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Abstract: A novel energy-saving hybrid cooling system that combines a forced-cooling cycle and a
free-cooling cycle was developed to increase the energy efficiency of cooling systems in year-round
operation of an internet data center with high heat loads. This system effectively utilizes a dam deep
water source to reduce energy consumption in internet data centers. The hybrid cooling system
operates in forced-cooling mode when the entering water temperature exceeds the mode change
temperature of 9 ◦C, but switches to free-cooling mode when the ambient temperature falls below the
mode change temperature. In this paper, the cooling performance of the hybrid system was assessed
under various operating conditions based on entering water temperature fluctuation. Because the
cooling effectiveness of this type of system is highly dependent on the outside climate, its usefulness
and suitability for different periods and zones must be investigated. The annual energy saving
performance of the new system was estimated and compared to a conventional cooling system in
terms of the integrated coefficient of performance, based on the hourly weather air temperature and
water temperature bin data collected from 16 cities of different climate zones in South Korea. The
experimental findings revealed that the novel hybrid internet data center cooling system showed a
67% annual operating performance over a conventional air source internet data center cooling system
due to the adoption of a dam deep water source.

Keywords: internet data center; novel hybrid system; free cooling mode; forced cooling mode; ICOP

1. Introduction

Internet data center (IDC) refers to a complex infrastructure that accommodates infor-
mation technology (IT) and electronic equipment, cooling, and power systems to collect,
store, process, and transmit massive amounts of data for economic and social networking.
The IDC facility serves as a secure and reliable working environment to ensure better
performance and stability of IT equipment [1,2].

As a consequence of the rapid optimization of electronic components coupled with
the daily demanding operation of the IDC for cloud service, a significant amount of heat
is discharged by the electronic devices, raising the facility’s temperature and potentially
affecting the performance of the IT equipment [3]. Therefore, an energy-efficient cooling
system is required to withdraw the heat produced to ensure efficient thermal management
and the reliable and safe working condition of the IDC by controlling air temperature,
humidity, and particle density within the facility. The cooling system must have a stable
and efficient cooling capacity to operate throughout the year [3,4]. According to reports and
studies in open literature, cooling systems account for 30–50% of total energy consumption
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in a typical IDC infrastructure; therefore, lowering cooling energy consumption is critical
to reducing the overall energy consumption in an IDC [5,6].

The conventional air source IDC cooling system requires a constant power supply for
year-round cooling [7]. The inefficient energy performance of these traditional cooling sys-
tems encourages system design engineers to research sustainable solutions to optimize the
overall performance of the IDC [8]. With the increasing demand for server performance, the
energy efficiency and reliability of high-density data centers are improving through hybrid
cooling systems integrating free-cooling technology and mechanical vapor compression
refrigeration systems [9]. Free-cooling technology removes heat from the interior by using
natural free sources (air or water). If the IDC is completely cooled using a free-cooling
cycle, the operating hours of vapor compression refrigeration can be reduced or turned off,
resulting in lower energy consumption and improved power usage effectiveness (PUE) [10].

Most of the studies conducted on the hybrid cooling system for IDCs have focused
on the utilization of air-source. However, studies on IDC hybrid cooling systems utilizing
natural cold water as a common heat source for both free-cooling and forced-cooling
are very limited in open literature. With the improvement of IT equipment, and the
increasing number and size of IDCs, there has been a challenge in utilizing air as a heat
source to meet the cooling requirements of electronic chips and servers [3]. Therefore,
to enhance the cooling performance and reliability of the hybrid cooling system, this
paper proposed a novel IDC hybrid cooling system operating in two modes: free-cooling
mode and forced-cooling mode utilizing a deep water source from a dam as a heat sink.
Furthermore, a quantitative analysis is carried out to investigate the performance of the
proposed cooling system according to the variation of deep-water source temperature
(entering water temperature). Finally, the energy consumption of the new system is
evaluated and compared with that of a conventional cooling system in a selected region.
The use of circulating natural water is anticipated to help reduce energy consumption of
the cooling system by reducing the operating hours of the vapor compression mode as
compared to the conventional cooling system; therefore, the PUE, which considers power
usage in the data center without external energy input or output, is predicted to improve
due to the improvement in energy savings for the novel hybrid cooling system.

2. Literature Review

As mentioned previously, increasing the efficiency of the application of the IDC
cooling system is a critical concern. Most integrated cooling systems adopt air as a natural
heat source to investigate the performance according to variations of the outdoor (OD)
temperature. Wang et al. [11] proposed a predictive control model to explore the energy
savings potential of hybrid cooling technology for telecommunication stations. The hybrid
cooling system operates in both ventilation cooling mode and air conditioning cooling mode.
Han et al. [12] built a model to predict the transient performance of a hybrid evaporative
cooling system with heat pipe. The results showed that the innovative integrated cooling
system had a better energy efficiency, a reduction of 31.31% of energy consumption, and a
gain of 29.49% of the coefficient of performance (COP) as a result of the implementation of
the evaporative condenser. Zhang et al. [9] developed an energy consumption model for
data centers using a hybrid system of thermosyphon-free cooling and vapor compression
refrigeration; they discovered that the hourly energy usage varies with OD temperature
and is significantly lower in the winter.

Yan et al. [8] presented a new energy-saving cooling system for data centers that in-
corporates a liquid refrigerant pump cycle and a vapor compressor cycle. When the
ambient temperature is quite low, it was discovered that the hybrid cooling system
has a greater energy efficiency ratio (EER) than the typical vapor compression system.
Sun et al. [13] designed and experimentally tested an integrated cooling system for data
centers. The system operates in three different modes: vapor compression mode, dual
refrigeration mode, and heat pipe mode, according to OD temperature variation. Their
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study noted that the lower the OD air temperature, the greater the reduction in its annual
energy use.

Liu et al. [14] conducted an analytical study on the energy-saving potential of a
designed heat pipe-dew point evaporative cooler hybrid cooling system utilizing natural
cold air as heat source and compared it to a traditional vapor compression refrigeration
system. The results demonstrated that the optimum hybrid refrigeration system has average
annual COP of 3.3 and 3.4, resulting in yearly energy savings of more than 90% compared
to vapor compression refrigeration. Wang et al. [7] suggest a data center hybrid cooling
system that combines a heat pipe cooling cycle and a vapor compression cycle that operates
in response to variations in ambient temperature. Ma et al. [15] experimentally investigated
a cooling system that integrated a vapor compression cycle and refrigerant pump-driven
two-phase cycle for a data center to evaluate the energy efficiency ratio in both modes.
Meng et al. [16] developed a novel hybrid system and measured its performance and energy
consumption for a 5G telecommunication base station.

For the application of OD cold water as a heat source for IDC hybrid system,
Wang et al. [17] developed a model to experimentally analyze the reliability and oper-
ational availability of a hybrid cooling system in Chenzhou, China, that uses cold lake
water to cool the data center. The authors concluded that in free-cooling mode, the lake
water sink can fully recover the cooling load, and the overall system’s failure rate lowers
by 64.22%, giving it a greater reliability performance than a traditional chiller cooling
system. In addition, Wang et al. [18] looked at the effects of various faults on the control
performance of the data center water-source hybrid cooling system in Chenzhou, China.

3. Experimental Setup and Procedure

Figure 1 is a schematic of the conventional IDC cooling system that runs on a vapor
compression cycle. It consists of a compressor, electronic expansion device (EEV), fin type
heat exchangers for evaporator, and condenser units. The packaged indoor (ID) system
consists of the compressor, EEV, and evaporator, while the condenser makes up the OD
unit. The refrigerant R407C used in this system serves as the primary fluid, while the ID
and OD air serve as the source and sink secondary fluids, respectively. The cycle operates
in cooling mode annually irrespective of the OD air temperature changes. The refrigerant
absorbs heat from the data center via the evaporator, changes phase to saturated vapor, and
rejects the absorbed heat to the OD air via the condenser. During operation, the refrigerant
absorbs heat from the data center ID space via the evaporator, changes phase to saturated
vapor, and rejects the absorbed heat to the OD air via the condenser. It changes phase to
saturated liquid and the cycle repeats.

Figure 2 shows the schematic diagram of the novel hybrid IDC cooling system uti-
lizing a deep water source from a dam. The hybrid IDC cooling system operates in two
modes—namely, forced-cooling and free-cooling—according to the entering water temper-
ature. The forced-cooling mode consists of a multifunction heat exchanger operating as an
evaporator, a plate heat exchanger operating as a condenser, a compressor, and an electronic
expansion valve. A constant temperature bath representing a deep-water source from a
dam and a pump to circulate the water from the bath is used in the study. In forced-cooling
mode, refrigerant R407C absorbs heat from the IDC space and enters the compressor at a
superheated state, where it is compressed to a high temperature-high pressure state. The
refrigerant then rejects the heat in the plate heat exchanger with the circulating water from
the bath. It is subcooled, then expands through the expansion valve and to the evaporator.
The water is circulated through the plate heat exchanger as the secondary fluid to exchange
heat with the refrigerant flowing through the plate heat exchanger. The solid black and red
line represents the refrigerant line and secondary water loop, respectively. In free-cooling
mode, the water is circulated directly through the multifunction evaporator to exchange
heat directly with the ID air. The free-cooling mode only utilizes the circulating pump and
multifunction heat exchanger for heat exchange. The dotted line represents the water flow
loop for the free-cooling mode.
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Figure 2. Schematic diagram for a hybrid cooling system that uses dam water for data centers.

The experiments were carried out in a psychrometric chamber according to
ISO 1356-2 [19], at standard test conditions for a water-source heat pump. ANSI/ASHRAE
standard 127 [20] and AHRI standard 1361 [21] were used to calculate the performance
rating of the data center cooling system and the air enthalpy capacity, respectively. The
performance of the system was measured under various ID and OD air temperature condi-
tions and at entering water temperature (EWT). The air handling unit (AHU) was used to
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set the required temperatures in the ID room, while refrigeration and heating units were
used for the water bath. The flow rate of air across the evaporator was measured by an air
flow chamber according to the ANSI/AMCA 210 [22] standard, while a mass flow meter
was used to measure the rate of water flowing across the plate heat exchanger. Temperature
and pressure sensors were also set to measure experimental data at various points of the
system. Steady state was maintained for 30 min, and the Yokogawa MX100 data logger was
used to record average data after every 5 min. The optimum refrigerant charge test for the
forced-cooling mode, operating on the vapor compression cycle, was first determined at
standard rated conditions of 35 ◦C and 26.7 ◦C OD and ID temperatures, respectively, at a
water flow rate of 42 lpm, according to the AHRI 1361 Standard for Performance Rating
of Computer and Data Processing Room Air Conditioners [21]. The refrigerant charge
corresponding to the highest COP was 2.8 kg at a water flow rate of 42 L per minute (lpm),
and this was determined as the optimum refrigerant charge of the forced-cooling mode
system. Performance characteristics of the forced- and free-cooling mode according to the
entering water temperature (EWT) across an annual temperature condition was analyzed
and compared with the conventional IDC cooling system performance. Specifications for
test unit components and sensors are shown in Tables 1 and 2, respectively. Table 3 shows
the test condition range of the experiments conducted, and Figure 3 shows a flow chart of
the experimental procedure.

Table 1. Specification of both conventional and hybrid test unit.

Components Type Specifications

Compressor Scroll 3.5 kW
Evaporator

(Multi-function HX)
Fin-tube heat exchanger

Countercurrent flow 15 kW

Condenser Fin-tube heat exchanger
Countercurrent flow 20 kW

Plate HX Kaori plate HX
Max. working temperature:

200 ◦C
Max. working pressure: 30 bar

Expansion device
Pump

Electronic expansion valve
Centrifugal pump Step motor-driven (500 steps)

Table 2. Sensor specification.

Sensors
Specification

Manufacturer Model or Type Accuracy

Pressure transducer Setra System Inc. C206 ±0.13% of reading
Thermocouple Omega T-type ±0.2 °C

RTD Watlow A class ±0.05 °C
Volumetric flow rate Madger meter Magnetic ±0.5% of reading

Power meter Yokogawa WT 330 ±0.1% of the full range

Table 3. Test Conditions.

Parameters Conventional Cycle Forced-Cooling Mode Free-Cooling Mode

ID
DB (°C) 26.7 19.4 26.7 19.4 26.7 19.4
WB (°C) 21.1 15.6 21.1 15.6 21.1 15.6

OD
DB (°C) 30.6, 26.7, 16.7, 12, 7 - -
WB (°C) 24, 15.6, 6

EWT (°C) 30, 25, 15, 10, 7 13, 10, 9, 8, 7
EEV 6 °C 6 °C -
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The air enthalpy method was used to calculate the cooling capacity Q, which is
determined by the mass flow rate of air, ma, and the difference in the enthalpies of the inlet
and outlet, ha, in and ha, out, respectively, of air temperatures to the evaporator, as shown in
Equation (1). The power input for the forced-cooling mode is comprised of the compressor,
fans, and circulating pump power. The total power input for forced-cooling is shown in
Equation (2). The power input for the free-cooling mode was by the circulating pump
and fans and is shown in Equation (3). The COP relation for both modes was calculated
according to Equation (4), with Wtotal (forced, free) representing total power for either forced-
or free-cooling.

Q = ma ∗ (ha, out − ha, in) (1)

Wforced, total = Wcompressor + Wcond fan + Wevap fan + Wpump (2)

Wfree, total = Wevap fan + Wcond fan + Wpump (3)

COP =
Q

Wtotal(forced, free)
(4)

The uncertainty analysis for the cooling capacity and COP was calculated according
to the ASHRAE Standard 127 [20], with uncertainties for the capacity at 2.5%, 2.54%, and
2.86%, while COP uncertainties are 2.96%, 3.01%, and 3.23% for the conventional system,
forced- and free-cooling, respectively (Table 4).

Table 4. Uncertainty analysis of experimental data.

Parameter
Uncertainty According to Operating Mode %

Conventional Forced-Cooling Free-Cooling

COP 2.96 3.01 3.23
Capacity 2.5 2.54 2.86

4. Experimental Results and Discussion
4.1. Performance Characteristics of an Air Source Conventional IDC Cooling System

The performance characteristics of an optimized air source conventional ID cooling
system was used in this study for the purpose of comparison to the novel hybrid IDC
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cooling system utilizing a deep water source from a dam. The conventional system was
operated in cooling mode throughout the year at an annual optimized refrigerant charge of
9.7 kg, based on the integrated coefficient of performance (ICOP) method as undertaken by
Anka et al. [23]. The performance parameters COP, cooling capacity, and power consump-
tion for the conventional IDC cooling system according to the annual OD air temperature
is shown in Figure 4.
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From the graph, the COP and cooling capacity of the system increases with increases
in OD temperature, while the power consumption decreases. The decrease in OD air
temperature increases the mean temperature difference across the condenser of the cooling
system, and this increases the heat rejection rate across the condenser between the refriger-
ant and secondary air fluid. This results in an increase in subcooled refrigerant, as shown in
Figure 5. The condensing and evaporating temperatures decrease as a result, from Figure 6,
hence the mean temperature difference across the evaporator coupled with the subcooled
refrigerant results in an increase in cooling capacity. The cooling capacity increases from
15.24 kW to 20.86 kW as the OD air temperature decreases from 35 ◦C to −2 ◦C.
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The power consumption rate decreases as the OD air temperature decreases due
to the decrease in the condensing temperature and pressure of the cooling system. The
refrigerant mass flow rate, as shown in Figure 7, along with the compression ratio across the
compressor reduces, resulting in a decrease in the power consumption of the conventional
IDC cooling system as the OD air temperature decreases. As the OD air temperature
decreases from 35 ◦C to −2 ◦C, the power consumption decreases from 4.89 kW to 2.76 kW.
The overall COP of the system increases as a result of the increase in cooling capacity and
the decrease in power consumption. The COP increases from 3.11 to 7.57 as the OD air
temperature decreases from 35 ◦C to −2 ◦C.
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4.2. Performance Characteristics of a Hybrid IDC Cooling System Utilizing Deep Water Dam Source
4.2.1. Hybrid IDC Cooling System Utilizing Deep Water Dam Source Forced-Cooling Mode

The increase in EWT at a fixed flow rate results in a decrease in cooling capacity, as
shown in Figure 8. This effect is a result of the decrease in the heat transfer rate between
the refrigerant and secondary air temperature around the evaporator, as shown in Figure 9.
This is due to the decrease in the mean temperature difference between the refrigerant and
the higher EWT to the plate heat exchanger, resulting in an increase in evaporating and
condensing temperatures, as shown in Figure 10. As the EWT decreases at a fixed flow
rate, however, the mean temperature difference between the refrigerant and secondary
fluid across the plate heat exchanger increases, resulting in a decrease in condensing and
evaporating temperatures, as shown in Figure 10. This increases the mean temperature
difference across both the plate heat exchanger and the evaporator, resulting in more heat
rejection and absorption, respectively, and an increase in cooling capacity. The refrigerant
mass flow rate, however, is fairly constant for both cases due to the superheat condition
being maintained at a fixed temperature, and its effect on the cooling is masked by the
temperature difference across the heat exchangers.

Comparing the cooling capacity of the novel hybrid IDC cooling system to the conven-
tional cooling system, the cooling capacity at a fixed EWT to that of a corresponding OD
air temperature showed the forced-cooling mode of the hybrid IDC cooling system cooling
capacity to be higher than the conventional IDC cooling system. For both systems, the
decrease in OD temperature conditions showed an increase in cooling capacity. However,
the heat transfer rate for the forced-cooling mode across the plate heat exchanger was
higher than that of the condenser for the conventional system due to the higher evaporative
cooling effect of the water over the ambient air. At a similar lower relative humidity,
water has a colder effect than ambient air; hence, a higher heat rejection rate across the
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plate heat exchanger is observed, and this increases the degree of subcooling in the hybrid
cooling system, further reducing the evaporating temperature across the evaporator and
increasing cooling capacity. As the OD temperatures decreased from 30 ◦C, 25 ◦C, 15 ◦C,
10 ◦C, and 7 ◦C, the cooling capacity percentage difference between the novel hybrid IDC
cooling system and conventional IDC cooling system was 1.82%, 3.37%, 3.5%, 2.9%, and
2.4%, respectively.
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Figure 9. HX temperature comparison for novel hybrid IDC cooling and conventional IDC
cooling system.

The power consumption, as shown in Figure 11, increased with the increase in EWT to
the plate heat exchanger. This effect is a result of the increase in condensing pressure, which
affects the refrigerant mass flow rate increase. The evaporating pressure increases alongside
the condensing pressure. However, the rate of increase for the condensing pressure is much
higher, as well as the temperature. Hence, the compression ratio across the condenser
increases significantly, resulting in the higher power draw of the compressor. The decrease
in EWT to the system, however, showed a reduced power draw due to the reduction of
the saturated pressures and temperature. The added increase to the system’s total power
stems from the circulating pump power input addition.
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Figure 11. Power consumption comparison for novel hybrid IDC cooling and conventional IDC
cooling system.

In the operation of the vapor compression cycle for the forced-cooling mode for
the novel IDC cooling system and conventional IDC cooling system, the condensing
and evaporating temperatures showed lower values as the OD temperatures decreased.
However, the novel hybrid IDC cooling system showed lower values than that of the
conventional IDC cooling system due to the higher heat rejection rate in the plate heat
exchanger. The decrease in the saturated temperatures and the refrigerant mass flow rate
resulted in a relatively lower compression ratio across the compressor and a lower power
draw for the novel hybrid cooling. However, the addition of the pump power to the overall
power consumption of the novel hybrid cooling system resulted in an overall system power
increase over the conventional IDC cooling system. As the OD temperatures decreased
from 30 ◦C, 25 ◦C, 15 ◦C, 10 ◦C, and 7 ◦C, the power consumption percentage difference
between the novel hybrid IDC cooling system and the conventional IDC cooling system
was 1.16%, 2.1%, 2.9%, 0.67%, and 1.41%, respectively.

The system COP, which is the quotient effect of the cooling capacity, showed an increas-
ing value as the EWT to the plate heat exchanger decreased, as shown in Figure 12. This is
as a result of the increase in cooling capacity and relative decrease in power consumption as
the EWT to the system decreases, showing higher system performance in the decreased OD
temperature condition. When the OD temperature reduced from 30 ◦C, 25◦C, 15 ◦C, 10 ◦C,
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and 7 ◦C, the percentage difference between the novel hybrid IDC cooling system and
conventional IDC cooling system was 0.77%, 2.9%, 6.69%, 5.22%, and 5.8%, respectively.
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4.2.2. Hybrid IDC Cooling System Mode Change Temperature (MCT) and Hybrid
Mode Performance

The design and operation of the hybrid IDC cooling system utilizing a deep water
source from a dam is purposely to have a high cooling performance coupled with energy
saving potential. The hybrid mode operation, which is the operation of either the forced-
cooling or free-cooling mode as the operating conditions are satisfied, as well as the effect
of deep-source dam water as a secondary fluid source, is exploited to satisfy the cooling
requirement of the IDC space while saving energy. The forced-cooling mode relies on the
use of a vapor compression cycle and circulating water as a heat sink, while the use of
natural convection in the free-cooling mode to meet cooling demand by circulating dam
water through the evaporator to remove heat shows a significant energy saving potential
as it requires the use of the circulating pump as the only major power input.

To switch to the free-cooling mode from the forced-cooling mode, the operation of
the vapor compression cycle requires the mode change temperature (MCT), which is a
temperature at which the free-cooling mode matches the rated cooling capacity determined
by the forced-cooling mode and standard conditions of 26.7 ◦C and 25 ◦C ID temperature
and EWT, respectively. At this temperature, the hybrid IDC cooling system can operate in
free-cooling mode while meeting the cooling requirements.

To determine the MCT for the hybrid system, the dew point temperature for the ID
temperature, 26.7 ◦C is considered. When the dew point temperature, which is 15.6 ◦C of
the ID temperature, equals the MCT, the relative humidity of the air is 100%, which indicates
the absence of dehumidification, resulting in no heat exchange across the evaporator. To
determine the MCT, the water flow rate was varied between 42 lpm and 78 lpm, as shown
in Figure 13. The corresponding temperature of the rated cooling capacity in forced-cooling
mode, according to the varied flow rate were, 7.15 ◦C, 7.9 ◦C, 8.7 ◦C, 9.15 ◦C, 9.2 ◦C. In
comparing COP, however, as shown in Figure 14, the highest COP peaked at 72 lpm, and
though the flow rate of 78 lpm showed a higher MCT value, the cooling capacity rate
reduced as a result of the reduced heat exchange across the plate heat exchanger due to the
maximum flow rate, which is a limitation of the heat exchanger. The power consumption
as a result of the increase in flow rate also increased, resulting in the decrease in COP at
78 lpm. The flow rate matching the rated cooling capacity and highest COP at standard
conditions was 72 lpm, and it corresponded to 9.15 ◦C, and this was determined as the
MCT for the hybrid IDC cooling system.
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Figure 15. Cooling capacity according to EWT in hybrid mode. 
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Figure 16. Temperature difference across HX in free-cooling mode. 

Figure 14. COP according to secondary fluid flow rate and OD air variation.

The determination of the mode change temperature (MCT), optimized for the hybrid
IDC cooling system utilizing deep water source from dam, the free-cooling mode is operated
when the EWT falls below the MCT of 9.15 ◦C at 72 lpm water flow rate. The free-cooling
operation uses circulating water and the action of natural convection to maintain the cooling
requirements in the IDC space. The operation of the free-cooling mode further increases
the energy saving capability of the novel hybrid IDC cooling system due to its only major
power consumption being the circulating pump.

Figure 15 shows the cooling capacity of the hybrid IDC cooling system operating in
hybrid mode, forced-cooling mode, and free-cooling according to EWT variation. The
cooling capacity in the free-cooling operating mode is affected directly by the EWT of the
water, hence, a change in EWT greatly affects the cooling performance of the system. As the
EWT decreases, the cooling capacity increases due to the increase in the mean temperature
difference across the plate heat exchanger and the evaporator, as shown in Figure 16. This
results in the decrease in evaporating temperature, hence, increasing the heat absorption
rate and cooling capacity of the system. In forced-cooling mode, the capacity also shows
an increasing trend as EWT decreases. The cooling capacity of the forced-cooling mode is
observed however to be higher than that of the free-cooling mode. This is due to the lower
evaporating temperature by action of the refrigerant, as shown in Figure 17, which is lower
than the EWT of the circulating water in free-cooling mode. The mean temperature across
the evaporator, hence, is increased, resulting in a higher cooling capacity in forced-cooling
mode than the free-cooling mode.
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The power input for free-cooling mode remains fairly constant as the EWT decreases,
as shown in Figure 18. This is due to the circulating pump being the only major power input
used, and also the pump being operated at a constant flow rate, hence, the energy saving
potential realized in this mode is significant. The increase in cooling capacity and constant
power consumption by the pump as EWT to the plate heat exchanger increases, leads
to a higher COP. In free-cooling mode, the performance of the novel hybrid IDC cooling
system increases significantly while saving on energy consumption. In forced-cooling
mode, however, there is a decreasing trend as EWT decreases. As the EWT decreases,
the condensing and evaporating temperatures decrease in the plate HX and evaporator,
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respectively. The subcooling increases; however, refrigerant mass flow rate does not
increase due to the low system pressure and EEV action of maintaining superheat. This
results in a low compression ratio and work done by the compressor, hence, the decrease in
power consumption.
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The operation of the hybrid IDC cooling system utilizing deep water source from dam
shows a better performance if the operation considers free-cooling, as shown in Figure 19.
This is as a result of an increase in cooling performance with the variation of EWT as a
fairly constant power input, unlike the forced-cooling mode.
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4.3. Performance Comparison of Conventional and Hybrid Cooling System Utilizing Dam Deep
Water Based on External Zone Bin Data

The evaluation of the integrated coefficient of performance (ICOP) is needed to quan-
tify and validate the merits of the novel hybrid IDC cooling system utilizing a deep water
source from a dam. To accurately estimate the ICOP for the cooling system, the climate
data of its geographic location are considered. Based on ANSI/ASHRAE 127 [20], it is
recommended to classify climate temperatures in ranges, as shown in Table 5. For this
study, the water temperature data from Soyang dam in Gangwon-do were used to develop
a country-specific correlation for the ICOP calculation. The percentage-weighted averages
were calculated based on temperature readings that fall within the specified temperature
range, according to the standard using Equation (5). A, B, C, and D represent the percentage
weighted averages according to the weather and water temperature ranges. The water
temperature data for the Soyang dam from 2017 to 2020 are shown in Table 6, and Figure 20
shows the water temperature variation in that same period.
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Table 5. Summarized water data for Soyang dam.

Water Temperature, ◦C

Year Min. Max. Average

2017 4.8 15.90 8.71
2018 5.06 12.55 8.64
2019 5.57 17.44 7.22
2020 6.17 18.35 11.66

Table 6. Water temperature data for average weighting in the Republic of Korea.

# Province Representative
Year

Hours ≥ 18.3 12.8 < Hours ≤ 18.3 7.2 < Hours ≤ 12.8 Hours ≤ 7.2

Hours % Hours % Hours % Hours %

1
Gangwon-Do
(Soyang-Dam)

2020 6 0.01810 16,564 49.987 11,411 34.43 5162 15.57
2 2019 0 0.00000 174 0.53 10,246 30.91 22,723 68.56
3 2018 0 0.00000 0 0.00 26,382 79.60 6761 20.40
4 2017 0 0.0 7308 22.0 15,539 46.9 10,296 31.1

TEST TYPE A B C D
AVERAGE 2 0.0 6012 18.1 15,895 48.0 11,236 33.9
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To compare the performance of the air source conventional IDC cooling system to the
hybrid IDC cooling system utilizing a deep water source from a dam operating in only
forced-cooling mode annually and operating in the hybrid mode, the percentage weighted
averages A, B, C, and D were determined based on the weather temperature data from
16 representative cities in South Korea, using guidelines from ANSI/ASHRAE standard
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127 [20]. The percentage weighted averages are shown in Table 7. Table 8 shows the climate
bin temperature to obtain the weighted averages for the conventional system. Figure 21
represent the comparison of the ICOP for the conventional IDC cooling system and hybrid
IDC cooling system operating in forced-cooling mode annually and the hybrid system
operating in hybrid mode (forced-cooling and free-cooling) annually.

Table 7. Performance of cooling systems.

System Test Type Temperature Condition Weighted Average Water Flow Rate (lpm) MCT (◦C)

Conventional air
source IDC cooling

system

A 35 0.085

N/A N/A
B 26.7 0.306
C 18.3 0.387
D 4.4 0.222

Hybrid IDC cooling
system utilizing deep

water source from dam

A 28.3 0

42/72 9.15
B 21.1 0.181
C 12.8 0.48
D 7.2 0.339

Table 8. Climate bin temperature data for normalized weighting.

#
Representative

City
≥26.7 ◦C 18.3 ◦C–26.7 ◦C 4.4 ◦C–18.3 ◦C ≤4.4 ◦C

Hours % Hours % Hours % Hours %

1 Jeonju 995 11.2 2604 29.2 3184 35.8 2121 23.8
2 Seogwipo 934 10.5 3219 36.2 4443 49.9 307 3.4
3 Yeosu 446 5.0 3006 33.8 3977 44.7 1475 16.6
4 Cheongju 911 10.2 2505 28.1 2761 31.0 2727 30.6
5 Cheonan 746 8.4 2517 28.3 2891 32.5 2750 30.9
6 Incheon 434 4.9 2881 32.4 3369 37.8 2220 24.9
7 Pohang 797 9.0 2860 32.1 3690 41.4 1557 17.5
8 Changwon 620 7.0 2973 33.4 3938 44.2 1373 15.4
9 Suwon 680 7.6 2682 30.1 3159 35.5 2383 26.8

10 Gwangju 969 10.9 2746 30.8 3160 35.5 2029 22.8
11 Cheolwon 439 4.9 2363 26.5 3112 35.0 2990 33.6
12 Busan-Gimhae 798 9.0 2756 31.0 3862 43.4 1488 16.7
13 Seoul 844 9.5 2625 29.5 3066 34.4 2369 26.6
14 Daegu 1051 11.8 2504 28.1 3566 40.0 1783 20.0
15 Daejeon 782 8.8 2633 29.6 3104 34.9 2385 26.8
16 Ulsan 727 8.2 2664 29.9 3879 43.6 1634 18.4

TEST TYPE A B C D
AVERAGE 761 8.5 2721 30.6 3448 38.7 1974 22.2

The air source conventional IDC cooling system, the annual operation of the system
in cooling mode and vapor compression cycle, results in a higher power consumption
due to the operation of the compressor, as well as air being utilized as a heat sink. The
novel hybrid IDC cooling system operating in forced-cooling mode annually showed a
better ICOP than the conventional system due to the better evaporative properties of water;
hence, its cooling capacity was significant. The compressor power input was less than the
conventional cooling system due to the relatively lower saturated temperatures at higher
EWT that that of the ID air temperature. The novel hybrid cooling system operating in
hybrid mode showed the best ICOP. This is because of the operation of the free-cooling
mode, which only utilizes a circulating pump during its operation in lower temperatures
below the MCT. Over an annual operating period, this saves the cooling system significant
power consumption. The novel hybrid cooling system operating in hybrid mode showed
a 67% performance increase over the air source conventional IDC cooling system and
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a 46.87% performance increase over the novel hybrid IDC cooling system operating in
forced-cooling mode only.

ICOPwater = (A·TestA COP) + (B·TestB COP) + (C·TestC COP) + (D·TestD COP) (5)

where ICOPwater, is the estimated integrated sensible Coefficient of Performance of a data
center cooling unit utilized in Korea.
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5. Conclusions

Due to the widespread usage of internet services, internet data centers (IDCs) have
grown rapidly in recent years, causing significant energy consumption issues. Many cooling
systems for (IDCs) have utilized ambient air as the most prevalent heat rejection sink over
the years. A novel energy-saving hybrid cooling system that combines a forced-cooling
cycle and a free-cooling cycle was proposed and experimentally tested for data centers. The
system is operated in forced-cooling mode when the EWT conditions are above the MCT
and the free-cooling mode is activated when the ambient temperature is below the MCT.
The mode change temperature was set at 9.15 °C, which was determined solely based on
the total cooling capacities under standard rated condition, COP, and EWT variation with
uncertainties for the capacity at 2.5%, 2.54%, and 2.86%, while COP uncertainties are 2.96%,
3.01%, and 3.23% for the conventional system, forced- and free-cooling, respectively.

This study quantitatively conducted a performance analysis for the conventional
cooling system and the hybrid cooling system utilizing a dam deep water for the IDC in
annual forced-cooling operation and hybrid (forced- and free-cooling) annual operation. In
addition, a comparative annual energy saving analysis was carried out using the bin hours
technique based on South Korea’s climatic condition. The comparison was conducted
in terms of the integrated coefficient of performance (ICOP). To appropriately calculate
the annual rating that enables system comparisons, normalized annual weight factors are
required. The normalized weight is dependent on the climate bin data for the present
geographical location of the cooling system.

Raw water temperature data from Soyang dam were factored and used to generate
a country-specific correlation for estimating the integrated coefficient of performance for
the hybrid cooling system. The results showed the novel hybrid cooling system utilizing a
deep water source from a dam and operating in hybrid mode showed a 67% performance
increase over the air source conventional IDC cooling system and a 46.87% performance
increase over the novel hybrid IDC cooling system utilizing a deep water source from a
dam operating in forced-cooling mode only. This shows a better annual performance when
the water source is considered as a heat sink for IDC cooling system.
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Application of this system can be adopted in regions with fairly higher ambient air
temperatures, as the use of air-source cooling systems will incur higher energy usage and
cost as compared to water bodies that maintain a lower temperature all year round, serving
as an efficient heat rejection medium.

The challenge of the availability and use of water bodies, such as rivers and lakes, as a
heat rejection medium for the newly developed system due to its effect on flora and fauna
in the water bodies, resulting from refrigerant leakage and subsequent carbon emission, as
well as the impact of the leaving water temperature should be a focus for future research.
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Nomenclature

COP Coefficient of Performance
DX Direct Expansion
DB Dry Bulb
EEV Electronic Expansion Valve
EWT Entering Water Temperature
HX Heat Exchanger
ID Indoor
IDC Internet Data Center
ICOP Integrated Coefficient of Performance
ISO International Standards Organization
LPM Liters per minute
MCT Mode Change Temperature
PUE Power Usage Effectiveness
OD Outdoor
WB Wet Bulb
Q Capacity

References
1. Zhang, Q.; Meng, Z.; Hong, X.; Zhan, Y.; Liu, J.; Dong, J.; Bai, T.; Niu, J.; Deen, M.J. A Survey on Data Center Cooling Systems:

Technology, Power Consumption Modeling and Control Strategy Optimization. J. Syst. Archit. 2021, 119, 102253. [CrossRef]
2. Gao, T.; Sammakia, B.G.; Geer, J.; Murray, B.; Tipton, R.; Schmidt, R. Comparative Analysis of Different in Row Cooler Management

Configurations in a Hybrid Cooling Data Center; American Society of Mechanical Engineers: New York, NY, USA, 2015.
3. Han, Z.; Wei, H.; Sun, X.; Bai, C.; Xue, D.; Li, X. Study on Influence of Operating Parameters of Data Center Air Conditioning

System Based on the Concept of On-Demand Cooling. Renew. Energy 2020, 160, 99–111. [CrossRef]
4. Amoabeng, K.O.; Choi, J.M. Review on Cooling System Energy Consumption in Internet Data Centers. Int. J. Air-Cond. Refrig.

2016, 24, 1–17. [CrossRef]
5. Deymi-Dashtebayaz, M.; Namanlo, S.V. Potentiometric and Economic Analysis of Using Air and Water-Side Economizers for

Data Center Cooling Based on Various Weather Conditions. Int. J. Refrig. 2019, 99, 213–225. [CrossRef]
6. Gao, T.; Samadiani, E.; Sammakia, B.; Schmidt, R. Comparative Thermal and Energy Analysis of a Hybrid Cooling Data Center with Rear

Door Heat Exchangers; American Society of Mechanical Engineers: New York, NY, USA, 2013.
7. Wang, Z.; Zhang, X.; Li, Z.; Luo, M. Analysis on Energy Efficiency of an Integrated Heat Pipe System in Data Centers. Appl.

Therm. Eng. 2015, 90, 937–944. [CrossRef]
8. Yan, G.; Feng, Y.; Peng, L. Experimental Analysis of a Novel Cooling System Driven by Liquid Refrigerant Pump and Vapor

Compressor. Int. J. Refrig. 2015, 49, 11–18. [CrossRef]
9. Zhang, H.; Shao, S.; Zou, H.; Tian, C. Performance Analysis on Hybrid System of Thermosyphon Free Cooling and Vapor

Compression Refrigeration for Data Centers in Different Climate Zones of China. Energy Procedia 2014, 61, 428–431. [CrossRef]
10. Deymi-Dashtebayaz, M.; Valipour Namanlo, S.; Arabkoohsar, A. Simultaneous Use of Air-Side and Water-Side Economizers with

the Air Source Heat Pump in a Data Center for Cooling and Heating Production. Appl. Therm. Eng. 2019, 161, 114133. [CrossRef]

http://doi.org/10.1016/j.sysarc.2021.102253
http://doi.org/10.1016/j.renene.2020.06.100
http://doi.org/10.1142/S2010132516300081
http://doi.org/10.1016/j.ijrefrig.2019.01.011
http://doi.org/10.1016/j.applthermaleng.2015.07.078
http://doi.org/10.1016/j.ijrefrig.2014.09.017
http://doi.org/10.1016/j.egypro.2014.11.1141
http://doi.org/10.1016/j.applthermaleng.2019.114133


Energies 2022, 15, 9274 19 of 19

11. Wang, J.; Zhang, Q.; Yu, Y. An Advanced Control of Hybrid Cooling Technology for Telecommunication Base Station. Energy
Build. 2016, 133, 172–184. [CrossRef]

12. Han, Z.; Zhang, Y.; Meng, X.; Liu, Q.; Li, W.; Han, Y.; Zhang, Y. Simulation Study on the Operating Characteristics of the Heat
Pipe for Combined Evaporative Cooling of Computer Room Air-Conditioning System. Energy 2016, 98, 15–25. [CrossRef]

13. Sun, Y.; Wang, T.; Yang, L.; Hu, L.; Zeng, X. Research of an Integrated Cooling System Consisted of Compression Refrigeration
and Pump-Driven Heat Pipe for Data Centers. Energy Build. 2019, 187, 16–23. [CrossRef]

14. Liu, Y.; Yang, X.; Li, J.; Zhao, X. Energy Savings of Hybrid Dew-Point Evaporative Cooler and Micro-Channel Separated Heat
Pipe Cooling Systems for Computer Data Centers. Energy 2018, 163, 629–640. [CrossRef]

15. Ma, Y.; Ma, G.; Zhang, S.; Xu, S. Experimental investigation on a novel integrated system of vapor compression and pump-driven
two phase loop for energy saving in data centers cooling. Energy Convers. Manag. 2015, 106, 194–200. [CrossRef]

16. Meng, F.; Zhang, Q.; Lin, Y.; Zou, S.; Fu, J.; Liu, B.; Wang, W.; Ma, X.; Du, S. Field study on the performance of a thermosyphon
and mechanical refrigeration hybrid cooling system in a 5G telecommunication base station. Energy 2022, 252, 123744. [CrossRef]

17. Wang, J.; Zhang, Q.; Yoon, S.; Yu, Y. Reliability and Availability Analysis of a Hybrid Cooling System with Water-Side Economizer
in Data Center. Build. Environ. 2019, 148, 405–416. [CrossRef]

18. Wang, J.; Zhang, Q.; Yoon, S.; Yu, Y. Impact of Uncertainties on the Supervisory Control Performance of a Hybrid Cooling System
in Data Center. Build. Environ. 2019, 148, 361–371. [CrossRef]

19. ISO 13256-2; Water-Source Heat Pumps—Testing and Rating for Performance—Part 2: Water-to-Water and Brine-to-Water Heat
Pumps. ISO: Geneva, Switzerland, 1998.

20. ANSI/ASHRAE, 127; Method of Testing for Rating Air-Conditioning Units Serving Data Center (DC) and Other Information
Technology Equipment (ITE) Spaces, 180 Technology Parkway NW. ANSI/ASHRAE: Peachtree Corners, GA, USA, 2020.

21. AHRI Standard 1361 (SI); Performance Rating of Computer and Data Processing Room Air Conditioners. AHRI: Arlington, VA,
USA, 2017.

22. ANSI/AMCA 210-99; Laboratory Method of Testing Fans for Aerodynamic Performance Rating, 210. Air Movement and Control
Association International Inc.: Arlington Heights, IL, USA, 1999.

23. Anka, S.K.; Mensah, K.; Boahen, S.; Ohm, T.I.; Cho, Y.; Choi, J.W.; Choo, S.H.; Kim, H.Y.; Choi, J.M. Performance optimization of
an air source HVAC system for an internet data center building using the integrated COP method. J. Build. Eng. 2022, 61, 105308.
[CrossRef]

http://doi.org/10.1016/j.enbuild.2016.08.090
http://doi.org/10.1016/j.energy.2016.01.009
http://doi.org/10.1016/j.enbuild.2019.01.050
http://doi.org/10.1016/j.energy.2018.07.172
http://doi.org/10.1016/j.enconman.2015.09.004
http://doi.org/10.1016/j.energy.2022.123744
http://doi.org/10.1016/j.buildenv.2018.11.021
http://doi.org/10.1016/j.buildenv.2018.11.026
http://doi.org/10.1016/j.jobe.2022.105308

	Introduction 
	Literature Review 
	Experimental Setup and Procedure 
	Experimental Results and Discussion 
	Performance Characteristics of an Air Source Conventional IDC Cooling System 
	Performance Characteristics of a Hybrid IDC Cooling System Utilizing Deep Water Dam Source 
	Hybrid IDC Cooling System Utilizing Deep Water Dam Source Forced-Cooling Mode 
	Hybrid IDC Cooling System Mode Change Temperature (MCT) and Hybrid Mode Performance 

	Performance Comparison of Conventional and Hybrid Cooling System Utilizing Dam Deep Water Based on External Zone Bin Data 

	Conclusions 
	References

