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Abstract: AC regenerative electric drives (AC REDs) are widely used in metallurgical rolling due to
their reliability, efficiency, and power sufficient to maintain the process. This paper reviews the latest
achievements in building the grid connection circuits for the main AC REDs of rolling mills. The
paper discusses multipulse connection circuits formed by various transformer types and algorithms
for preprogrammed pulse-width modulation with selective harmonic elimination technique (PPWM
with SHE) of three-level active front ends (AFE), provides the theoretical and practical measurement
results, and gives recommendations for improving existing systems. For 6-, 12-, and 18-pulse grid
connection circuits, switching patterns of AFE semiconductor modules with a smooth downward
trend within the modulation index range from 0.7 to 1.15 are provided. A simulation was performed
under comparable conditions on simulation models in the Matlab/Simulink to objectively evaluate
the performance and opportunities of 6-, 12-, and 18-pulse grid connection circuits, including the
three-level AFE and transformer specifications. The waveforms and spectra of the grid currents and
transformer secondary winding phase currents are shown; total harmonic distortion (THD) factors
have been calculated up to the 60th harmonic for various PPWM with SHE patterns. The results
of simulation and experimental measurement on operating equipment have been compared. The
paper is expected to provide a broad overview of multipulse connection circuits of the rolling mill’s
main AC REDs, in particular, identify the latest solutions capable of significantly improving their
electromagnetic compatibility with the grid. The results obtained are of high genericity and can
be used by researchers and engineers to provide the electromagnetic compatibility of non-linear
consumers in similar circuits, as well as design them.

Keywords: power converters; electric drive; pulse width modulation; voltage quality; multipulse
connection circuits

1. Introduction

The sustainable development of energy-saving industrial technologies has led to the
widespread use of power conversion systems capable of recovering electrical energy for
high-power applications. Until the middle of the 20th century, they were based on semi-
controlled thyristor converters to adjust AC and DC electric drives. From the middle of
the 20th century to this day, they were replaced by fully controlled multilevel converters
based on transistors or gated thyristors (Figure 1). To date, almost all modern metallurgical
rolling mill electric drives are based on synchronous or asynchronous AC motors and, as a
rule, active front ends as part of frequency converters [1–4].
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Figure 1. Regenerative electric drives of rolling mills. 

A device called an active front-end (AFE) has several common names found in the 
scientific and technical literature: PWM boost rectifier, voltage source rectifier, grid-con-
nected voltage source inverter, regenerative rectifier, and bidirectional converter. Semi-
conductor AFE modules are switched using various pulse-width modulation (PWM) al-
gorithms, which results in a non-sinusoidal output AC voltage and thus makes it chal-
lenging to provide electromagnetic compatibility for the consumer and the source. Due to 
these problems, standards and guidelines [5–8] have been introduced for the equipment 
manufacturers and users to rely on. If the feed transformer’s secondary winding induct-
ance is not enough to maintain stable AFE operation, then passive L or LC filters should 
be additionally installed in existing systems on the grid side. However, the specifications 
of these filters are close to those of the frequency converter, which increases not only their 
cost but also the losses and the number of components, deteriorating the system reliabil-
ity. Active or hybrid filters have not gained popularity in the systems under consideration 
[9–13]. 

Switching losses and electromagnetic compatibility with the grid are the most signif-
icant problems for the main AC regenerative electric drives (AC REDs) of rolling mills 
with AFEs, whose rated power reaches tens of megawatts. They cause overheating or 
complete failure of electronic equipment at the common grid connection point. Research-
ers and experts have developed various ways and techniques to reduce the impact of these 
problems [14–18]. 

A well-known approach to improving the quality of power converted by semicon-
ductor converters is developing multilevel topologies. Multilevel converter manufactur-
ers recommend them to control powerful electrical energy consumers from tens to hun-
dreds of megawatts [19–22]. However, it turned out that an increase in the converter’s 
output voltage also increases the number of semiconductor components, thereby reducing 
the converter reliability and efficiency. Among all multilevel topologies, the three-level 
neutral-point-clamped (NPC) topology [23], shown in Figure 2, is the most common and 
compromised solution. The NPC converter’s total DC link voltage Udc is shared between 
the DC link equivalent capacitances C1, C2 in equal proportion. The converter’s positive 
and negative input voltage Uan is generated when current flows through two series-con-
nected semiconductor modules S1a, S2a or 𝑆ଵ̅௔, 𝑆ଶ̅௔, which can be either fully controlled 
switches or diodes. The zero (third) level of the PWM converted voltage Uan is generated 
when current flows through fully controllable switches S1a or 𝑆ଶ̅௔ and clamping diodes 
D1a or D2a. 

Figure 1. Regenerative electric drives of rolling mills.

A device called an active front-end (AFE) has several common names found in the sci-
entific and technical literature: PWM boost rectifier, voltage source rectifier, grid-connected
voltage source inverter, regenerative rectifier, and bidirectional converter. Semiconductor
AFE modules are switched using various pulse-width modulation (PWM) algorithms,
which results in a non-sinusoidal output AC voltage and thus makes it challenging to pro-
vide electromagnetic compatibility for the consumer and the source. Due to these problems,
standards and guidelines [5–8] have been introduced for the equipment manufacturers and
users to rely on. If the feed transformer’s secondary winding inductance is not enough to
maintain stable AFE operation, then passive L or LC filters should be additionally installed
in existing systems on the grid side. However, the specifications of these filters are close
to those of the frequency converter, which increases not only their cost but also the losses
and the number of components, deteriorating the system reliability. Active or hybrid filters
have not gained popularity in the systems under consideration [9–13].

Switching losses and electromagnetic compatibility with the grid are the most signif-
icant problems for the main AC regenerative electric drives (AC REDs) of rolling mills
with AFEs, whose rated power reaches tens of megawatts. They cause overheating or
complete failure of electronic equipment at the common grid connection point. Researchers
and experts have developed various ways and techniques to reduce the impact of these
problems [14–18].

A well-known approach to improving the quality of power converted by semicon-
ductor converters is developing multilevel topologies. Multilevel converter manufacturers
recommend them to control powerful electrical energy consumers from tens to hundreds
of megawatts [19–22]. However, it turned out that an increase in the converter’s out-
put voltage also increases the number of semiconductor components, thereby reducing
the converter reliability and efficiency. Among all multilevel topologies, the three-level
neutral-point-clamped (NPC) topology [23], shown in Figure 2, is the most common and
compromised solution. The NPC converter’s total DC link voltage Udc is shared between
the DC link equivalent capacitances C1, C2 in equal proportion. The converter’s positive and
negative input voltage Uan is generated when current flows through two series-connected
semiconductor modules S1a, S2a or S1a, S2a, which can be either fully controlled switches or
diodes. The zero (third) level of the PWM converted voltage Uan is generated when current
flows through fully controllable switches S1a or S2a and clamping diodes D1a or D2a.
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Figure 2. Phase leg of a three-level NPC converter. 

The next way to reduce the negative impact of semiconductor converters is to choose 
the optimal PWM algorithm. The analysis of quite a few of scientific papers and produc-
tion runs determined preprogrammed PWM (PPWM) as the primary PWM technique for 
AFEs as part of the rolling mill’s main AC RED frequency converters. The PPWM algo-
rithms switch semiconductor AFE modules according to precalculated switching se-
quences, generating an internal AFE PWM voltage with the required quality. Since its in-
ception, PPWM has aroused great research interest for controlling semiconductor 
switches of high-power AFEs at low frequencies within 150–450 Hz. The low switching 
capacity is determined by the limited semiconductor base opportunities for the rated 
power above 1 MW. An increase in the switching frequency causes overheating of the 
semiconductor modules, which, as a result, requires additional heavy-duty cooling, sig-
nificantly reducing the converter efficiency and reliability [24–26]. 

The last effective technique for reducing the negative impact of power semiconductor 
converters on the power quality, in particular, the total harmonic distortion (THD) and 
the voltage and current individual harmonic factors, is multipulse grid connection cir-
cuits. Multipulse circuits solve two important problems at once: they increase a rate power 
and improve electromagnetic compatibility. Transformers are the key multipulse circuit 
components. In 2007, Singh et al. [27] comprehensively reviewed multipulse circuits cov-
ering a lot of transformer configurations. In 2020, Jie Chen et al. [28] updated this review, 
focusing on the application of multi-winding transformer-based grid connection circuits 
in various aircraft types. However, the primary focus of the published review papers was 
only on low-power unidirectional converters based on diode rectifiers and already obso-
lete bidirectional thyristor ones. Many of the considered technical solutions are not used 
for power circuits connecting the main AC REDs of rolling mills to the grid. Currently, it 
seems more important not to consider the benefits of a particular multipulse connection 
circuit or multi-winding transformer but rather study several factors related to the choice 
of converter topology, PWM techniques, and power system parameters at once. The sci-
entific literature fails to pay enough attention to such comprehensive studies. 

The paper’s key objective is to review the latest achievements in building grid con-
nection circuits for the main AC REDs of rolling mills. The paper describes 6-, 12-, and 18-
pulse grid connection circuits and technologies applicable to these solutions. Sixty publi-
cations [1–60] were analyzed in the field of topology for building high-power PWM con-
verters, techniques, and algorithms and multipulse connection circuits. Despite the focus 
on only the circuits used in the AC REDs as the key study objective, its results are also 
suitable for other adjustable speed drive systems, static var compensators, flexible AC 
systems, and HVDC transmission lines. The results obtained are of high genericity and 

Figure 2. Phase leg of a three-level NPC converter.

The next way to reduce the negative impact of semiconductor converters is to choose
the optimal PWM algorithm. The analysis of quite a few of scientific papers and production
runs determined preprogrammed PWM (PPWM) as the primary PWM technique for AFEs
as part of the rolling mill’s main AC RED frequency converters. The PPWM algorithms
switch semiconductor AFE modules according to precalculated switching sequences, gen-
erating an internal AFE PWM voltage with the required quality. Since its inception, PPWM
has aroused great research interest for controlling semiconductor switches of high-power
AFEs at low frequencies within 150–450 Hz. The low switching capacity is determined
by the limited semiconductor base opportunities for the rated power above 1 MW. An in-
crease in the switching frequency causes overheating of the semiconductor modules, which,
as a result, requires additional heavy-duty cooling, significantly reducing the converter
efficiency and reliability [24–26].

The last effective technique for reducing the negative impact of power semiconductor
converters on the power quality, in particular, the total harmonic distortion (THD) and
the voltage and current individual harmonic factors, is multipulse grid connection circuits.
Multipulse circuits solve two important problems at once: they increase a rate power
and improve electromagnetic compatibility. Transformers are the key multipulse circuit
components. In 2007, Singh et al. [27] comprehensively reviewed multipulse circuits
covering a lot of transformer configurations. In 2020, Jie Chen et al. [28] updated this
review, focusing on the application of multi-winding transformer-based grid connection
circuits in various aircraft types. However, the primary focus of the published review
papers was only on low-power unidirectional converters based on diode rectifiers and
already obsolete bidirectional thyristor ones. Many of the considered technical solutions
are not used for power circuits connecting the main AC REDs of rolling mills to the grid.
Currently, it seems more important not to consider the benefits of a particular multipulse
connection circuit or multi-winding transformer but rather study several factors related to
the choice of converter topology, PWM techniques, and power system parameters at once.
The scientific literature fails to pay enough attention to such comprehensive studies.

The paper’s key objective is to review the latest achievements in building grid con-
nection circuits for the main AC REDs of rolling mills. The paper describes 6-, 12-, and
18-pulse grid connection circuits and technologies applicable to these solutions. Sixty
publications [1–60] were analyzed in the field of topology for building high-power PWM
converters, techniques, and algorithms and multipulse connection circuits. Despite the
focus on only the circuits used in the AC REDs as the key study objective, its results are
also suitable for other adjustable speed drive systems, static var compensators, flexible AC
systems, and HVDC transmission lines. The results obtained are of high genericity and
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can be used by researchers and engineers to provide the electromagnetic compatibility of
non-linear consumers in similar circuits and design them.

The paper is arranged in a conventional way. The introduction describes the research
object, shows the study’s relevance, and formulates goals and problems. Section 2 describes
the most common power circuits of the main AC REDs of rolling mills. Section 3 considers
and discusses the algorithms of PPWM with SHE for 6-, 12-, and 18-pulse grid connection
circuits. Section 4 provides the simulation results. Section 5 is devoted to demonstrating
the production run results. Section 6 provides the conclusion.

2. Power Circuits of the Main Electric Drives of Rolling Mills

This section will firstly consider six-pulse circuits shown in Figure 3 and used for the
main electric drives of the bar and the 1700 cold rolling mills. They are the simplest ones
and consist of a single-winding transformer, a bidirectional frequency converter with AFE
built according to a three-level neutral-point-clamped NPC topology, an output L-filter,
and an AC drive motor [29–33]. The transformer windings have zero shift between primary
and secondary voltages and are star/star (Figure 3a) or delta/delta (Figure 3b) connected.
The six-pulse circuit has significant individual current harmonic factors 6n ± 1 (n is any
positive integer). PPWM with a frequency of 350 Hz is generally used for AFE, but with
heavy-duty cooling, it can be increased up to 450 Hz. Table 1 provides the key specifications
of the considered connection circuit.
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Figure 3. Six-pulse circuits for connecting the main AC REDs of rolling mills to the grid: (a) cold-
rolling mill; (b) Bar mill.

Twelve-pulse circuits are the next most common ones. Figure 4 shows the grid connec-
tion circuits of the main electric drives of the 2000 cold and the 1750 hot rolling mills. The
12-pulse circuit has only significant individual current harmonic factors 12n ± 1. This is
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achieved through the use of a net-side phase-shift transformer with a series connection of
primary windings [34–37]. One secondary winding of such a transformer is star-connected
and another is delta-connected, thereby shifting the secondary voltage by 30◦. The sec-
ondary windings are connected to separate AFEs operating with PPWM at a frequency
of 250–350 Hz. The major requirement for harmonic mitigation in a 12-pulse circuit is a
balanced load of two AFEs. In this case, the AFE-generated harmonics factors 12n ± 1 will
have the same amplitude and mitigate in the transformer. This reduces the requirements
for additional current filtering compared to the six-pulse circuit. Note the following circuit
characteristics (see Figure 4): (1) in the transformer’s two independent magnetic systems,
a 30◦ phase shift of secondary voltages occurs, which allows reducing power losses in
the magnetic core; (2) two frequency converters have a combined DC link, which allows
maintaining a given level in the common DC bus when the transistors of one AFE are
turned off; (3) the series connection of the primary phase-shifting transformer windings
allows for equally separated the grid voltage between them. Table 1 provides the key
circuit specifications.
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connection of primary windings.

Figure 5 shows 12-pulse circuits, which can also be found in the metallurgical
rolling [38–41]. The circuit in Figure 5a is based on a single multi-winding transformer,
the secondary windings of which are connected to two AFEs with a 30◦ shift. The trans-
former’s unified magnetic system with additional losses in the magnetically conductive
steel due to mixing harmonic components is a significant drawback of this circuit compared
to that in Figure 4. Another version of the 12-pulse circuit in Figure 5b is based on two
single-winding transformers connected in parallel, the secondary windings of which are
connected to two AFEs. This circuit has another significant drawback compared to the
previous ones, i.e., higher transformer cost, larger weight, and size parameters.
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single-winding transformers connected in parallel.

The last widely spread option in the list is the 18-pulse connection circuit. It is exem-
plified in Figure 6 by the main electric drive of the 5000 hot rolling mill. The 18-pulse circuit
is based on three transformers with 0◦, 20◦, and −20◦ phase shifts, connected in parallel,
which allows mitigating all current harmonic factors except for 18n ± 1 [42–46]. Therefore,
18-pulse circuits have a better quality of the consumed grid current than 6- and 12-pulse
ones. The secondary windings of the 18-pulse circuit transformers are connected to three
AFEs operating with PPWM at a frequency of 250 Hz. The first harmonic primary voltage
vectors are shifted by ±20◦ relative to the secondary ones by the polygonal connection of
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the transformers’ primary windings while dividing them into two sections providing these
sections are electrically connected, and additional phase magnetic fluxes are oppositely
directed. The ratio between the primary winding sections is as follows: 65 and 35% of the
total turn number falls, respectively, on the larger and smaller parts. Full harmonics mitiga-
tion in the 18-pulse circuit is only possible with a balanced load of three AFEs. Compared
to 6- and 12-pulse circuits, the requirements to additional filtering are further reduced.
Table 1 provides the key specifications of the circuit in Figure 6, and its characteristics are
as follows: (1) independent magnetic systems of three transformers allow reducing losses
in the magnetic circuits; (2) the electric drive can keep working for some time with two of
the three AFEs.
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Figure 7 shows the 18-pulse connection circuit for the main electric drives of the
2000 cold-rolling mill. Table 1 provides the key connection circuit specifications. This
18-pulse circuit is based on a multi-winding phase-shift transformer with a series connection
of primary windings. The ±20◦ shift of the transformer’s secondary voltages is formed
by their zigzag connection. Note the following characteristics of the circuit in Figure 7: (1)
a single combined DC link is used to power four electric drives at once by connecting to
several voltage inverters while providing the 18-pulse circuit powers each motor; (2) the
phase-shifting transformer primary windings connected in series allow equally distributing
the grid voltage between them.
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Figure 7. Eighteen-pulse grid connection circuit for the main electric drive of the 2000 cold-rolling
mill based on a multi-winding phase-shift transformer with series connection of primary windings.

Table 1. Key specifications of the grid connecting circuits of the main AC RED of rolling mills.

Figure
Number

AFE Drive Power
SAFE, kVAR

Transformer Power
St, kVAR Connection 1st/2nd Transformer

Voltage, kV
PPWM Average

Frequency

Figure 3a 12,000 12,000 star/star

10/3.3 250–350
Figure 3b 14,000 14,000 delta/delta

Figures 4 and 5 12,000 12,000 star/delta-star

Figure 6 18,000 20,000 delta/delta;
delta/double polygon

Figure 7 18,000 18,000 star/delta-double zigzag
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3. PPWM with SHE

It is known that the converted voltage quality of semiconductor converters is primarily
determined by the PWM algorithm. An analysis of the scientific and technical literature
and experimental data obtained on operating equipment has determined the PPWM with
selective harmonic elimination (PPWM with SHE) technique as the major one for three-level
AFEs as part of frequency converters for the main AC REDs of rolling mills. PPWM with
SHE is particularly efficient at a low switching frequency as part of multipulse circuits. In
PPWM with SHE, semiconductor AFE modules are switched according to preprogrammed
switching sequences depending on the required converter voltage spectrum, from which
harmonics most adversely affecting the current quality are completely eliminated [47–50].

PPWM with SHE algorithms switch semiconductor converter modules at predeter-
mined time instants using N number of precalculated switching angles α1, α2, . . . , αN
per quarter of the period (under the condition of quarter-wave symmetry) of the PWM
converted voltage within the range from 0 to π/2, where 0 < α1 < α2 < . . . < αN < π/2.
The output voltage waveform allows equating the constant component, even harmonics,
and sinusoidal factors of odd harmonics to zero when expanded into a Fourier series and
writing the mathematical equation for the PWM converted voltage of a three-level AFE
as follows

u(ωt) =
∞

∑
n=1,3,5,...

(
4

nπ

[
N

∑
k=1

(−1)k+1 cos(nαk)

]
· sin(nωt)

)
, (1)

where N is the switching angle number; k is the switching angle serial number from 1 to N.
The maximum number of switching angles N can be defined as

N =
fswave

f
, (2)

where fswave is the average frequency of PWM with SHE; f is the three-level AFE PWM
converted voltage frequency.

The equation determining the relationship between the switching angles and the
harmonic spectrum of three-level AFE PWM converted voltage has the form{

U1 = ∑N
k=1 (−1)k+1 · cos(αk) =

π
4 · M

Un = π
4 · ∑N

k=1 (−1)k+1 · cos(n · αk) = 0
, (3)

where n = 5, 7, 11, . . . ; U1 is the fundamental harmonic level; Un is the n-th harmonic level;
M is the modulation index in the interval [0 4

π ].
The system (3) successful solution largely depends on the correct choice of the numeri-

cal solution method and setting the initial conditions (switching angles) [56–60]. To find
the latter, the following equations are used

α0
2k−1 = 30◦ + 120◦ · k/(N + 1)− ∆α

α0
2k = 30◦ + 120◦ · k/(N + 1) + ∆α

α0
N = 90◦ − ∆α

, (4)

where N is the number of switching angles; k = 1, 2, . . . , (N − 1)/2 is the switching angle
serial number; ∆α = 0, . . . , 10 is the initial mismatch of switching angles to achieve the best
solution results.

By Equation (4) for the aforementioned 6-, 12-, and 18-pulse grid connection circuits,
the initial conditions, given in Table 2, and switching patterns of semiconductor modules
with a smooth downward trend, shown in Figure 8, were calculated within the modulation
index range from 0.7 to 1.15.
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Figure 8. PPWM switching patterns for 6-, 12-, and 18-pulses connection circuits with SHE: (a) 5 and 

7; (b) 5, 7, 11, and 13; (c) 5, 7, 11, 13, 17, and 19; (d) 11 and 13; (e) 5, 7, 11, 13, 23, and 25; (f) 17 and 19; 

(g) 5, 7, 17, and 19; and (h) 5, 7, 17, 19, 35, and 37. 

  

Figure 8. PPWM switching patterns for 6-, 12-, and 18-pulses connection circuits with SHE: (a) 5 and
7; (b) 5, 7, 11, and 13; (c) 5, 7, 11, 13, 17, and 19; (d) 11 and 13; (e) 5, 7, 11, 13, 23, and 25; (f) 17 and 19;
(g) 5, 7, 17, and 19; and (h) 5, 7, 17, 19, 35, and 37.
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Table 2. The initial switching angle calculation results for 6-, 12-, and 18-pulse circuits.

Connection Figure
Number

Eliminated
Harmonics

Initial Angles

α1 α2 α3 α4 α5 α6 α7

6—pulse
Figure 8a 5 and 7 59.7 60.3 89.7
Figure 8b 5, 7, 11, and 13 49.7 50.3 69.7 70.3 89.7
Figure 8c 5, 7, 11, 13, 17, and 19 44.7 45.3 59.7 60.3 74.7 75.3 89.7

12—pulse
Figure 8d 11 and 13 35 55 80
Figure 8b 5, 7, 11, and 13 65.5 66.5 77.5 78.5 89.5
Figure 8e 5, 7, 11, 13, 23, and 25 53.5 54.5 65.5 66.5 77.5 78.5 89.5

18—pulse
Figure 8f 17 and 19 74.7 75.3 89.6
Figure 8g 5, 7, 17, and 19 59.7 60.3 74.7 75.3 89.7
Figure 8h 5, 7, 17, 19, 35, and 37 55.2 56.2 63.8 64.8 72.3 73.3 89.5

4. Simulation Results

The analysis of the transformer’s primary and secondary winding currents is of interest
in terms of comparing the impacts 6-, 12-, and 18-pulse circuits have on the grid. For the
sake of direct and proper comparison, simulation was performed with the same AFE
rated power, transformer’s primary and secondary winding resistance, grid parameters,
modulation indices, and the patterns of PPWM with SHE, shown in Figure 8. The simulation
was conducted for the circuit power consumption of 2 MW, the grid voltage of 10 kV with
a frequency of 50 Hz, the DC voltage of 5020 V, and the modulation index of 1.05. The
simulation transformers parameters are shown in Table 3, where Usc is an impedance
voltage. The phase currents of the grid and the transformer’s secondary winding with a
harmonic spectrum are shown in Figures 9–15 and the THD values up to the 60th harmonic
component are recorded in Table 4.

Table 3. Transformers parameters.

Grid Connection S, kVAR U1, V U2, V I1, A I2, A Usc, %

6-pulse (Figure 3a) 12,000 10,000 3300 693 2189 16

12-pulse (Figure 4) 12,000 10,000 3300 638 1099 14.6

18-pulse (Figure 7) 12,000 10,000 3300 689 675 15
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Figure 10. Simulating the current waveform and spectrum in a 12-pulse connection circuit at PPWM 
with SHE with the 11th and 13th harmonics eliminated: (a) the transformer’s secondary winding; 
(b) Grid. 

Figure 9. Phase current waveform with harmonic spectrum and THD for 6-pulse connection circuit
at PPWM with SHE: (a) 5 and 7; (b) 5, 7, 11, and 13; (c) 5, 7, 11, 13, 17, and 19.
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with SHE with the 11th and 13th harmonics eliminated: (a) the transformer’s secondary winding;
(b) Grid.
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Figure 11. Simulating the current waveform and spectrum in a 12-pulse connection circuit at PPWM 
with SHE with the 5th, 7th, 11th, and 13th harmonics eliminated: (a) the transformer’s secondary 
winding; (b) grid. 
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Figure 12. Simulating the current waveform and spectrum in a 12-pulse connection circuit at PPWM 
with SHE with the 5th, 7th, 11th, 13th, and 23rd harmonics eliminated: (a) the transformer’s second-
ary winding; (b) grid. 

0.4 0.405 0.41 0.415 0.42 0.425 0.43 0.435
Time (s)

−500

0

500

 
0.4 0.405 0.41 0.415 0.42 0.425 0.43 0.435

Time (s)

−200

0

200

 
THD= 118.14%

0 10 20 30 40 50 60
Harmonic order

0

20

40

60

80

100

120

 

THD= 6.57%

0 10 20 30 40 50 60
Harmonic order

0

1

2

3

4

5

 
(a) (b) 

Figure 13. Simulating the current waveform and spectrum in an 18-pulse connection circuit at 
PPWM with SHE with the 17th and 19th harmonics eliminated: (a) the transformer’s secondary 
winding; (b) grid. 

Figure 11. Simulating the current waveform and spectrum in a 12-pulse connection circuit at PPWM
with SHE with the 5th, 7th, 11th, and 13th harmonics eliminated: (a) the transformer’s secondary
winding; (b) grid.
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winding; (b) grid.
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with SHE with the 17th and 19th harmonics eliminated: (a) the transformer’s secondary winding;
(b) grid.
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Figure 14. Simulating the current waveform and spectrum in an 18-pulse connection circuit at 
PPWM with SHE with the 5th, 7th, 17th, and 19th harmonics eliminated: (a) the transformer’s sec-
ondary winding; (b) grid. 
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Figure 15. Simulating the current waveform and spectrum in an 18-pulse connection circuit at 
PPWM with SHE with the 5th, 7th, 17th, 19th, 35th, and 37th harmonics eliminated: (a) the trans-
former’s secondary winding; (b) grid. 

Table 3. Transformers parameters. 

Grid Connection S, kVAR U1, V U2, V I1, А I2, А Usc, % 
6-pulse (Figure 3a) 12,000 10,000 3300 693 2189 16 
12-pulse (Figure 4) 12,000 10,000 3300 638 1099 14.6 
18-pulse (Figure 7) 12,000 10,000 3300 689 675 15 

Table 4. Comparative analysis of currents in 6-, 12-, and 18-pulse circuits at the modulation index 
of 1.05. 

Connection Figure Number PPWM Frequency, 
Hz 

Eliminated Harmonics THD of Grid Cur-
rent, % 

THD of AFE 
Current, % 

6-pulse 
Figure 9a 150 5 and 7 51.92 51.92 
Figure 9b 250 5, 7, 11, and 13 40.23 40.23 
Figure 9c 350 5, 7, 11, 13, 17, and 19 30.26 30.26 

12-pulse Figure 10 150 11 and 13 16.54 113.91 

Figure 14. Simulating the current waveform and spectrum in an 18-pulse connection circuit at PPWM
with SHE with the 5th, 7th, 17th, and 19th harmonics eliminated: (a) the transformer’s secondary
winding; (b) grid.
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Table 4. Comparative analysis of currents in 6-, 12-, and 18-pulse circuits at the modulation index
of 1.05.

Connection Figure Number PPWM Frequency, Hz Eliminated
Harmonics

THD of Grid
Current, %

THD of AFE
Current, %

6-pulse
Figure 9a 150 5 and 7 51.92 51.92
Figure 9b 250 5, 7, 11, and 13 40.23 40.23
Figure 9c 350 5, 7, 11, 13, 17, and 19 30.26 30.26

12-pulse
Figure 10 150 11 and 13 16.54 113.91
Figure 11 250 5, 7, 11, and 13 12.44 34.18
Figure 12 350 5, 7, 11, 13, 23, and 25 9.78 32.96

18-pulse
Figure 13 150 17 and 19 6.57 118.4
Figure 14 250 5, 7, 17, and 19 5.09 42.01
Figure 15 350 5, 7, 17, 19, 35, and 37 4.26 43.94
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Based on the simulation results, the following conclusions can be drawn:

(1) As expected, the six-pulse circuit showed the worst grid current THD of 51.92% at the
lowest PPWM with SHE frequency of 150 Hz with the elimination of two significant
fifth and seventh harmonics (Figure 9a). Increasing the frequency to 250 Hz (Figure 9b)
and then 350 Hz (Figure 9c) allowed significantly reducing the grid current THD;
however, the results were several times worse than with 12- and 18-pulse circuits.
The transformer’s secondary winding current simulation results are not provided for
a six-pulse connection circuit since the transient process nature is the same as that
shown in Figure 9.

(2) At the PPWM with SHE frequency of 150 Hz with two significant 11th and 13th
harmonics eliminated (Figure 10a), a 12-pulse circuit demonstrates a significantly
better grid current THD (16.54%) than a 6-pulse one. However, the transformer’s
secondary winding current THD (Figure 10b) is 113.91%, which is approximately twice
as high as with the six-pulse circuit. Note that with an increase in the PPWM with
SHE frequency by 100 Hz with additionally eliminated fifth and seventh harmonics,
the grid current and the transformer’s secondary winding current THDs decreased
sharply by 15% and 4 times, amounting to 12.44% (Figure 11a) and 34.18% (Figure 11b),
respectively. Increasing the PPWM with SHE frequency up to 350 Hz with the 5th,
7th, 11th, 13th, 23rd, and 25th harmonics eliminated (Figure 12a) expectedly provides
the most favorable grid current THD in a 12-pulse circuit; however, the transformer’s
secondary winding current THD has not changed noticeably (Figure 12b).

(3) At the PPWM with SHE frequency of 150 Hz with two significant 17th and 19th har-
monics eliminated, the 18-pulse circuit, similarly, demonstrates a poor transformer’s
secondary winding current THD of 118.17% (Figure 13a). However, the grid current
THD is only 6.57% (Figure 13b), which is a very good result for a frequency of 150 Hz.
With an increase in the PPWM with SHE frequency by 100 Hz with additionally
eliminated fifth and seventh harmonics, we can see that the transformer’s secondary
winding current and the grid current THDs decrease sharply by three times and 15%
to 42.01% (Figure 14a) and 5.09% (Figure 14b), respectively. Increasing the PPWM with
SHE frequency up to 350 Hz with the 5th, 7th, 17th, 19th, 35th, and 37th harmonics
eliminated results in the grid current THD of 4.26% (Figure 15a), which, as expected,
is the best result obtained.

(4) The 18-pulse circuit, other things being equal, allows reducing the grid current THD by
two and five-to-seven times compared to the 12-pulse and 6-pulse circuits, respectively.

(5) Eliminating the fifth and seventh harmonics not only improves the transformer’s
secondary winding current THD in the 12- and 18-pulse connection circuits but also
affects positively the grid current quality.

5. Experimental Results

Theoretical results have been compared with experimental data obtained in the sys-
tems of the internal grid of a metallurgical enterprise with powerful AC REDs. The
industrial transformer parameters are in Table 5.

Table 5. Transformers parameters.

Grid Connection S, kVAR U1, V U2, V I1, A I2, A Usc, %

6-pulse (Figure 3a) 12,000 10,000 3300 693 2189 16

12-pulse (Figure 4) 12,000 10,000 3300 638 1099 14.6

The instantaneous grid current values were recorded using the ELSPEC G4420 power
quality analyzer with the possibility of long-term multichannel recording of instantaneous
voltage and current values with a high sampling rate. The record sampling rate was 20 kHz.
Figures 16 and 17 show the instantaneous grid phase current values and their spectra for
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the 6- (Figure 16) and 12-pulse (Figure 17) connection circuits, specifying the THD values
calculated for a frequency range from 0 to 3000 Hz (up to the 60th harmonic).
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According to Figure 16, the measured grid current THD value in the six-pulse circuit is
33.38%, which is very close to the simulation results (30.23%, see Figure 9c). An experimen-
tal test of the grid current in the 12-pulse circuit in Figure 17 (13.61%) also showed good
convergence with similar simulation results (12.44%, see Figure 11b). The mathematical
model parameters of the transformers correspond the industrial transformer parameters.

6. Conclusions

The paper’s key outcomes and contribution can be summarized as follows:

(1) The paper reviews the most commonly used grid connection circuits for the main AC
REDs of rolling mills. Their advantages and drawbacks, basic components and their
characteristics, and three-level AFE’s PPWM with SHE algorithms are provided. It is
shown that the converters topologies and the PPWM with SHE algorithms should be
considered when building the considered power circuits,

(2) Simulation was performed under the same conditions to objectively estimate and
compare the spectra and current THDs of the three-level AFE’s 6-, 12-, and 18-pulse
connection circuits with various PPWM with SHE algorithms, which was not carried
out in previously published studies,
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(3) The comparison results are shown for the powerful AC RED 6-, 12-, and 18-pulse
connection circuits with various three-level AFE’s PPWM with SHE algorithms. The
results can be used to choose the optimal connection circuit and algorithm,

(4) The experimental data confirm the observations and conclusions provided in this review,
(5) Based on a literature review, simulation results, and experimental data, recommenda-

tions are suggested for choosing PPWM with SHE algorithms for three-level AFEs as
part of multi-pulse connection circuits. The results described are of high genericity and
can be used by researchers and engineers for designing or performing similar studies
in other circuits to provide the electromagnetic compatibility of non-linear consumers.
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