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Abstract: The protection of users of ICT networks, including smart grids, is a challenge whose
importance is constantly growing. Internet of Things (IoT) or Internet of Energy (IoE) devices, as
well as network resources, store more and more information about users. Large institutions use
extensive security systems requiring large and expensive resources. For smart grid users, this becomes
difficult. Efficient methods are needed to take advantage of limited sets of traffic features. In this
paper, machine learning techniques to verify network events for recognition of Internet threats were
analyzed, intentionally using a limited number of parameters. The authors considered three machine
learning techniques: Long Short-Term Memory, Isolation Forest, and Support Vector Machine. The
analysis is based on two datasets. In the paper, the data preparation process is also described. Eight
series of results were collected and compared with other studies. The results showed significant
differences between the techniques, the size of the datasets, and the balance of the datasets. We also
showed that a more accurate classification could be achieved by increasing the number of analyzed
features. Unfortunately, each increase in the number of elements requires more extensive analysis.
The work ends with a description of the steps that can be taken in the future to improve the operation
of the models and enable the implementation of the described methods of analysis in practice.

Keywords: smart grids; traffic analysis; threat detection; limited set of features; machine learning

1. Introduction

A modern smart grid is characterized by the possibility of unexpected events occurring
in it. Their proper identification is the key to ensuring user safety. Only some users have
the skills to identify online threats based on their characteristics. Therefore, it is essential
to automate this process as much as possible. This is where machine learning techniques
can help. They allow for the identification of threats and abnormal events in a way that
does not require human intervention. The resources and methods used for such analysis
are a constant challenge. An additional aspect is the issue of model training. The training
sets must be universal enough for the models to be able to indicate the threat after the
training process unambiguously. Operating on large volumes of data simplifies searching
for anomalies in data traffic. However, not every network anomaly phenomenon is a threat.
Searching for events that deviate from the standards is only the first step; then, it should
be determined whether the anomalies under investigation pose a threat. The problem is
serious and requires decisive action. According to a SonicWALL annual report, only in 2021,
the number of ransomware attacks and encrypted threats increased by 105% and 167%,
respectively [1]. This is mainly a problem of large ICT companies on the market, where
extensive security methods and complex models can be used. Collecting and examining
many parameters helps detect threats but is very resource-intensive. It also comes with
expenses. Smart grid users and small organizations usually do not have access to huge
computing power. It is important to simplify the methods in such a way as to minimize the
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loss of efficiency while limiting the required resources. According to the reports from the
same organization, the number of IoT malware increased between 2019 and 2021 by 50%,
66%, and 6%, year by year [1–3]. The problem is growing and requires appropriate action.
Enormous increases in registered incidents have been observed in recent years. The report
reveals a significant growth in malware threats. Malware attacks are dangerous for all
users. They can also be completely invisible to them. Network traffic analysis is a method
that allows for the detection of such activities and protects end customers against attacks.

Many types of cyber-attacks threaten energy infrastructure. From 2010 to July 2022,
sixteen severe worldwide attacks on grids were identified [4]. One each was registered
in Africa and Southern America, three in Northern America, four in Asia, and as many
as seven in Europe. The last mentioned threat was targeted at an Energy Company in
Ukraine in April 2022 [5]. Attackers used malware called Industroyer2 which can control
power flows in a grid. Attacks on energy infrastructure attract public attention because
such attacks can affect the community’s life. In the mentioned above article [4], the authors
indicated that the development of modern energy infrastructure, especially smart grids
needs a secure communication infrastructure with advanced technologies such as artificial
intelligence or blockchain. One of the most important aspects is the transformation of grids
by making energy infrastructure more autonomous. One of the solutions to reach that goal
is to come into use Internet of Energy (IoE) devices. IoE is based on the same principles as
the Internet of Things (IoT). Moreover, similar to IoT, one critical issue is offering privacy
and secure connections for users of IoE devices. In [6], apart from proposals for the use of
IoE solutions to reduce the environmental impact of the energy production process, the
importance of data integrity and confidentiality in IoE applications is also emphasized.
Confidentiality of energy consumption information in an institution can be crucial for
proper functioning. In every place where small IoE devices with limited computing power
would be used, it is necessary to implement threat detection methods that optimize the use
of available resources.

The threat can be characterized by traffic source, target, used port, or protocol. When
a large amount of traffic is exchanged, Access Control Lists (ACLs) on the network device
can be added. These lists allow for traffic filtering with defined characteristics and to
specify whether the lists should be used for incoming or outgoing traffic. For well-known
sources of unsafe traffic, the concept of denylist can be used. Denylists contain a set of
entries that identify the source of traffic and usually block all traffic coming from it. This
is a solution used, for example, in the e-mail service to block unwanted messages. All
the examples described above represent safeguards against known threats, and for such
protection to be set, it is necessary to detect the danger and describe it unambiguously.
Thus, the system effectively protects users against already-known threats. In the event of
a new threat, using the above methods, the victim becomes defenseless, and if he does
not observe anything disturbing, the list of victims will continue to grow until the threat
is described and appropriate safeguards are implemented. Another method of human
detection and description of threats is their automatic search. For this purpose, algorithms
are used to assess whether the analyzed traffic may pose a threat. The estimation is based
on observation and searching for values that do not match the traffic model. The traffic
model, which is the reference point for the actual secure operation of the network, can be
fixed or time-varying. Observation of anomalies can be based on methods of calculating
the probability of the observed event. Periodic or one-off deviations from the standard
may also be undesirable, for example, an unusually large volume of traffic exchanged or
connections to addresses never before observed in the network. The advantage of these
solutions is the ability to detect danger before damage is done. Recognized threats based
on traffic observation can be used to create patterns of dangerous events and support
signature-based methods. Unfortunately, unlike methods that look for unambiguous
patterns, they can generate many false positives and block traffic that is not dangerous.
Often, to prevent such situations, allowlists are used, which contain entries identifying
traffic sources that are completely safe and, therefore, cannot be recognized as a threat.
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Machine learning algorithms are used to detect threats in the network. They allow for
processing large datasets and, based on them, create complex classifications of traffic
observed in the network.

The aim of the paper is to propose machine learning models using a minimum number
of features and to test their effectiveness in detecting Internet threats based on the analysis
of network traffic. The work also addresses the issue of detection verification using labeled
data containing threatened packets. The results were presented in such a way as to enable
comparison of the tested methods. The operation of the algorithms used on various datasets
was analyzed. The performance of the models was assessed by comparing the results with
other studies, where more features were taken into account. The number of features in
all studies is intentionally set to four and remains the same. The features selected by
the authors describe each network traffic using the IPv4 protocol. Therefore, it can be
widely used in ICT networks, especially in devices at the network’s edge, such as Smart
Grid. Furthermore, the choice of four features allows for simplifying the traffic analysis
models and skipping the preprocessing of Internet traffic records. These two aspects limit
the demand for computational resources in devices using the proposed techniques. It is,
therefore, possible to use the tested techniques in IoE devices found in the Smart Grid but
also in IoT and other devices that do not have extensive computing resources or an external
data analysis center.

The work consists of nine sections. Section 2 presents an overview of research carried
out so far in the field of threat detection. Section 3 discusses the datasets used, their origin,
and properties. The steps taken to prepare the analyzed traffic features properly are the
content of Section 4. The preparation of the data for the study and the eight experiments
performed are described in Section 5. A comparison of the methods used is included in
Section 6. The debate on the results and the detection efficiency of the solutions used are in
Section 7. The summary of the work with the final conclusions is presented in Section 8.
Section 9 is dedicated to the future of research focused on anomaly detection.

2. State of the Art

Smart Grids could be considered any other ICT network because those are used the
same communication protocols. The cyber threat defense based on anomaly detection
could be applied to any network based on Internet traffic. Some technics used in IoT could
be applicable to IoE and other Smart Grid solutions.

A popular method of analyzing network traffic is Long Short-Term Memory (LSTM).
The authors in [7] tested the effectiveness of the LSTM method on the CIC-IDS2017 dataset,
which consists of five days of recording the network operation. They conducted traffic
class prediction studies for each day separately. Three metrics were used: precision, recall,
and F1-score. Very good results were obtained, exceeding 0.98 in each case, which means
high efficiency in predicting the traffic class. The method called “Mutual Information”
was used to select the analyzed features, indicating the relationship between the two
selected parameters [8]. The analysis was based on network flows. The application of the
described methods on the selected dataset results in very good traffic classification. Using
the LSTM method, researchers from Huawei Technologies and the China University of
Geosciences also searched for anomalies in the network. They studied traffic collected from
approximately 31,000 ports at five-minute intervals. Then, the task of the model was to
classify the data into three defined classes—warning, problem, and alarm [9]. The results
were evaluated using the precision and recall metrics. The biggest challenge for the model
turned out to be the correct generation of warnings, defined as a single deviation from the
norm. Repeated deviations have been called the problem. The alarm was generated by non-
standard events that occurred continuously. In their approach, the authors distinguished
traffic anomalies, showing that not all should be treated in the same way. The use of more
classes is required to distinguish the level of danger of the observed anomalies.

The researchers in [10] showed the impact on the results of matching the categories of
various algorithms depending on the number of examined features. Three sets of features



Energies 2023, 16, 329 4 of 23

were defined for analysis. The first one was based on the sliding windows technique.
The second set was created based on the methods described in [11]. These are Holt
Winter methods, Adaptive Threshold Algorithm, Windowed Average, Exponential Moving
Average, and Cumulative Sum Algorithm. For the third set, 12 features were selected
based on values, statistical metrics, time series, and wavelet decomposition [12]. The
Exponentially Weighted Moving-Average (EWMA) method was used to prepare the time
series, and autoregression was used [13]. The use of the described methods for feature
extraction was possible thanks to the approach based on flow analysis. F1-score was used
as a metric. LSTM demonstrated the best results on the third dataset. Compared to other
algorithms, it was repeatable. Additionally, Support Vector Machine (SVM), Random
Forest (RF), and Adaptive Label Screening and Relearning Approach (ALSR) were checked.
The autoregression method used by the authors was also independently used to analyze
anomalies in network traffic.

The document [14] shows the use of the Auto-Regresive Moving Average (ARIMA)
method to detect network attacks. The method allows calculations to be made on the vol-
ume of exchanged traffic. It looks for non-standard values that it considers to be anomalies.
The authors present this method as a way to detect Distributed Denial of Service (DDoS) at-
tacks early. They also considered the use of methods presented and described much earlier,
including the method called Fractionally Differenced Autoregressive Integrated Moving
Average (FARIMA) [15]. It is a moving average-based traffic modeling applicable to the
short and long-term prediction of network behavior. Another considered method, also
based on the use of a moving average, was the use of Seasonal Autoregressive Integrated
Moving Average (SARIMA) modeling described in [16]. The argument for considering
these methods by the authors [10] was the periodicity of network traffic. They should
then show deviations from the expected behavior of the network. SARIMA and FARIMA
modeling look for non-standard values, which it considers as an anomaly. It is well known
that the network does not always behave periodically. There are non-standard periods.
Then the question remains about using these models in a real network because the detection
of threats based on the prediction of network behavior is a method that does not take into
account unexpected events.

The GRU (Gated Recurrent Unit) is a method similar to LSTM. Fan et al. tested
the use of GRU for network traffic analysis. They also used three metrics different from
those previously described: Mean Square Error (MSE), Normalized Mean Square Error
(NMSE), and Mean Absolute Relative Error (MARE) [17]. Satisfactory results were obtained,
respectively: 0.011, 0.972, and 1.171. However, the cited work lacks a comparison to other
analyzes on the same dataset and set of features.

The Support Vector Machine (SVM) is a common method used for research in the area
of traffic anomaly. In [18], Yang Lei used only six features for anomaly detection. This
allowed for the calculation of entropy, which was the input to the model. Only one metric
was used–accuracy. The evaluation of the model was presented based on the effectiveness
of detecting various types of threats. The lowest value of the accuracy parameter equal to
0.786 was achieved for a Denial of Service (DoS) attack. The best results did not exceed
0.875. The use of entropy in the study of network traffic can be found in many studies.
This allows observing the behavior of the network using a metric for which some standard
values can be specified. In 2015, researchers from the Military Institute of Communications
and the AGH University of Science and Technology in Krakow studied the use of entropy
to detect botnets [19]. Threat detection itself was based on the search for anomalies in traffic.
This method is described as a method to look for malware or scams. The authors also found
this approach appropriate for fault finding or system monitoring. In this approach, the
use of entropy gains an advantage over typical machine learning models. These models,
at some point when a failure occurs, could continue to run in the background without
showing any signs. Entropy allows monitoring a parameter that exceeds statically or
dynamically defined limits and may also indicate faults. In [20], entropy was used to search
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for abnormal events to detect DDoS attacks. These studies allow us to conclude that the
methods of detecting dangerous events using entropy still need to be refined.

Another way to search for anomalies is through various types of algorithms based
on binary and decision trees. The use of tree structures is effective for datasets with a
large number of parameters. In [21], the authors were searching for anomalies in the
communication of Internet of Things (IoT) devices using a smaller number of parameters.
Three sets of features with 15 and 11 parameters, respectively, were used. High efficiency
in detecting DDoS attacks has been achieved. The value of the accuracy parameter was as
much as 99.94% with the use of the Random Forest algorithm. One should note that in the
above-described comparison of algorithms for different sets of features, the results obtained
with this method were the best when using a set of 12 features [10]. The authors in [22]
studied the Random Forest algorithm in relation to the C4.5 decision tree. Higher efficiency
of the decision tree and the accuracy metric value of 99.67 was obtained; however, the RF
operation turned out to be much faster. However, decision trees do not always show better
results. In a study where decision trees were compared with SVM, worse results were
obtained for all sets of features [23]. The measure used was accuracy, and the SVM result
was several percentage points higher in all cases. This proves a better fit for the category.

Another researched algorithm is Isolation Forest (IF), i.e., a forest of isolated trees.
Studies presented in [24] showed similar IF results to SVM. The number of threats detected
by the IF algorithm did not differ significantly from the SVM. For some attacks, the results
were worse. However, in most cases, they were slightly better. Research has shown that the
classification of both methods results in the correct matching of the analyzed data to the
appropriate categories. In [24,25], a comparative study was conducted to extract feature
sets using different datasets and different data processing methods. The IF algorithm was
used in the study. The results showed greater differences using different datasets within
each of the selected methods. Changing the data processing method using a single dataset
had a lesser impact on the results. This may indicate that the input to the model based on
the same information in the case of this method gives very similar results. An interesting
method of preparing features for analysis based on the Kalman filter was used in [26].
The researchers in [27] decided to combine SVM with threat detection systems, analyzing
traffic in five steps. The network traffic was processed by Intrusion Detection System
(IDS) and then by SVM. This synergy allows for the detection of 70.69% of attacks. The
results were compared with those obtained from the SNORT software. The combination of
several techniques resulted in more true positives while retaining fewer false positives. The
combination of many techniques to detect a threat is an interesting direction to strengthen
the network’s defense against attacks. The next stage of work in this direction may be
treating each other’s systems as reliable databases. The machine learning model could
learn based on the results of the IDS, and the antivirus software could create signatures
based on the results of the analysis made by the machine learning algorithm.

Another commonly used anomaly detection method is Multi-Layer Perception (MLP).
In [28], network traffic based on flows was studied. MLP and decision trees on two datasets
were used for the analysis. For the dataset named “winter”, the detection level was lower
using MLP than for the decision tree. The result achieved by MLP was 99.59% of detected
threats compared to 99.98% using decision trees. However, when analyzing the second
selected dataset, the statistics reversed. The detection ratio obtained with the decision tree
was at the level of 88.53%, and for MLP, it was 93.29%, which still this is a very high score.
However, the authors in another study proved that MLP generates a worse result than
Random Forest [29]. RF turns out to be better than MLP, whose results are better than for
decision trees. The difference in the value of the F1-score parameter is around 0.2, which is
a significant difference in the classification. In the previously described studies, the results
of the RF were worse than the results for the decision tree, which means that it is impossible
to say unambiguously which of the methods is the best. Once again, the results showed
how important it is to choose the right data. Unfortunately, in a real ICT network, the traffic
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is not matched to the model, so the model must be universal enough to work effectively in
changing conditions.

Machine learning uses convolutional networks for many applications. Their proper
use is the analysis of images and recognizing the elements on them, but they are not used
to classify network data. However, in [30], interesting research was published that allows
addressing traffic records to Convolutional Neural Network (CNN) models, presenting it
in the form of graphics and then searching for threats. The biggest challenge in using this
type of neural network is the representation of network traffic as a graphic-like matrix. The
encoding described in [31] allows achieving accuracy at the level of 88–89%.

In the field of network analysis, the authors freely select datasets for the needs of
their work. It is common to omit the description of the available datasets and focus on
working with one selected dataset. The authors in [29] extended the research and presented
11 available datasets that allow data analysis using machine learning techniques. Their
work was the basis for the selection of the databases containing traffic records used in this
work. The work carried out was based on the described CIC-IDS2017 collection [32]. Other
data used in this work come from ASNM resources, where features, composition, and
structure of the datasets are documented [33]. These datasets are especially recommended
for traffic classification studies.

The analysis of research works consisting of detecting anomalies in Internet traffic
shows that the dominant trend is to increase the number of analyzed traffic features or
their complicated processing to increase the efficiency of event categorization. In this paper,
a new approach for detecting anomalies in ICT networks is proposed. The assumption
we had in mind was to minimize the input parameters and simplify their coding. To the
best of our knowledge, the analysis we propose is the first in the literature that limits the
number of analyzed network traffic features to only four, available in any Internet Protocol
(IP) communication, to achieve better performance on devices with limited computing
resources as IoE, IoT, or any edge computing devices. We consider two different datasets
and the subset of one of them. As presented before, a common approach is to increase the
number of analyzed features and use huge computational resources. This paper assumes
minimization of the number of features to optimize the resources necessary to classify
network traffic. The performed research allows for improving the level of security, data
integrity, and confidentiality in smart grid devices on the side of grid operators and the
customer. The security of customer data is fundamental, so any solution that could be
useful in small smart devices can increase users’ trust in the smart grid and, thus, accelerate
the implementation of intelligent energy solutions.

3. Datasets

The data used for the analysis are datasets containing information from IP packets.
The models work with the following data:

• Source IPv4 address
• Destination IPv4 address
• Source port
• Destination port

Chosen traffic features describe any network traffic that uses the IPv4 protocol. Models
based on these four features can be widely used in ICT and Smart Grid networks. At the
same time, the choice of the four features indicated reduces the need for pre-processing of
the analyzed network traffic. Limiting the number of features also allows for reducing the
demand for computational resources.

The selected dataset can be replaced with any dataset containing the above data.
An important feature is data labels describing whether the packet contained features
indicating the transferred threat. Data categorization is essential to train models properly
in a supervised manner and to verify the correctness of all methods used.
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3.1. ASNM-CDX-2009

The dataset used comes from the ASNM datasets database. It contains categorized
data describing network traffic [34]. It was named ASNM-CDX-2009 and collected by the
National Security Agency of the United States of America (NSA) [35]. CDX is named for
“Cyber Defense Excercise”. The NSA describes the exercise as follows: “The goal of the
annual Cyber Defense Exercise (CDX) is to provide a simulated real-world educational
exercise that will challenge university students to build secure networks and defend those
networks against adversarial attacks” [36]. ASNM, an acronym for Advanced Security
Network Metrics, is a set of network data describing TCP connections containing various
characteristics. These datasets were created for the needs of traffic analysis, detection, and
recognition of threats [37]. The selected dataset contains data on traffic carried out using the
TCP protocol. The original CDX-2009 collection contains approximately four million entries
but has been limited by ASNM originators to 5771 categorized connections as presented in
Table 1.

Table 1. Network traffic statistics from ASNM-CDX-2009.

Network Service
Number of TCP Connections

Safe Unsafe Total

Apache 2911 37 2948

Postfix 179 7 186

Other traffic 2637 n/a 2637

Summary 5727 44 5771

Entries in the ASNM-CDX-2009 file are categorized and do not contain data carried in
IP packets. They are described by two labels:

• “label_2” indicates whether the entry concerns a buffer overflow attack
• “label_poly” has a binary-descriptive structure. The first part informs whether the

traffic is safe or unsafe, with the values zero and one, respectively. The second part
indicates the service related to the traffic. Three service descriptions are defined:
apache, postfix, and other. An example entry is 0_postfix, indicating that the entry is
for a secure connection and email service.

Data from the ASNM-CDX-2009 database are available for download from the Inter-
net [38]. The records of network traffic, on the basis of which the CDX-2009 dataset was
created, are also publicly available [39].

3.2. CIC-IDS2017

The dataset contains observations for five days—Monday through Friday. The traffic
is generated and analyzed in the test topology described by the authors in [29]. It is limited
to the proposed topology and is well-described. There are versions with traffic records in
the form of PCAP files and extracted with many features in the form of Comma-Separated
Values (CSV) files [32]. A more convenient form for analysis is a CSV file, so data in this
form was used in this work as the input to the models. The data includes seven types
of attacks:

• Brute force attack—discovers passwords or hidden resources on the basis of making
many attempts,

• Heartbleed attack—based on the search for imperfections in the encryption of
network traffic,

• Botnet—a network of infected devices used by cybercriminals,
• Denial of Service (DoS) attack—an attack that overloads the infrastructure to prevent

it from working properly,
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• Distributed Denial of Service (DDoS) attack—a method similar to DoS, however, the
attack is carried out by many distributed devices at the same time, the goal remains
the same as the goal of the DoS attack,

• Web attack against WWW services—based on searching for their weak points,
• Infiltration attack—exploiting victims’ software vulnerabilities to search their inter-

nal networks.

The entire dataset consisting of eight CSV files contains 3,119,345 entries, of which
846,248 were marked as dangerous (which is 27.13% of all entries) and 2,273,097 as not
posing a threat (which is 72.87% of all entries). The types of attacks in the dataset are
properly marked, which allows for extensive analysis to classify attacks into specific
categories. For the purposes of the research conducted in this paper, information about
attacks will be binary-encoded, as the goal is to detect the threat quickly.

4. Data Preparation

Proper data preparation is a particular challenge. Encoding IPv4 addresses turn
out to be a non-trivial task. This is due to a large number of available addresses, for
which encoding becomes a computationally difficult problem. Encoding all possible IPv4
addresses involves building a vast dataset that needs to be queried every time we want
to categorize traffic. The operation must be performed twice. Once for the source address
and once for the destination address. In the case of also analyzing addresses of physical
network interfaces, the problem becomes even more complex.

An IPv4 address consists of four octets. Apart from the division into subnets, it can be
said that there are 232 − 2 of all available addresses, although packets sent to a broadcast
address can also be found in the network. This means that 232 − 1 different combinations
must be encoded. The size of the array mapping addresses to labels would be huge (1).

232 − 1 = 4294967295 (1)

Using one-hot coding will be highly inefficient because the dataset in the model would
be extended by two square matrices with dimensions corresponding to the number of
addresses. Frequency coding is not possible because each address occurs only once. Each
entry will, therefore, be presented as exactly the same number. It becomes obvious that the
set of addresses used should be limited. A certain form of limitation is the exclusion of
addresses that should not appear in a given network segment. For the analysis carried out
in the public network, these will be addresses from private pools:

• 10.0.0.0/8
• 172.16.0.0/12
• 192.168.0.0/16

A restriction of this type will reduce the number of entries needed to be encoded. The
pool of excluded addresses is, unfortunately, so small that it does not solve the problem.
Another solution may be to restrict operation to a certain private network. This approach
obscures information about the real source address, thus limiting the possibility of detecting
threats. Due to the above-described problems, this work focuses on the ready dataset and
encodes only the addresses that appear there.

Physical addresses are also included in the analyzed data. Their coding causes an
even greater computational problem. Due to two more octets. There are 248 total MAC
addresses. This aspect is facilitated by the fact that the number of physical addresses in
the node where the traffic is recorded is very limited. These are only the nearest, directly
connected neighbors. Depending on the point in the network where the traffic is registered,
these may also be all interfaces present in a given subnet or within the range of a wireless
device. The drawback to this simplification is the problem of unique traffic characteristics
since MAC addresses will always point to directly connected devices. When listening
between two routers, the MAC addresses will always remain the same. The problem with
encoding grows to a whole new dimension when using IPv6, where addresses are as large
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as 128 bits. This is four times more than in the case of IPv4, which means that it significantly
increases the number of encoded entries and requires even more resources for analysis. The
set described in the previous chapter does not contain IPv6 addresses, so this problem is
omitted in this paper.

5. Results

Data analysis is divided into three subsections based on datasets. The first describes an
application of procedures to the ASNM-CDX-2009 dataset, the second to the CIC-IDS2017
dataset, and the third to a single day from the CIC-IDS2017 dataset. Sections 5.2 and 5.3
describe why the CIC-IDS2017 dataset is used in two steps. As mentioned before, four
features were analyzed from all chosen datasets (Table 2).

Table 2. Features from datasets.

Feature Coulmn in ASNM-CDX-2009 Column in CIC-IDS2017

Source IPv4 address SrcIP Source IP
Destination IPv4 address DstIP Destination IP

Source port SrcPort Source Port
Destination port DstPort Destination Port

Metrics used to evaluate models are:

• Precision–Fraction of true positive to the sum of true positive and true negative
prediction (2);

Precision =
TP

TP + TN
(2)

• Recall–Fraction of true positive to the sum of true positive and false negative prediction (3);

Recall =
TP

TP + FN
(3)

• F1-score–Fraction of the product of precision and recall to the sum of precision and
recall (4).

F1− score =
Precision · Recall

Precision + Recall
=

TP
TP + 1

2 (FP + FN)
(4)

The summary score will be calculated by averaging the F1-score parameters. There is
a parameter called “macro average F1-score”.

5.1. Analysis of ASNM-CDX-2009 Dataset

ASNM-CDX-2009 is a labeled dataset, but the packet’s label and service, related to
data, get through into one column called “label_poly”. So, the dataset needs extra work
before analyzing it in models. Column “label_poly” was divided into two columns—“label”
and “poly”. The information about the services correlated with packets contained in the
“poly” column is unnecessary. The “label” column contains values 0 or 1, where 0 is secure,
and 1 is a threat.

The encoding method used is label encoding. Only the IPv4 addresses present in the
dataset have been replaced. The port numbers are integers, therefore, did not require any
coding. In the procedure related to the division of the “label_poly” column, labels occurred
in binary form and, therefore, did not require coding.

5.1.1. Long Short-Term Memory Classification

The model was designed using the LSTM method. The training data constitute half
of the ASNM-CDX-2009 dataset. Three layers of LSTM were used, separated by layers
responsible for regularization to prevent overtraining; these are dropout layers [40,41]. At
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the model’s last layer, a Dense type layer was used to ensure an appropriate output [42].
Thus, the model was built of exactly eight elements (Figure 1).

lstm_input

InputLayer

input:

output:

[(None, 4, 1)]

[(None, 4, 1)]

lstm

LSTM

input:

output:

(None, 4, 1)

(None, 4, 50)

dropout

Dropout

input:

output:

(None, 4, 50)

(None, 4, 50)

lstm_1

LSTM

input:

output:

(None, 4, 50)

(None, 4, 50)

dropout_1

Dropout

input:

output:

(None, 4, 50)

(None, 4, 50)

lstm_2

LSTM

input:

output:

(None, 4, 50)

(None, 50)

dropout_2

Dropout

input:

output:

(None, 50)

(None, 50)

dense

Dense

input:

output:

(None, 50)

(None, 1)

Figure 1. The multi-layer construction of the Long Short-Term Memory model.

The numbers next to the layers indicate the dimensionality of the data. The com-
monly used optimization method “Adam” (Adaptive Moment Estimation) was used [43].
“mean_squared_error” was used as a metric determining the effectiveness of the model [44].
Other metrics considered are “mean_absolute_error” and “binary_crossentropy” [44,45].

The mean square error is the average of the squares of the difference between the
expected value and the result of a given trial (5).

MSE =
1
N

N

∑
i=1

(YPi −YTi)
2 (5)

The mean square error is the average of the absolute difference between the expected
value and the result of a given trial (6).

MAE =
1
N

N

∑
i=1
|YPi −YTi| (6)

The binary cross entropy error is the average of the sum of the product of the expected
value and the logarithm of the result of a given trial and the product of the difference
between one and the expected value and the logarithm of the difference between one and
the result of a given trial (7).
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H = − 1
N

N

∑
i=1

YTi · log(YPi) + (1−YTi) · log(1−YPi) (7)

The number of epochs was set at 30, which means the number of passes of the training
data through the entire model. A correctly compiled model is one where the “loss” value for
the metric used shows a decreasing direction with successive epochs. Training the model
using the binary cross entropy loss function shows a sudden drop followed by fluctuations.
The training process was observed correctly for the loss functions’ mean absolute error and
mean squared error because the values fall according to successive epochs (Figure 2). In
further consideration, only the results of the model trained using the mean squared error
function are taken into account because the highest efficiency is characterized in this model.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

0.0076
0.0078
0.0080
0.0082
0.0084
0.0086
0.0088
0.0090

MSE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

0.005

0.010

0.015

0.020

0.025

0.030
MAE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

0.11762
0.11764
0.11766
0.11768
0.11770
0.11772
0.11774 H

Epoch

Lo
ss

Figure 2. Long Short-Term Memory loss parameter by epochs based on the ASNM-CDX-2009 dataset.

Verification of the model with validation data, which constitute the second half of the
ASNM-CDX-2009 dataset, allowed collection of the results of its effectiveness.

5.1.2. Isolation Forest Classification

Isolation Forest (IF) is an algorithm for anomaly detection based on binary trees. The
algorithm could realize analysis without having labeled data. So, it is possible to use any
dataset. However, labels are obligatory to validate the analysis. For the proposed research,
the number of single isolation trees was set to one hundred.

The analysis using the IF algorithm showed that the number of packets marked as
anomaly was extremely high–5482. On the other hand, in the dataset, only 44 packets were
recognized as suspicious. The number of secure packets was only 289 after IF analysis, but
in the ASNM-CDX-2009 dataset, 5727 records were labeled as secure. So, the IF algorithm
made the wrong categorization.

After receiving the results shown above, a reverse analysis of the IF algorithm was
also used. The implementation of reverse categorization allowed a more similar evalua-
tion of the dataset to assigned labels. Reversed analysis computed that 5482 packets are
secure, and 289 packets are risky. Thus, the results are exactly the mirror image of those
previously reported.
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5.1.3. Support Vector Machine Classification

In this part of the work, an analysis model based on the SVM was developed. Four
different versions of the kernel function were used: linear, polynomial, sigmoid, and Radial
Basis Function [46]. The division of the dataset was applied the same as for the LSTM
model. The research procedure gave the same outcome for every used kernel function.

5.1.4. Summary of the ASNM-CDX-2009 Dataset Analysis

The effectiveness of the described methods is very weak for the ASNM-CDX-2009
dataset. It should be noted that the number of features has been limited to only four. Good
recognition of safety packets provides SVM and Reversed Isolation Forest (RIF), but the
correctness of diagnosis threats is close to 0% (Table 3). Other methods such as LSTM and
IF gave inaccurate results too.

Table 3. The models’ metrics after validation for a single day from the ASNM-CDX-2009 dataset.

Method Packet Type Precision Recall F1-Score Support

LSTM
0 1.00 0.08 0.14 2863

1 0.01 1.00 0.02 22

SVM
0 0.99 1.00 1.00 2863

1 0.00 0.00 0.00 22

Isolation Forest
0 1.00 0.05 0.10 5727

1 0.01 1.00 0.02 44

Reverse Isolation Forest
0 0.99 0.95 0.97 5727

1 0.00 0.00 0.00 44

5.2. Analysis of CIC-IDS2017 Dataset

Dataset CIC-IDS2017 is divided into eight files, but “Thursday-WorkingHours-Morning-
WebAttacks.pcap_ISCX.csv” was omitted because of the encoding issues. As a result, the
analyzed part of the CIC-IDS2017 dataset had 2,660,377 records—555,466 marked as dangerous
and 2,104,911 labeled as secure packets.

IPv4 addresses were encoded using Label Encoding. The statuses of the data packets
were binary-coded on the principle that a packet containing a threat is 1, and a safe one is
0. Due to a large amount of data to be analyzed, the SVM method was highly inefficient,
making it impossible to carry out the analysis in a limited time using the available resources.

5.2.1. Long Short-Term Memory Classification

Data before analysis were randomly mixed in an automatic manner [47]. Then the
dataset was divided into two parts: training and validation data. The parameters of
the model, as well as its construction, remained unchanged compared to the previous
analyzes described in Section 5.1.1. However, higher values of the “loss” parameter were
observed for every used function. The model training process was correct only for the mean
squared error loss function (Figure 3). Using the binary cross entropy and mead absolute
error metrics, the value of the “loss” parameter increases significantly in the final stage of
training, which is an undesirable phenomenon. Therefore, as in the case of the analysis of
the ASNM-CDX-2009 data set, only the results of the model based on training with the use
of the mean squared error loss function were qualified for further consideration.
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Figure 3. Long Short-Term Memory loss parameter by epochs based on the CIC-IDS2017 dataset.

5.2.2. Isolation Forest Classification

The configuration of the model from Section 5.1.2 was repeated. The analysis was
performed again, interpreting the results in two ways, standard and reversed.

The number of packets classified as anomalous events was 2,527,358. That vast
number is evidence that the model’s interpretation was wrong because the number of
labeled packets as dangerous in the dataset is near to five times less. Packets marked as
safe were in the minority—133,019 entries.

The result of Reversed Isolation Forest analysis is closer to dataset statistics. In the
dataset, 555,466 are marked as dangerous, but IF analysis presents 133,019 risky records
and 2,527,358 safe packets.

5.2.3. Summary of CIC-IDS2017 Dataset Analysis

The described methods’ effectiveness based on the metrics collected for the CIC-
IDS2017 dataset can be considered much better than the ASNM-CDX-2009 dataset. The
size of the dataset affects the effectiveness of the selected methods. However, the results
are still not satisfactory. RIF analysis showed the best results, but only when identifying
secure packets (Table 4).

Table 4. The models’ metrics after validation for the CIC-IDS2017 dataset.

Method Packet Type Precision Recall F1-Score Support

LSTM
0 0.79 0.33 0.47 1,052,095

1 0.21 0.67 0.32 278,093

Isolation Forest
0 0.79 0.05 0.09 2,104,911

1 0.21 0.95 0.34 555,466

Reverse Isolation Forest
0 0.79 0.95 0.86 2,104,911

1 0.21 0.05 0.08 555,466
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5.3. Analysis of Selected Part of the CIC-IDS2017 Dataset

The volume of data was reduced to one day due to the size of the CIC-IDS2017 dataset
and according to the availability of the resources. Friday was indicated as input to models
because of the best balance of secure and risky records. The number of secure packets is
414,322 (59% of packets), and 288,923 (41% of packets) are labeled dangerous. The sum of
events in files associated with Friday is 703,245. For example, in the validated CIC-IDS2017
dataset, 79% of packets are marked as secure and 21% as dangerous.

5.3.1. Long Short-Term Memory Classification

Data preparation has not changed concerning the operations described in Section 5.2.1.
The construction of the model and all its parameters were left unchanged compared
to those described in Section 5.1.1. It was observed that the “loss” parameter drops
sharply and stabilizes for a long time during training the model by the mean squared
error function (Figure 4). Despite fluctuations, a version of the model using the loss binary
cross-entropy function can be considered adequately trained. The results for the model
using the mean absolute error metric showed significantly lower efficiency than the other
models. Comparing the model trained with binary cross entropy and mean squared error,
the macro average F1-score was better for the model using binary cross entropy—0.48. For
the model using mean squared error, it was 0.34. However, the F1-score for the packets at
risk category was higher for the model trained with mean squared error—0.57 than for the
model trained with binary cross-entropy; it was 0.49. Thus, as in Sections 5.1.1 and 5.2.1, it
was decided to conduct further analysis of the model version trained by the mean squared
error loss function.
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Figure 4. Long Short-Term Memory loss parameter by epochs based on a single day from the
CIC-IDS2017 dataset.

5.3.2. Isolation Forest Classification

The steps described in Section 5.2.2 were repeated. The collected results have a similar
division into categories to those previously observed, using IF for classification. The huge
number, 668,082 packets marked as risky, and only 35,163 were marked as secure. The
result is entirely inconsistent with the labels in the dataset.

After reversing the analysis, we observed a deterioration in detecting dangerous
packets—35,163 packets were marked as an anomaly and 668,082 as typical network traffic.
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The distribution of packets classified into two categories is far from the correct distribution
of the analyzed dataset.

5.3.3. Support Vector Machine Classification

After limiting the dataset to one day, the analysis results were collected using an
SVM. The observed results are much better than those using the ASNM-CDX-2009 dataset.
Increasing the dataset has a positive effect on the results of the described method. The
model options relative to operation in Section 5.1.3 have not been changed. The analysis
was the most time-consuming of all the described methods. The Radial Basis Function
was used. A significant improvement in statistics was observed compared to operations
performed on the previously analyzed smaller dataset.

5.3.4. Summary–Selected Part of the CIC-IDS2017 Dataset

Analysis using Isolation Forest is useless, but all other methods gave interesting results
(Table 5). LSTM and SVM work better when the training dataset is balanced. Adequate
and balanced training data can significantly impact the learning process and, therefore, the
accuracy of detecting potentially dangerous events. Moreover, the dataset used to train
the model should be large enough to carry out the training process properly. However,
the dataset must be constrained before analysis for model training and their application to
be feasible.

Table 5. The models’ metrics after validation for a single day from the CIC-IDS2017 dataset.

Method Packet Type Precision Recall F1-Score Support

LSTM
0 0.59 0.06 0.11 206,955

1 0.41 0.94 0.57 144,667

SVM
0 0.59 0.69 0.64 207,147

1 0.41 0.31 0.35 144,475

Isolation Forest
0 0.53 0.05 0.08 414,322

1 0.41 0.94 0.57 288,923

Reverse Isolation Forest
0 0.59 0.95 0.73 414,322

1 0.47 0.06 0.10 288,923

6. Results Comparison

For each method and dataset, a macro average F1-score was calculated to compare
models for different data.

6.1. Long Short-Term Memory Comparison

The Long Short-Term Memory method achieved the highest effectiveness in detecting
threats for a large unbalanced set of data (Table 6). More data may make LSTM more
effective, and the balance between safe and dangerous packets above some size of the
dataset is less important. The analysis of selected data sets using the LSTM method shows
a significant impact of the selection of the loss function on the classification results. In the
examined problem, it could be assumed that models trained using functions for binary
classification, such as binary cross-entropy, will show higher effectiveness. However, an
important observation is that models trained using the mean squared error loss function
demonstrated the highest effectiveness of unsafe event identification.
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Table 6. Long Short-Term Memory results comparison for all datasets.

Dataset F1-Score

ASNM-CDX-2009 0.08
CICIDS-2017 0.42

Friday–CICIDS-2017 0.34

6.2. Isolation Forest Comparison

The highest efficiency in detecting traffic was demonstrated by the inverted analysis
on the smallest dataset, a small part of which are at-risk packets (Table 7).

Table 7. Isolation Forest algorithm results comparison for all datasets.

Dataset
F1-Score

Basic Reverse

ASNM-CDX-2009 0.06 0.49
CICIDS-2017 0.22 0.47

Friday–CICIDS-2017 0.33 0.42

These results indicate that the more balanced the data, the better the performance of
the IF algorithm. Furthermore, the efficiency of network traffic recognition increases when
an anomaly is considered a safe event and packets marked as safe are considered unsafe.
The reversed interpretation of the results is used, which is a better option for anomaly
detection using the ASNM-CDX-2009 dataset, the CIC-IDS2017 dataset, and its subset.

6.3. Support Vector Machine Comparison

Comparing the results, the Support Vector Machine has the greatest efficiency in
identification. The best result was obtained for the smallest dataset, where the detection of
threats was close to or equal to zero. The main component of this result is the recognition
of safe network traffic, which is not the essence of the research. Despite the lower value,
the data analysis from a larger dataset turned out to be better (Table 8). The better result
could also be influenced by closer to an equal balance of the input to the model.

Table 8. Support Vector Machine results comparison for all datasets.

Dataset F1-Score

ASNM-CDX-2009 0.50
Friday–CICIDS-2017 0.49

7. Discussion

The results presented in the previous chapter are a summary of the analysis of data
from publicly available datasets. The use of marked records was necessary for the correct
verification of the operation of the models. Although SVM’s performance is the best in the
analyzed cases, the best results were achieved for LSTM. This is due to better recognition of
threats, which is much more important than classifying safe packets. The LSTM algorithm
is definitely faster in operation. The learning process itself takes time, but verification of
validation data was the fastest of the methods tested. Long Short-Term Memory also shows
very good results in other studies. The results with a very high F1-score collected by the
authors of the analysis conducted on the CIC-IDS2017 dataset in [7] show that the high
efficiency of this model is achievable on selected data (see Table 9).
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Table 9. Other results based on the CIC-IDS2017 dataset [7].

Day of the Week F1-Score

Tuesday 0.989
Wednesday 0.992
Thursday 0.985

Friday 0.991

It can be seen that the result achieved for Friday’s data is much better, 0.991, compared
to 0.39 achieved in the conducted research. It should be noted that the authors of [7] studied
flows, not individual packets, as in this paper. The study of flows in the network simplifies
the search for anomalies due to the very large resources of data describing the flow. Each
flow includes at least a few packets that describe a networking event, and each packet has
many characteristics of its own. The study used a much larger number of traffic features
than four. This causes another increase in the amount of data describing the traffic. A very
large amount of information describing the event allows us to identify it better and, thus,
also creates more precise recognition structures.

The research conducted as part of this work was guided by the minimization of the
analyzed features. The four features of network traffic used in the experiments described
in two previous chapters greatly simplify data processing and make the model easily
adaptable to other datasets. This approach facilitates its wide application and the possibility
of examining traffic on less efficient devices at the edge of the network (e.g., IoT or IoE
devices). The number of analyzed features has a significant impact on the results of the
models. The study conducted by the authors in [11] on different sets of features of selected
data shows differences in effectiveness depending on the number of features. How much a
set of features changes in network traffic analysis can be seen in the comparative results of
four different models for three sets of features (see Table 10).

Table 10. F1-scores for different feature sets [11].

Feature Set 1 Feature Set 2 Feature Set 3

SVM 0.068554 0.566726 0.618743
RF 0.847268 0.760565 0.877893

LSTM 0.644807 0.659509 0.894281
ALSR 0.808177 0.654177 0.965109

The construction of the first set was based on the sliding windows technique. The
second set was constructed using the following methods: Holt Winter, adaptive threshold
algorithm, average over time windows, exponential moving average, and cumulative sum
algorithm. The third set consists of 12 features that have been prepared on the basis of
values, statistical metrics, time series, and wavelet decomposition. Despite the use of
advanced methods of collecting data features, one of the SVM results turned out to be
much worse than in the methodology adopted in this work, assuming the simplification
of the model to four features. Analysis using LSTM on the CIC-IDS2017 dataset shows
differences in the F1-score from about 0.21 to 0.46. The maximum difference shows the
definite differences in the classification efficiency of the two approaches. However, the
smallest differences show that the model developed during the experiments conducted
in this work is characterized by good performance when minimizing the input data. The
method based on a strong simplification implies easy adaptation of the model to various
data. The GRU (Gated Recurrent Unit) method, similar to LSTM, was used to measure the
mean square error [48]. A result of 0.011 was achieved [17]. This is almost twice as high as
the results obtained with the ANSM-CDX-2009 dataset but lower than the other studies
(approx. 0.062 vs. one-day data and 0.064 vs. the entire available CIC-IDS2017 dataset,
respectively). The smallest of the analyzed sets had better error results, probably due to the
small number of infected packets, which significantly reduces the possibility of false hits
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when a packet is considered safe. The collected results of the operation of the models on
various sets present their effectiveness in recognizing traffic (see Table 11).

Table 11. F1-scores of all tested models.

ASNM-CDX-2009 CIC-IDS2017 Friday–CIC-IDS2017

LSTM 0.08 0.42 0.34
Isolation Forest 0.06 0.22 0.33

SVM 0.50 — 0.49

Despite the seemingly highest efficiency of SVM on the ASNM-CDX-2009 dataset, it
can be assumed that this result is unreliable due to the large differences in the number
of packets marked as safe and unsafe. A very low number of infected packets in the
validation dataset will result in good results even when all traffic is considered safe. This
theory is confirmed by the results from Section 5.1.3, where the metrics for dangerous
packets–labeled “1”, are equal to zero. This means no threats identification. The results
of the other methods indicate that when the data is unbalanced, it is difficult to identify
vulnerable packets. For reverse categorization using an IF, the detection of suspicious
network traffic dropped to a level equal to zero. While maintaining the standard classi-
fication, the result consisted of more false classifications than in the case of LSTM. Thus,
the first algorithm in the table for relatively small, unbalanced data with a limited number
of features will prove to be the best solution. For large, varied datasets, Long Short-Term
Memory again proves to be more effective, achieving almost twice as good a result as IF.
The use of reverse classification results in very good recognition by the IF safe packets
constituting the majority of the examined set, which is presented in the results contained
in Section 5.2.2. However, the result of the standard classification should be considered
better. Generating a lot of false positives from a security point of view can be considered
a better scenario than limited threat detection. The last analyzed set was a subset of the
CIC-IDS2017 dataset. This collection was characterized by the best balance. The best result
was obtained using the SVM, which was the most effective for the classification of the
analyzed traffic. However, as the detailed results in Section 5.3 show, unsafe packets were
better detected using LSTM. This means that despite the overall higher SVM performance,
fewer threats were detected. Similar results to LSTM were achieved using the IF algorithm.
This may mean that the key to the correct operation of this tree structure is to spread the
data evenly among the categories. Despite the better results achieved, the results presented
in Section 5.3.2, show the distribution of results far from the actual division into categories
of the dataset.

8. Conclusions

The work was related to the analysis of threats detection ICT networks, including
smart grids based on network traffic analysis. Various datasets with significantly different
frequencies of occurrence of threats were examined. The obtained results, despite the fact
that they present lower values than in other studies, show the possibility of classifying
traffic with a minimum of information about its source and purpose. Unfortunately, traffic
classification alone will not help to ensure greater security for network users. In this case,
it is more important to identify threats, even at the cost of errors, quickly, and evaluate
safe packets as unsafe. The selected day from the CIC-IDS2017 dataset turned out to be the
best for the analysis, which may indicate that its balancing has a positive impact on the
categorization of traffic. Thus, by expanding the set of training data for model preparation,
better results will not always be achieved. At the same time, it can be seen that data
containing a limited number of entries will not effectively identify the flow of traffic. For
the purposes of applying the models in practice, large amounts of data marked by other
systems are necessary to look for characteristic features in future traffic and identify threats
in time. The best of the analyzed is the Long Short-Term Memory algorithm, which, despite
the requirement of supervised learning, allows one to achieve optimal results. This method
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works best when working with different sets of information. The duration of its operation
turned out to be the shortest of all tested methods. For data where the number of packets
divided into categories is close to each other, the IF algorithm turned out to be a good
method. The advantage of IF over LSTM is that it does not require labeled data to function
properly. This means that the model can work on data collected directly from the network
without using any other scanning method.

Network traffic analysis probably will not protect users from social engineering attacks,
but it can help protect companies from leaking their data or from using their infrastructure
for purposes inconsistent with their intended purpose, and often even against illegal
practices. For home or smart grid users, traffic analysis techniques will help protect
their personal devices from malware, adware, and other attacks that use external servers.
Network traffic analysis can also help detect the use of home or business IoE/IoT devices
to create dangerous botnets. The unusual behavior of customers using corporate network
resources is also a potential threat that requires identification using methods based on
defined rules and signatures. The potential use of devices in Smart Grid networks for
attacks on standard ICT systems is also a threat to Smart Grids because, as a source of
dangerous traffic, they can be blocked by other critical infrastructure systems. The possible
excessive use of their computing power by cybercriminals increases their operation costs. It
also causes a delay in performing the tasks for which these devices are designed, which can
harm the operation of the grid. For example, frequent changes of statuses transferred to the
Smart Grid may cause problems in the operation of the infrastructure; some of them may
be deliberate actions to the detriment of the network, therefore, should be classified as an
attack. An important aspect is that all methods used should focus on detecting dangerous
traffic, not always anomalies. The challenge is to classify such anomalies properly and not
always consider them as threats, as this could lead to problems related to the effective use
of the network.

Another important aspect may be the problem of resources. The computational
requirements of machine learning methods are very high. Implementation of such methods
by home users can be a big challenge. That is why it is so important to simplify models to
save resources and energy. Protecting a user from a serious attack may be worth the cost. In
most cases, however, there are harmless infections or unauthorized use of user devices. This
does not always cause noticeable problems for victims, and then the increase in security
maintenance costs may seem unjustified to many people. Cost-effective solutions are also
ecological, which may convince more people to use modern security methods. Optimizing
energy consumption in devices controlling the energy infrastructure is even more critical
because it reduces the cost of maintaining the Smart Grid. All this justifies the purpose of
this work to achieve the best results in detecting threats while reducing the complexity of
the research conducted. Reducing the level of complexity of the conducted experiments is
a challenge in itself. However, as shown in the paper, the search for simple and effective
methods to optimally use the available data and resources causes many complications.

9. Future Directions

The development of the described methods can go in many directions. One can achieve
higher effectiveness, and as other studies show, it is possible. However, this requires a
more extensive analysis of the input data and an increasing number of parameters. Such
activities require adequate resources in the form of computing power, energy, and time. On the
other hand, the direction of development of the proposed solutions may be research aimed at
increasing the effectiveness of detecting threats based on the presented assumptions of limiting
the number of features, but by proposing other models or redesigning the structure of the
proposed models. Another way may be the study of other features that can be easily adapted
and verify whether such an approach will improve the effectiveness of identifying threats.
Undertaking further experiments to refine the models can bring measurable results and
improve detection, but as described in previous chapters, the data analysis is very important:
traffic records, their size, but also the number and type of features selected. Address encoding
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methods remain an important aspect, as it is a complex problem that requires resources and
appropriately developed solutions to be able to use them on a large scale. Research on the
presentation of addresses for models may constitute a large part of future work. The next
stage of research is the development of appropriate sets of features that will be universal to
such an extent as to maintain the simplicity of implementation while allowing for better threat
detection results. The processing of network traffic directly coming from various sources and
the preparation of new datasets are also possible. In addition, to better assess the effectiveness
of the proposed methods, more data sets registered in various network nodes can be used.
The developed methods would allow recording traffic in any network and then conducting its
analysis. The consequence of this is the implementation of the described methods to work in
real time. The real-time analysis will allow users to be warned in time. This is especially crucial
for smart grid users. To increase the efficiency of the learning process, a possible development
milestone may be the use of information from multiple nodes using shared traffic records.
The mechanism of sharing information about traffic would allow the identification of threats
wherever there is no knowledge of their existence. Subsequent nodes can provide each other
with new data for training subsequent models or training existing ones. Correct detection of
events with features inconsistent with those identified as safe in one node may be the basis of
its training set in another.

The use of machine learning methods in the field of network security is undeniable.
However, an ongoing problem is the representation of the data. In this work, coding
using labels were used. In a real network, an efficient network address coding system
would have to be developed. The standard “Label Encoder” encodes the data prior to
analysis, which requires to have an input dataset before the model can run and make traffic
predictions. This way of representing data requires a lot of resources. In the case when
the analyzer works on a real Internet network, there is a possibility of any address. This
makes it necessary to encode all addresses in the network and store this data in the device’s
memory. Developing a universal address translation method would allow the model to
work efficiently and limit analyzed features. The use of complex input data representation
methods is a common technique. However, machine learning algorithms do not try to
understand the meaning of the transmitted data, they search for patterns, and the data
representation itself, as long as it is numerical, remains secondary to the algorithm. Such an
approach allows searching for new parameters on the basis of which data can be analyzed
and categorized. Even using basic traffic information, new features can be developed.
An example would be the absolute value between numerically represented destination
and source port numbers [49]. Each such parameter describes the traffic and brings a
new value to the model. The application of mathematical operations on the basic set of
features will allow obtaining a new, more elaborate, or written differently description of
the event. By modifying the data representation, the distance between events is affected.
From the model’s perspective, this can have both negative and positive effects on the
classification results.
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