ratio 42.69 33.79 27.78 18.947
Scheduling Failures 0.185 0.125 0.074 0.0499
Computing Time (ms) 1414.1 1072.8 596.4 107.29

5. Conclusions

This article introduces a cognitive management scheme to improve edge devices’
computation and energy efficacy. This scheme performs differentiated task scheduling
and cognitive offloading using state learning. The scheduling is based on a first-come,
first-serve process wherein the offloading is performed using energy allocation feasibility.
The continuous energy allocation, distribution, and computation factors are analyzed using
independent state models. The models increase the chances for energy conservation amid
the distribution and allocation phases. In the energy-conserved phase, the allocations are
prevented, preventing data losses and hence early energy exhaustion. The reward func-
tion is used for identifying the offloading/scheduling-required intervals. This facilitates
the decision on energy distribution or allocation for the pending and new tasks. In the
concurrent allocation intervals, device availability and energy conservation features are
estimated using the current states in maximizing energy efficacy. This scheme improves the
computing rate and energy efficacy for varying intervals by 7.43% and 9.36%, respectively.
It reduces the offloading ratio, scheduling failures, and computing time by 15.81%, 7.81%,
and 14.93%, respectively.
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