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Abstract: Considering the importance of lithium-ion (Li-ion) batteries and the attention that the 
study of their degradation deserves, this work provides a review of the most important battery state 
of health (SOH) estimation methods. The different approaches proposed in the literature were ana-
lyzed, highlighting theoretical aspects, strengths, weaknesses and performance indices. In particu-
lar, three main categories were identified: experimental methods that include electrochemical im-
pedance spectroscopy (EIS) and incremental capacity analysis (ICA), model-based methods that ex-
ploit equivalent electric circuit models (ECMs) and aging models (AMs) and, finally, data-driven 
approaches ranging from neural networks (NNs) to support vector regression (SVR). This work 
aims to depict a complete picture of the available techniques for SOH estimation, comparing the 
results obtained for different engineering applications. 

Keywords: state of health; incremental capacity analysis; electrochemical impedance spectroscopy; 
equivalent electric circuit model; aging model; neural network; support vector regression 

1. Introduction
Batteries, namely those devices able to store chemical energy and convert it to elec-

trical energy, play an important role in achieving the target of universal access to clean, 
reliable and affordable electricity services. The Nobel Prize in Chemistry 2019 was 
awarded for the development of lithium-ion (Li-ion) batteries [1]. Nowadays, although 
lead-acid batteries are still widely used, Li-ion ones are recognized as the most used tech-
nology both for mobility and stationary storage applications of today and the near future. 
At the same time, advanced research on solid-state batteries is also taking place. 

By 2040, 150 to 900 million electric vehicles (EVs) are expected to be on the road 
worldwide, which is two to three orders of magnitude higher than today. Over the same 
period, stationary storage may reach up to 1300 GWh, compared with about 3–4 GWh 
installed front-of-the-meter today [2]. Countries around the world are in the middle of an 
accelerated energy transition whose core elements are energy efficiency and renewable 
energy technologies, as well as their synergies. Such a transition appears to promote elec-
tricity as the preferred final energy carrier and plans to account for wind and solar energy 
for almost 50% of global electricity by 2050 [3,4]. 
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Energy storage systems, and in particular batteries, are frequently addressed as the 
enabling technology that may push the transition towards a decarbonized and clean en-
ergy system, due to its potentially wise application in power systems and transport. As 
such, within the European Union (EU) batteries are specifically mentioned in several pol-
icy initiatives that address transport, raw materials and energy economic sectors, EU in-
dustrial policy and EU research and innovation. The strategic importance of batteries for 
the EU is further demonstrated by the promotion of the European Battery Alliance and 
the adoption of the Strategic Action Plan for batteries as an integral part of the third “Eu-
rope on the Move” package [2]. Furthermore, batteries are linked to the targets set out in 
the seventh Sustainable Development Goal (SDG) of the United Nations’ 2030 Agenda for 
Sustainable Development, which refers to energy and is titled “Ensure access to afforda-
ble, reliable, sustainable and modern energy for all” [5]. 

In this context, Enel X participates in the Important Project of Common European 
Interest (IPCEI) on batteries [6], with their initiative related to the development of a bat-
tery anomaly detection system based on an enhanced battery digital twin capable of mod-
eling and predicting battery degradation. The Enel X project is focused on improving bat-
tery modeling, simulating the capacity derating and detecting anomalies. It aims to pro-
vide a tool that improves the lithium battery safety and reliability while decreasing unde-
sired interruptions during operations and increasing their efficiency. 

As part of this project, an in-depth study of the parameters linked to the degradation 
and to the amount of the charge of batteries is essential. It is being driven forward with 
research that is, by nature, interdisciplinary, involving engineers, chemists, physicists and 
materials scientists. 

There are several other reviews in the area of battery health assessment estimation 
methods, some of which are presented below. All existing reviews aim to serve as a useful 
support for researchers and practitioners by systematically reviewing the available litera-
ture on SOH estimation methods. Nevertheless, given the large number of methods pre-
sented, the discussion is superficial and schematic. In [7], SOH prediction methods are 
divided into four categories: model-based methods, data-driven methods, hybrid meth-
ods, and other methods. For each reference provided, experimental errors are reported, 
but the difference between each structure is not well detailed. The same happens in [8], 
wherein classification follows direct assessment, adaptive, data-driven and other ap-
proaches. Additionally, part of the paper is helpfully addressed to discussing internal and 
external issues causing battery performance declines and challenges. Values identified in 
[8] are also reported in [9] by adding further comparisons. In [10], methods are divided 
into three categories: differential analysis (DA) methods, model-based methods and data-
driven methods. Furthermore, the co-estimation of SOC and SOH based on model-based, 
data-driven and advanced sensing-based methods is reviewed. Although this paper rep-
resents a remarkable point, it remains generic. Paper [11], despite performing our classi-
fication, provides research achievements in terms of real-time battery SOH estimation for 
automotive applications, especially hybrid electric ones, leaving out the stationary field. 
Furthermore, in [12] the review of SOH estimation methods is inserted in a broader con-
text related to prognostics and health management (PHM) for the automotive sector. On 
the other side, [13] has a focus just on the application of photovoltaic systems. Existing 
methods are categorized and discussed according to the signals used to extract health in-
dicators, namely terminal voltage, temperature, ultrasound and force. Paper [14] distin-
guishes SOH estimation methods just in experimental and model-based estimation meth-
ods dealing marginally with increasingly widespread data-driven methods (counted 
among model-based estimation methods). On the other side, [15–17] only review methods 
related to machine learning (ML), and [17] is by far the most detailed one, giving a timely 
and systematic review of five non-probability-based algorithms for SOH estimation based 
on ML. Refs. [15,16] also considered other battery states. In [18], two different approaches 
are considered in terms of the way the method is carried out: experimental and adaptive 
methods. The first approach considers in turn direct measurements and a model based on 
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measurements. Another singular subdivision can be found in [19], which distinguishes 
between spectroscopy and electrochemical techniques, methods based on models (semi-
empirical models for capacity loss and equivalent circuit-based models), analytical mod-
els and statistical methods, providing only brief hints. In [20], SOH estimation approaches 
can be divided into measurement and analysis approaches, a Bayesian-based estimation 
approach, an empirical fitting approach, and an ML-based approach. Nevertheless, the 
dedicated space is even shorter than previous ones, since the paper includes almost all 
relevant states such as state of function (SOF). In [21], battery SOH at the cell-level and 
pack-level (a battery pack consists of the series and parallel connection of elementary cells, 
usually assembled into modules) are interestingly treated separately. The characterization 
parameters of individual cell SOH estimation methods can be divided into capacity, im-
pedance and aging-mechanism-based parameters, whereas the estimation methods of bat-
tery pack SOH can be divided into model-based methods and data-driven methods. Much 
attention is paid in detail to the individual parameters but not to the methods as a whole. 
Likewise, in [22] the existence of a substantial number of approaches for the estimation of 
different battery states and parameters, including SOH, is generically discussed. In par-
ticular, SOH related to the battery power capability is distinct from SOH related to the 
battery energy capability. Naturally, less recent reviews such as [23] were also considered, 
although they are sparse about SOH, which is a current parameter. By the way, all men-
tioned documents contribute, each in their own way, to progress in the research on the 
topic. Nevertheless, different from previous works, this work does not claim to cover the 
whole multitude of battery models for state of health estimation or give a broad overview 
over the landscape of existing models, but it is focused only on a handful of selected meth-
ods, investigating their strengths and weaknesses as well as their applicability to different 
situations. For each method analyzed, a comprehensive sketch of every single aspect rel-
evant to its implementation and optimization is presented, offering readers a single doc-
ument with an understanding of different structural solutions found in the literature, 
making a comparative analysis when necessary. Therefore, it is not a simple comparison 
between methods since the different processes followed by various authors for each 
method are deepened, dissecting their peculiarities. 

2. Degradation and State Parameters 
Li-ion batteries are complex electrochemical, time-varying and nonlinear systems, 

whose internal mechanisms are not yet fully understood. Battery degradation is a process 
involving many electrochemical reactions at anode, separator, cathode and electro-
lyte/electrode interfaces. The battery aging process depends on internal factors concerning 
the loss of active material (LAM), the loss of conductivity (CL) and the loss of lithium 
inventory (LLI). In particular, LAM includes the decomposition of anode and the cathode 
material and electrolyte, respectively. CL refers to the battery’s current collector breaking 
and decomposition, as well as to the battery adhesive detachment and degradation. Fi-
nally, LLI includes the constitution of lithium dendrites, the generation of a solid electro-
lyte interphase (SEI) layer and the self-discharge of the battery [7]. At the same time, op-
erating conditions like temperature, the number of cycles and power magnitude also in-
fluence the battery aging process. 

The different Li-ion battery chemistries on the market feature different open circuit 
voltage (OCV) and different degradation behavior. While some materials are quite robust 
and typically have a long-life cycle, others degrade faster but present other benefits; this 
means that the optimal battery chemistry depends on the application. 

The Li-ion battery is one of the most investigated research topics today. Many organ-
izations are providing datasets to accelerate research on a wide set of battery models use-
ful in predicting degradation and failures. In general, for any given system, an ideal solu-
tion could be collecting all the data available and processing them using efficient tech-
niques to assess its state parameters. A comprehensive review of datasets related to Li-ion 
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batteries available in the public domain is presented in [24]. We also have designed a bat-
tery testing system with a software/hardware interface to collect data (voltage, current, 
temperature, cell charge capacity and cell energy capacity) over time when cycling batter-
ies at room temperature and at controlled temperature inside an environmental test cham-
ber [25]. The creation of such a dataset, being able to vary charge and discharge conditions 
following the specific needs of various estimation methods, is proving to carry out a ro-
bust study on battery life prediction. 

In this regard, several battery parameters must be known for effective battery man-
agement. Generally, they change in real-time due to fast-changing microscopic electro-
chemical parameters. Predominant indicators are the state of charge (SOC) and the state 
of health (SOH) [10]. SOC is an indicator of the amount of energy available in the battery 
in comparison with its maximum capacity: conceptually, it is quite similar to the fuel 
gauge. SOH is an indicator of the battery aging condition in comparison to its native con-
dition. SOH is usually calculated in terms of battery capacity fade. To describe the loss in 
power, the state of power (SOP), intended as the ratio of peak power to nominal power, 
has been introduced. Moreover, SOF focuses on the battery-specific continuous or instan-
taneous power output capability in a period and relates SOC and SOH with the degrada-
tion of output power [26]. Remaining useful life (RUL) is also associated with SOH: if we 
assume that the SOH of a new battery with no degradation, i.e., at the beginning of life 
(BOL), is 100% and that, when the SOH value reaches 80%, the battery has reached its end 
of life (EOL) and must be replaced, then the RUL represents the remaining lifetime until 
the EOL [27]. There are also many other acronyms including the state of energy (SOE) 
determining the battery’s remaining energy and the state of temperature (SOT) precisely 
concerning temperature and state of safety (SOS) which considers events that changed the 
safety behavior of the battery [28]. The latter qualifies as a fundamental parameter to 
schedule timely maintenance, ensuring the efficiency and optimal performance of battery 
systems. Because of the high value of Li-ion batteries in sustaining the energy needs of 
humanity, they need to be used safely and reliably, avoiding catastrophic accidents with 
fire hazards [29]. 

Battery states are connected and interact with one another, often resulting in multi-
state joint estimation. Despite the plethora of existing parameters, this review will only 
deal with the calculation of SOH with references to SOC. 

3. Battery State of Health Determination 
According to the definition, the SOH represents the maximum discharge capacity in 

comparison to the rated capacity of batteries as analytically described in (1): 

SOH(t)= Cmax(t)
Cmax(0)

·100. (1) 

Strictly following the definition above, SOH can be calculated as the inverse ratio 
between the charge available by discharging a fresh battery under the maximum voltage 
range of the datasheet according to regulated operating conditions (i.e., the nominal ca-
pacity Cmax(0)) and the charge extracted from the fully charged battery that is then dis-
charged considering the same voltage range and same conditions (Cmax(t)). The condition 
just described is difficult to reproduce in an environment other than an equipped labora-
tory. Moreover, the battery may not be able to be fully discharged or fully charged. 

Various methods have been reported in the literature for SOH estimation. However, 
an unambiguous procedure has not been established yet. In this review, SOH estimation 
methods can be roughly distinguished between experimental methods, model-based 
methods, and data-driven methods. However, the demarcation between the three catego-
ries is extremely blurry, as many hybrid methods exist in the literature. 

Experimental methods rely on specific experimental techniques that acquire meas-
urements of phenomena and physical quantities mostly reflecting the global response of 
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the battery cell. Acquired experimental data are then used to develop and validate the cell 
performance [30]. 

Model-based methods describe batteries through electrochemical, equivalent electric 
circuit models (ECMs) and/or empirical models according to the interpretation of certain 
battery processes [31].  

Finally, data-driven methods headed by neural networks (NNs) are based on data 
handling and ML, which is a specific application of artificial intelligence (AI). These meth-
ods estimate battery degradation by mapping external characteristics to battery capacity 
loss [32]. 

It is anticipated that each method has its complexity, mode of operation and scope of 
application and that better results can be achieved under certain circumstances. On the 
other hand, in the literature, there is no univocal evaluation index: for example, in [7] 
wherein a detailed synopsis of the evaluation results for different SOH estimation meth-
ods is reported, definitions such as accuracy, best-fit values, maximum estimated differ-
ence, performance and other similar expressions are addressed. Otherwise, there are more 
detailed performance indices, such as percentage mean squared error (MSE), percentage 
root-mean-square error (RMSE), mean percent absolute error (MAPE) and mean absolute 
error (MAE) as expressed in (2)–(5) respectively, where N is the total number of training 
samples, SOHk is the estimated SOH by the selected method at timestep k, and SOHk

*  is 
the ground truth SOH value at timestep k: 

MSE= 1
N

∑ (
SOHk

* -SOHk
SOHk

* )
2 ∗ 100N

k=1 , (2) 

RMSE= 1
N

∑ (
SOHk

* -SOHk
SOHk

* )
2

N
k=1 ∗ 100, (3) 

MAPE= 1
N

∑ SOHk
* -SOHk

SOHk
*

N
k=1 *100, (4) 

MAE= 1
N

∑ SOHk
* -SOHk

N
k=1 *100. (5) 

4. Experimental Methods 
Experimental methods are conducted in a laboratory environment to analyze battery 

aging processes and provide theoretical support for model-based and data-driven meth-
ods. 

As depicted in [14], experimental methods encompass direct measurement methods 
and indirect analysis methods. Direct measurement methods use capacity tests, imped-
ance measurements and other tests to measure SOH directly. On the contrary, indirect 
analysis methods require data analysis and processing to find the SOH-related parame-
ters. That is, according to a multi-step derivation method, after obtaining the relationship 
between the health indicators and capacity or resistance, SOH can be obtained.  

Among the various methodologies, electrochemical impedance spectroscopy (EIS) 
and incremental capacity analysis (ICA), belonging respectively to the first and second 
groups, are dealt with below. 

4.1. Electrochemical Impedance Spectroscopy 
EIS allows investigating physical and chemical phenomena over a suitable frequency 

range [33]. Nevertheless, according to a literature survey in [34], EIS is not frequently used 
in lithium-based battery studies due to the difficulty of being calculated online, and, 
where it is used, it is primarily a supporting technique in offline measurements.  
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An electrochemical system is excited at different frequencies through a small-ampli-
tude potential or current periodic perturbation to ensure a steady state. According to the 
harmonic response, the impedance of such a system represents the transfer function, 
which can then be calculated by measuring the current or the potential of the system. An 
improved version is the dynamic EIS, wherein the small alternating current perturbation 
signal is superimposed on the direct current bias that mimics the charge or discharge con-
ditions of a cell. In [35], a multi-sine EIS technique was applied, using a specifically crafted 
excitation signal with superposed sine waves of different frequencies from 1 kHz–6 kHz 
down to 1 Hz, such that an impedance spectrum can be acquired every second. 

The most used power converters for EIS are non-isolated DC–DC converters, since 
they are simple and have minimal requirements. In [36], challenges and opportunities for 
utilizing power converters as an EIS perturbation source are outlined. Especially for 
online EIS, accuracy might be impacted, and the power converter design and control be-
come complex. In electric vehicles (EVs), where the pack voltage can exceed 800 V, high 
voltage converters are needful. By imposing an AC signal with a DC offset, the peak cur-
rent level in the switches and batteries increases so that the used semiconductors could be 
overrated. Dealing with a battery pack where cells are connected to each other, online EIS 
is influenced by the connected circuits. Hence, measured results need to be compensated 
or extra circuitry is required for isolating each cell during EIS. Since the degradation of 
cells could be different, the most promising way is to apply EIS to single cells or modules 
at the expense of a higher final cost of the product. 

The usual form of plotting impedance data is a Nyquist plot where the resistance is 
displayed along the (real) x-axis and reactive components are displayed along the (imag-
inary) y-axis [37], as depicted in Figure 1. 

 
Figure 1. Nyquist plot of impedance data. 

The effect of the DC offset during dynamic EIS, the rest time, impacts of the SOC, 
temperature and aging on the EIS Nyquist plot of a lithium nickel manganese cobalt oxide 
(NMC) cell are shown in [36]. Depending on the state of the cell operation (charging/dis-
charging), the EIS spectra can be slightly higher/lower than that of stationary EIS. An im-
pedance shift to the right due to the duration of the rest time occurs at lower frequencies 
around 1 Hz, while, at high frequencies near 1 kHz, the impedance behaves inde-
pendently of the rest time. Likewise, there is a shift toward the right side and up as the 
SOC increases with more irregularities in the impedance spectra per SOC equal to 0 and 
100%. Especially at low temperature, the shape of the graph deforms so that battery tem-
perature should be considered in SOC estimation. Finally, aging not only shifts the spectra 
toward the upper right side of the complex plain but also deforms the shape of the Nyquist 
plot at particularly low frequencies. 
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In the ideal case, the impedance spectrum contains a separate feature for each ele-
mentary process that constitutes the overall electrochemical mechanism. The main 
strength of EIS is just its ability to effectively deconvolute complex electrochemical pro-
cesses into a series of basic processes based on the different relaxation times. However, in 
practice, processes are extremely difficult to deconvolute from a single measured spec-
trum. In [34], a comparison between the theoretical impedance response for an ideal case 
and a practical EIS measurement where many of the predicted features are not seen due 
to the overlap of time constants, very small impedance values for certain steps or other 
measurement artefacts are well illustrated. Consequently, it is appropriate to consider 
specific cell configurations and geometries. Examples are a symmetric cell configuration 
that consists of two identical electrodes or a three-electrode cells configuration, which ad-
ditionally includes a separate reference electrode probing the processes only on the se-
lected electrode. However, there are several experimental approaches to effectively de-
coupling the merged parts of the impedance spectrum into individual features. Among 
them, there is the systematic variation of the cell components and analysis of the corre-
sponding changes in measured EIS spectra, such as a change in the electrolyte concentra-
tion or a modification of the electrode thickness. It is also possible to combine EIS data 
with data obtained from complementary techniques, such as the visual inspection of the 
specimen or a range of microscopic techniques combined with local chemical analysis. 

The analysis of measured impedance data can be carried out using the equivalent 
circuit analysis. A process such as the migration of a charge through a phase exhibits the 
same response as ordinary macroscopic electric resistors, and the accumulation of a 
charge at a phase boundary exhibits the same response as capacitors. In [37], a schematic 
idealized impedance complex plane plot for a multicomponent system and its ideal ECM 
are well represented. In [38], a particular ECM based on the physics of the system is pro-
posed, concluding that the kinetic parameters associated with the anode, charge transfer 
resistance and diffusion resistance are the most adequate for following the SOH.  

Alternatively, SOH by EIS can be estimated based on data-driven methods. In this 
regard, a complete review can be found in [39]. Among the various described methods, 
authors in [39] presented an approach wherein EIS data are processed using a convolution 
neural network (CNN). In addition, a bidirectional long short-term memory (BiLSTM) 
model is used for serial regression prediction and the improved particle swarm optimiza-
tion (IPSO) algorithm is proposed to optimize the model. The so-called IPSO–CNN–
BiLSTM model shows satisfactory SOH prediction results with RMSE on average equal to 
1.83% as opposed to that of ECM, equal to 5.86%. In general, methods based on ECM, 
need accurate EIS data for model fitting: once there is an error in the EIS data, error prop-
agation will occur in ECM fitting and SOH prediction, leading to greater RMSE.  

To prove that the impedance is strongly influenced by the geometry and cables of the 
system, a calibration workflow is employed in [40] for Ni-Cd batteries. The proposed so-
lution uses a two-term impedance calibration process. Resistance and reactance are simu-
lated using an electromagnetic finite element model (FEM) to analyze the effect of the 
cable fixturing, including the self-inductance of the wire conductors due to alternating 
currents. It is proved that, at high frequencies above 200 Hz, an average variation of about 
8% on the real part and 6% on the imaginary part of the impedance value is obtained.  

Basically, cell connections, signal-to-noise ratio (SNR) and the nonlinear behavior of 
the battery cell demand special attention. In [36], it was learned that a four-terminal con-
nection or Kelvin connection results in minimum external impedance at the cell level. An 
optimum current excitation should result in 10 mV voltage amplitude, provided that the 
required excitation current amplitude increases linearly proportionally to the battery cell 
capacity (experimental tests on NMC chemistry). 

Moreover, results in [35] show that impedance spectroscopy is very sensible to safety-
critical degradation effects that happen during exposure to high temperatures. Even at 
moderate temperatures of about 65 °C, initial degradation effects can already be observed. 
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To gain useful insights into Li-ion cell degradation and to validate the interpretation 
of EIS measurements, several physic-chemical analysis methods of battery materials ob-
tained from aged cells as part of a postmortem analysis can be employed as discussed in 
[41,42]. 

For the sake of completeness, it should be noted that, in [43], a DC impedance spec-
troscopy (DCIS) method is proposed. While AC impedance spectroscopy (i.e., the tradi-
tional EIS) must rely on Fourier, Laplace, or other operators to obtain the impedance spec-
trum from the response signal, DCIS does not rely on frequency domain impedance to 
obtain battery parameters. In fact, it is a time-domain method that measures internal re-
sistance through a time function. In particular, the internal structure of the battery can be 
simplified into multiple resistance–capacitance (RC) networks whose value can be ob-
tained by changing the current pulse width according to the different time constant char-
acteristics of the RC network. Thanks to the low-cost and high-speed requirements for 
real-time battery diagnosis, by avoiding the data cross-domain conversion of the time-
domain EIS technology, the DCIS method reduces the difficulty of data analysis and po-
tentially accelerates diagnostic processing. 

4.2. Incremental Capacity Analysis 
The ICA technique fits with methods that have low computational demands and are 

suitable for battery management system (BMS) implementation since only two parame-
ters need to be monitored (voltage and charge/discharge capacity), sometimes with some 
detriment to the accuracy [44]. It has proven to be suitable for estimating the capacity fade 
and, subsequently, the SOH of batteries. 

The ICA technique consists of differentiating the battery charging capacity q [Ah] 
against the battery voltage v [V] as in (6): 

IC= dq
dv
≈ ∆q
∆v

. (6) 

Therefore, it falls into the category of DA methods. As shown in Figure 2, this results 
in an incremental capacity (IC) curve where the following IC metric points can be defined: 
peaks, valleys and voltage values. 

 
Figure 2. IC curve. 

Each peak has a unique shape, intensity and position, and it exhibits an electrochem-
ical process taking place in the cell [45]. In particular, peaks represent phase equilibria in 
both the anode and cathode (while the reciprocal of the curve indicates phase transitions 
in the electrodes) [46]. That is, the height describes the charge transfer rate at the examined 
voltage value, while the area under the peak describes the amount of charge transferred 
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within a certain voltage range [47]. Several researchers have demonstrated that the char-
acteristic peaks and valleys that appear when applying the ICA method can be used to 
estimate the actual capacity of the battery [48]. 

The choice of the ∆v amplitude is a compromise between the prominence of the peaks 
and valleys and the capability to suppress spikes or dips caused by random current 
changes due to the charger. In [48], ∆v was kept fixed at a value of 40 mV, and the corre-
sponding change in capacity ∆q was then calculated. 

The capacity is simply defined as the integration of the current i [A] during charging, 
as in (7), considering the time at the kth sampling point and N as the difference window: 

q= i dttk
tk-N

. (7) 

If a constant-current and constant-voltage (CC–CV) protocol [25] is employed during 
the charging process and just data acquired during the CC charging phase are used to 
calculate the IC curve, keeping the sampling frequency fixed, (6) can be rewritten as in (8): 

dq
dv
≈ I∙ ∆t∙ N

vk-vk-N
, (8) 

where I is the current during the CC phase and ∆t the sampling period. Hence, in this case, 
the shape of the IC curve is only related to the reciprocal of the slope of the charging volt-
age curve. In particular, a slow change in voltage is reflected on the IC curve as a peak, 
while a rapid rise in voltage is reflected on the IC curve as a valley [49]. 

In [45], the IC curve construction is depicted with extreme clarity, showing how 
peaks on the IC curve correspond to voltage plateaus on the initial cell voltage versus the 
charged capacity curve. After discharging and charging lithium iron phosphate (LFP) cells 
at a C/3 current rate in a climatic chamber at 50 °C, a decrease in the last peak and capacity 
reduction can be noted, which highlights a capacity loss due to LLI. Moreover, a slight 
right shift of the curves corresponding to an equivalent series resistance rise is also ob-
served. 

Lower charging/discharge current rates such as C/20 or even less, which are typically 
used to study ageing, have more pronounced peaks in the differential voltage spectrum 
and lower polarization influence on IC curves [50].  

In [47], the applicability of the methods for higher C-rates was examined, proving 
that when the charging rate is increased, peaks tend to merge. In particular, the decrease 
in the accuracy is more evident in the case of LFP cells rather than NMC and lithium ti-
tanate (LTO) cells, since LFP cells have significantly narrower characteristic peaks. The 
RMSE of the fitted model for LTO is 0.85% for C/3 charging, 1.58% for 1C charging and 
1.57% for 2C charging. The RMSE of the fitted model for NMC is 1.37% for C/3 charging, 
1.60% for 1C charging and 4.72% for 2C charging. The RMSE of the fitted model for LFP 
is 2.12% for C/3 charging and 2.33% for 1C charging while being so big that it is not re-
ported for 2C charging. 

In [51], the influence of sampling frequency on IC curves is evaluated by testing NMC 
cells with a C/2 current rate. As result, a sampling frequency of 0.1 Hz is suggested, as it 
can provide enough useful data points for deriving IC curves, decreasing the computa-
tional effort of curve smoothing. There are no substantial differences at 1 Hz or 10 Hz, 
while curves become problematic to manage for values below 0.1 Hz. 

IC-based health monitoring is available even during partial cycling. In fact, even if, 
in real-life applications, batteries are charged from different levels of SOC, at a low charg-
ing rate, it does not involve large changes in the IC curve, since it is plotted with respect 
to the voltage, which has a more defined position as opposed to the capacity [50]. Con-
versely, for higher current rates, the depth of discharge (DOD) could have a significant 
impact on the IC curve shape and thus on the peak area. As emerges in [45], wherein LFP 
batteries were tested, peaks could be related to the cohabitation of two graphite phases, 
and, since at a relatively high charging current, the graphite electrode never reached the 
thermodynamic stability, the graphite phases were not well-defined. Hence, a solution 
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was to add a pause during the charge, just before the IC peak B at a SOC close to 50%, 
opening the battery circuit for 30 min. This allowed the graphite electrode to reach ther-
modynamic stability before the charge continued and before the ICA is computed, making 
it able to estimate the remaining cell capacity within a 4% error. In the same study, it was 
shown that the peak area was bigger with increasing temperature because graphite lithi-
ation was activated by temperature, while the equivalent series resistance declined. 

Similar findings concerning the sensitivity of IC curves to current rates and temper-
ature changes can be found in [44]. When testing cells with graphite anode and 
LMO/NMC cathode, a change from C/5 to C/2 in the charging current can result in a 15% 
change in the amplitude of the IC peak. At the same time, a shift in the measurement 
temperature from 15 to 30 °C can result in an approximately 20% deviation in the ampli-
tude of the IC peak. 

In the spirit of considering real applications, in [48], tests were applied on both the 
cell and vehicle levels. Only calendar ageing is considered at the cell level, while the bat-
tery pack at the vehicle level is considered as a black box with no access point to measure 
or control temperature and the real terminal current fed into the vehicle. However, it was 
shown that peak and valley locations at the cell level match with those at the vehicle level. 
The NMC battery type (used in the BMWi3 EV) provided better results than the LMO type 
(Nissan Leaf EV), having an RMSE of 1.33% and 2.92% and a MAE of 4.25% and 8.54% 
respectively. 

ICA is particularly relevant to LFP, wherein a direct voltage analysis is inaccurate to 
determine any state of the battery, since the cell voltage only varies by 150 mV, while the 
charging state may vary from 10% to 90%; it is, therefore, preferable to analyze the voltage 
curve shape (slopes and plateaus) instead of the absolute value [45]. Specifically, for bat-
teries with flat voltage vs. SOC regions, data processing via a two-point numerical differ-
entiation is problematic once the derivative of the voltage approximates zero, yielding 
results of infinite slopes. In general, differential curves are very sensitive to amplitude 
resolution, cell performance change and measurement noise. For these reasons, the first 
step when performing SOH analysis is smoothing. Widespread filtering techniques are, 
for example, moving average, Gaussian filter and Savitzky–Golay filter [50]. In [52], a ro-
bust cubic smoothing spline method was presented, proving its superiority over typical 
filters that require tuning window size usually by trial and error; in this case, smoothing 
parameters could be determined by cross validation with a resulting RMSE for LFP bat-
teries of 0.49% or 1.55%, depending on whether low or high noise is introduced. 

The IC curve is correlated with SOH by constructing an offline analytical function 
between the battery capacity and some so-called features of interest (FOI) as a function of 
every possible degradation path [50]. Typical features used in the published literature are 
peak height [53], peak height ratio [52], peak and valley position [51] or peak area [54]. 
Regarding the last feature, there is no exact definition, as the voltage range can be defined 
based on a constant distance from the peak maximum or based on the shape of the peak 
[47]. However, one of the most popular methods to identify the peak area is that explained 
in [45]. Apart from the aforementioned FOI, other studies have proposed their own, such 
as regional capacity (capacity change over a predefined time interval linked to the concept 
of regional voltage) in [55].  

Several numerical procedures have been developed and evaluated for extracting 
FOIs and associating them with capacity fading. In [53], support vector regression (SVR) 
was used to achieve this goal (considering peak heights), and the model could predict the 
capacity fading of LFP cells with less than 1% MAPE except for a few outliers. In [51], after 
identifying monotonic trends in the positions of peaks and valleys as the battery ages, a 
linear regression function was established by using the Matlab curve fitting toolbox with 
less than 2.5% MAPE. In [52], a robust linear regression with the bisquare method was 
used, with a resulting RMSE for the worst cell of 2.69%, 4.44% and 8.69% considering the 
peak height ratio, peak height value and peak area, respectively. It was characterized by 
differently weighted observations based on their tendency of being an outlier, and the 
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prediction interval was obtained with a bootstrap method by predicting error resampling 
based on 1000 replications. In [54], three other types of regression methods are proposed 
and compared: ordinary least squares (OLS) method (which picks the regression coeffi-
cient to minimize the residual sum of squares), ridge regression (which shrinks the regres-
sion coefficients by imposing a penalty on their size and uses them to minimize the penal-
ized residual sum of squares) and linear regression with Pearson’s product–moment cor-
relation-based peak area selection method. After adopting cross validation to verify the 
accuracy, the resulting RMSE for the worst of the six LFP batteries under test is equal to 
1.41%, 1.08% and 2.78%, respectively. 

For ease of reading, the multitude of data presented is summarized in Table 1. 

Table 1. Few relevant studies on SOH evaluation by applying ICA. 

Ref. Error Relevant Features Chemistry 

[47] 

0.85% RMSE 

IC curve smoothed with moving 
average filter and Gaussian filter. 
Peak area as FOI. Second-degree 
polynomial curve fitted to the data 
to model the correlation. 

Rate C/3  
LTO 1.58% RMSE Rate 1C 

1.57% RMSE Rate 2C 
1.37% RMSE Rate C/3 

NMC 1.60% RMSE Rate 1C 
4.72% RMSE Rate 2C 
2.12% RMSE Rate C/3 

LFP 
2.33% RMSE Rate 1C 

[48] 

1.33% RMSE 
4.25% MAE Comparison between cell and vehicle levels 

(battery pack). Rate C/2, position of peaks and 
valleys used as FOIs. 

NMC 

2.92% RMSE 
8.54% MAE LMO 

[51] <2.5% MAPE 

Rate C/2. Linear regression function, established 
by using the Matlab curve fitting toolbox, used 
for associating FOIs (monotonic trends in the po-
sitions of peaks and valleys) with capacity fad-
ing. 

NMC 

[52] 

2.69% RMSE 

Filtering with a robust 
cubic smoothing 
spline method. Ro-
bust linear regression 
with bisquare method 
used for associating 
FOIs with capacity 
fading. 

Peak height ratio as FOI.  
RMSE of peak height ratio 
is 0.49% if low noise is in-
troduced and 1.55% if high 
noise is introduced. LFP 

4.44% RMSE Peak height value as FOI.  

8.69% RMSE Peak area as FOI. 

[53] 
<1% MAPE (ex-

cept for a few out-
liers) 

SVR used for associating FOIs (peak heights) 
with capacity fading. LFP 

[54] 

1.41% RMSE OLS method used for associating FOIs (peak 
height and peak area) with capacity fading. 

LFP 
1.08% RMSE Ridge regression used for associating FOIs (peak 

height and peak area) with capacity fading. 

2.78% RMSE 

Linear regression with Pearson’s product–mo-
ment correlation-based peak area selection 
method used for associating FOIs with capacity 
fading. 

5. Model-Based Methods 
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According to the classification into three main categories, electrochemical models use 
physical laws, such as concentrated solution theory and porous electrodes, to describe the 
electrochemistry inside batteries, offering a better understanding of the underlying phys-
ics mechanisms, such as diffusion, migration and reaction kinetics [56]. Examples are the 
pseudo-two-dimensional model (P2D), the single-particle model (SP) and other simplified 
pseudo-two-dimensional models (SP2D) [57]. On the other hand, ECMs want to form a 
circuit network to simulate the dynamic characteristics of the battery using a combination 
of a voltage source, resistors, capacitors and sometimes non-linear elements. Of all the 
models, Thevenin is the most popular. Adaptive filtering, observers and the OCV method 
are just a few techniques for identifying circuit parameters [58]. Finally, empirical models 
focus on the battery as a black box, testing the battery at different combinations of tem-
peratures T, SOCs and different charging/discharging C-rates [31].  

To follow, ECMs and empirical models will be explored. 

5.1. Equivalent Electric Circuit Models 
Circuit models for battery energy storage systems (BESSs) can be grouped into a few 

main categories, as listed in the following. Part of the information comes from previous 
works by the authors of this review. 

Basic models: The simplest circuit is obtained as the series connection of a constant 
voltage generator E0 and a resistor Ri [59–62]. The constant generator E0 represents the 
no-load voltage, usually referred to as the full-charge state. The resistor Ri models the 
voltage drop at the internal resistance, as well as at the terminals in the presence of current 
flow [61]. In most cases, it is necessary to consider the variation of Ri with SOC, which is 
observed for most battery technologies [60,61]; this allows for better accuracy. 

Sheperd, Unnewehr and Nernst models: These models derive from stoichiometric 
electrochemical formulations. The different models belonging to this category are the ones 
proposed by Sheperd [63], Unnewehr [64] and Nernst [65]. 

The original Sheperd formulation is in stoichiometric form, and the transition to a 
simpler ECM is carried out by accepting some approximations. A popular simplified ver-
sion is:  

vmodel(t) = E0 - Ri · i(t) - µs
SOC

, (9)

where µs is a constant term that links the variation of the voltage vmodel to the actual 
SOC, and i(t) is the battery current, positive during discharge. 

The Unnewehr formulation is similar to the Sheperd version: 

vmodel(t) = E0 - Ri · i(t) - µu· SOC. (10)

Thanks to its polynomial expression, this kind of model shows good accuracy when 
applied to restricted areas of discharge operation [64]. 

Both Sheperd and Unnewehr mathematical models are represented in the form of 
ECM placing a Vadd voltage generator in series with voltage generator E0 and resistor 
Ri. The amplitude of Vadd depends on the actual SOC value. 

Another model deals with Nernst stoichiometric formulation [65]. Once again, a sim-
plified ECM is obtained by using two Vadd controlled voltage generators related to SOC 
and proportional to µ1 and µ2, the latter being constant terms: 

vmodel(t) = E0 - Ri · i(t)+ µ1 · ln(SOC) + µ2 · ln(1-SOC). (11) 

RC linear models: A basic RC linear model integrates an RC network Rd–Cd that 
models the transient behavior of BESS during current steps [60,64,66–69]. In some appli-
cations, the behavior of BESS complies with several dynamics; therefore, the introduction 
of extra RC networks is useful to increase accuracy in voltage estimation [66,67,69,70].  

A modified version of the previous model is the Thevenin model [60,65,68,70–72]. In 
this case, higher accuracy is obtained by introducing a functional relation between the no-
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load voltage E0 and the actual SOC. An additional resistor Rsd is sometimes placed in 
parallel with the E0 generator to model the self-discharge phenomena, [70,72]. 

Runtime models: In runtime models, the ECM is divided into two or more sections 
linked to each other [60,61,73]. Typically, a first section is related to the voltage response 
depending on the forced current, similar to the models cited above. A secondary section 
provides the SOC estimation, evaluated by considering the voltage on a capacitor Ccapacity, 
whose capacitance value depends on actual BESS capacity, i.e., on SOH. Examples of 
runtime models are in [60,74,75].  

In recent years, some authors have proposed some advanced runtime models capable 
of predicting runtime and current–voltage (IV) performance while reducing the inherent 
complexity: the model in [76] allows for predicting the runtime operation, steady state 
and transient response of the battery. However, in [61], the authors stated that this latter 
model shows some limitations occurring for transient response in the case of fast changing 
loads (e.g., dynamics about 1 s or less) at a high current rate. For the purpose of avoiding 
these disadvantages, in [77], some additional parameters were introduced linking their 
value to a specific rate factor f(i(t)), which accounts for the decrease in capacity caused 
by unwanted side reactions as the current increases. A more detailed analysis is also pre-
sented in [78]. 

Tremblay and Jackey models: In recent years, the main software houses have devel-
oped some battery models and integrated them into simulation platforms in the field of 
electrical and electronics engineering. An overview of these models is presented in [60]. 
In [79,80], Tremblay et al. proposed an ECM derived from the Sheperd formulation. An-
other BESS model has been proposed by Jackey, focusing on its fast implementation in 
electronic circuit simulations using acceptable approximations that reduce the number of 
parameters to identify [81]. 

Randles models: The peculiarity of this category is that some of the circuit parameters 
are time-varying, since their value depends on the actual battery state (i.e., actual SOC 
and SOH), as well as on external conditions (such as imposed current rate and tempera-
ture). A wide number of papers in the literature refer to the implementation of the Randles 
model in combination with a Kalman filter (KF), the latter used for parameter tuning. 
Some examples are in [61,68,82]. 

Other circuit models: Many other circuit models are reported in the literature. In this 
section, a brief description is reported for some of them.  

Some significant examples are discussed in [62,83,84]. In these works, the terminal 
voltage is approximated by using simple polynomial expressions.  

In [85], an impedance model for intermediate-size lead acid batteries is presented by 
Salkind et al. EIS is combined with fuzzy logic data analysis to characterize both small 
and large lead-acid batteries [23,60,86].  

Another fairly widespread circuit is described in [87,88]. This is usually named the 
“third-order model”. A parasitic branch is added to a basic Thevenin topology to model 
the nonreversible reactions that do not provide any contribution during charge operation 
[89]. 

Some authors proposed new approaches based on fractional impedance [57,90,91]. 
In [90], a simplified fractional impedance model based on the Grünwald–Letnikov defini-
tion is introduced, and the least squares (LS) genetic algorithm (GA) is utilized to identify 
the model parameters with a low voltage-tracing error rate. The circuit topology is similar 
to the Thevenin one, and two RC branches are included to model concentration polariza-
tion and activation polarization phenomena.  

In [57], authors report a commonly used fractional-order model replacing the pure 
capacitive element in the Thevenin model with a constant phase electrochemical imped-
ance element (CPE). In impedance spectrum fitting, the CPE is often used in parallel with 
pure resistance. CPE characteristics are difficult to process in the time domain, so it is 
usually necessary to apply the theory of fractional calculus. Commonly used fractional 
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calculus exploits the theoretical background coming from the Grünwald–Letnikov defini-
tion, the Riemann–Liouville definition or the Caputo definition.  

Guo and Shen provide an overview of fractional order circuit models including War-
burg elements, which are often added to describe the battery diffusion phenomenon in 
the low-frequency region [91]. This work also compares the available approaches in terms 
of accuracy and complexity or, more generally, in terms of benefits and drawbacks.  

A comprehensive comparison between circuit models considering all their features 
and performance is very difficult due to a large number of criteria to take into account. 

In general terms, four final remarks can be stated. First of all, the more complicated 
models lead to satisfactory accuracy in most cases. However, their complexity can some-
times be an obstacle to their practical implementation; secondly, due to the large dynamic 
range in BESS operation, the accurate tracking of transient phenomena requires at least 
the presence of one series RC branch in the circuit model; thirdly, for each model, the 
uncertainty on the no-load voltage value E0 implies a large sensitivity in final accuracy; 
finally, in most cases, Thevenin, Runtime and Runtime IV models are the best compro-
mises between performance and complexity.  

The evaluation of SOC and SOH requires the implementation of an estimation algo-
rithm having an ECM as the core of the estimation process.  

A relevant category of estimation algorithms is the one exploiting observers [92–94]. 
For example, in [92], authors proposed a multi-gain switching observer in which different 
types of errors (sensor drifts, modelling mismatches and so on) are treated differently by 
switching the internal gains of the observer. To do this, a geometry classifier is designed 
to categorize these errors into different groups using the information of the voltage error 
between the model and measurements.  

In [93], authors proposed an adaptive observer based on the sliding mode method 
with the purpose of avoiding the chattering effects while improving the estimation per-
formance. In [94], another adaptive observer was proposed according to a specific online 
parameter estimation algorithm. The derivative of OCV estimated online led to the SOH 
value considering that the estimated battery capacity could converge on the actual value 
while the error of the battery OCV converged on zero. 

Another example of an estimation algorithm based on observers is described in Fig-
ure 3 [95]. 

 
Figure 3. A PI-based estimation algorithm, ECM is the internal core. 

The proportional-integral (PI) controller is used for an observer, making the method 
suitable for many battery technologies. Its exploitation for a certain application simply 
requires the tuning of proportional and integral terms of the PI. The system also integrates 
a relaxation voltage OCVrelax prediction function. 
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Parameters of the ECM are tuned in real-time by the observer itself. Practically, the 
error coming from the comparison between the real and model voltage is used to appro-
priately tune the OCV voltage during the charging and discharging processes, so that the 
estimation error caused by parameter and state variations are automatically compensated. 
This process allows for compensating inaccuracies due to measurement errors and 
changeable environmental conditions, such as temperature or load variations. 

As for the resistance, a polynomial approximation of the Ri(SOC) curve is created 
from an extensive series of experimental measurements on different types of batteries. 

Regarding the relaxation voltage prediction, the main issue is that the battery voltage 
matches the static OCV when the battery is under open circuit conditions (no current) for 
a long time while the voltage has been relaxed to its equilibrium [73]. Under this condi-
tion, the measured voltage can be considered the OCV value corresponding to a particular 
SOC. However, because of the need for a long rest time for full relaxation, the application 
of the OCV for SOC estimation is usually difficult, so the OCV method is not generally 
applied for real-time application [96]. 

Among observers, KF and its variants are also often used to estimate SOC and SOH. 
Some descriptions and relevant examples are in [57,91,97,98].  

In [97], a step-by-step guide for the implementation and tuning of an extended KF 
(EKF) was presented. An analytical approach described in the paper reduced the efforts 
of the common empirical filter tuning and could be adapted to various battery models, 
systems and cell types. 

In [98], a Thevenin model has been established to model BESS. Appropriate battery 
charge-and-discharge experiments were performed to identify the parameters of this 
model. Finally, EKF applied to the model experiments exhibits high precision. 

In most cases, the estimation of SOH is obtained from the actual value of SOC or 
together with its evaluation in the form of a co-estimation process [99–102]. 

In [99], authors proposed a comprehensive co-estimation scheme of battery 
SOC/SOH for the second use of Li-ion power batteries in EVs under different cycles using 
an adaptive EKF (AEKF). First, according to the collected battery test data at different 
aging cycle levels, the external battery characteristics are analyzed and then a cycle-de-
pendent ECM is built up. Next, the parameter estimation of this battery model was per-
formed via a recursive least square (RLS) algorithm. Meanwhile, the variations in internal 
battery parameters of the cycle numbers were fitted and synthesized. Moreover, the vali-
dation of the estimated parameters was further carried out. Based on this enhanced bat-
tery model, the AEKF algorithm was utilized to fulfil battery SOC/SOH estimation simul-
taneously. 

In [100], a fuzzy unscented KF (UKF) filtering algorithm of a new type was proposed, 
with an improved second-order RC circuit model established and an online parameter 
identification method. Ohmic resistance was treated as a battery SOH index, and the UKF 
algorithm was used for the joint estimation of SOC and SOH. 

In [101], the proposed algorithm estimated SOC from the battery model. Capacity 
estimation was decoupled from the SOC estimator; this approach reduced the strong in-
teraction existing in conventional co-estimation methods. Additionally, all state variables 
could be solved together by one estimator, which is straightforward and avoids the com-
plicated observer network. Owing to the decoupling design, the stability of the proposed 
method became more intuitive and could be always guaranteed, according to the convex-
ity analysis, without using other stabilizing approaches. In consequence, a weak-interac-
tion and robust co-estimation algorithm of SOC and SOH could be realized by the pro-
posed technique. 

Figure 4 refers to the estimation algorithm described in [102]. 
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Figure 4. Flow chart of a mixed algorithm and the co-estimation of SOC and SOH. 

The Coulomb-counting method (CCM) and ECM are merged into a mixed algorithm 
to benefit from their advantages while compensating for their drawbacks. In particular, 
the ECM approach improves the accuracy of CCM, while CCM reduces the computational 
effort related to ECM. Voltage and current measured during each charge or discharge cy-
cle contribute to tune parameters and to achieving the assessment of SOH. The tuning of 
the efficiency index η is executed from time to time by reversing the following equation 
belonging to CCM but using data provided by ECM:  

SOC = SOC0 - 1
Cn

 η(t) i(t) dt, (12) 

where SOC  represents the initial value, C  denotes the nominal capacity, t is the dura-
tion of battery charging and discharging, and η denotes the coulombic efficiency. 

Performing simple calculations and considering a given time interval [t0, t1], the ac-
tual capacity Cact can be calculated as a function of SOC variation and total charge Q 
flowing during a charge or a discharge process: 

Cact= 
η(t) i(t)dtt1

t0
SOC(t0)-SOC(t1)

=
Q t0:t1

∆SOC t0:t1
 η(t). (13) 
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It is now clear that, under this approach, SOH is directly evaluated from SOC, the 
latter estimated using ECM. It can be stated that the identification of ECM and the estima-
tion of SOC and SOH are strongly linked to each other. The most common topology used 
in estimation algorithms for SOC and SOH is the Thevenin one or a variant of the same. 
Although it is a very simple topology, it can give satisfactory accuracy only if inserted into 
a suitable algorithm, so long the latter can tune circuit parameters from time to time, es-
pecially in the case of fast variations in working conditions. 

5.2. Aging Models 
Aging models (AMs) are widely used in literature, and their efficacy is supported by 

many publications. The main advantage of AMs is the relatively low computation effort. 
Once the model parameters of a specific battery have been estimated, the estimation of 
capacity loss can be performed very easily and is perfectly suited to online applications 
both in vehicles and in stationary applications. The main disadvantage is that the specific 
battery may not respond perfectly to the characteristics defined in the testing phase. In 
fact, at the base of the AMs, there is always a large dataset from which the main degrada-
tion mechanisms can be estimated as a function of the operating conditions [103,104]. To 
identify the parameters relating to the model, a wide range of data is first necessary to 
obtain the formulation of the mathematical model. Therefore, the datasets are often built 
from a large number of samples recorded in long period measurements and are used to 
obtain a formulation that allows covering the greatest possible cases of real applications 
on actual cycles of the formulated model. Mainly the datasets differ in operating temper-
atures, DOD and charge/discharge rate. 

The formulation terms used for estimating lost capacity are mainly based on calendar 
aging and cycle AMs. The first one includes all the chemical/physical phenomena that 
lead to the degradation of the battery regardless of the charge and discharge cycles and 
operating conditions. The contribution of calendar aging is particularly significant in all 
those applications in which the battery idle states are more frequent, or the operating con-
ditions require low charge/discharge rates at low DODs. The idle state is an operating 
condition that cannot be neglected. In fact, in all applications, a large part of the useful life 
of a battery is in its idle state. At the same time, few authors have yet addressed the issue 
of apparent capacity loss that occurs after long idle periods. The models present in the 
literature mainly make use of two formulations for the estimation of calendar aging. Many 
authors start from the Arrhenius formulation to estimate the contribution of capacity lost 
due to temperature [105]. The model finds application in many fields as it is linked to 
mechanical fatigue. Other authors use polynomial models to estimate the capacity lost in 
the idle stages of the battery instead. 

In [106], the authors examined a large dataset to find the mathematical model that 
estimates the lost capacity. The tests were performed at different DODs, rates and tem-
peratures. The estimate of the battery capacity was evaluated based on four different tests 
(capacity test, relaxation test, EIS and hybrid pulse power characterization (HPPC)), and 
the value obtained was then used to build the model. The basic formulation used is the 
following: 

Qloss = B · exp -Ea
RT

(Ah)z. (14) 

Herein, Qloss is the normalized capacity loss, B a fitting factor, Ea is the activation 
energy, R is the gas constant, T is the absolute temperature, Ah is the total capacity pro-
vided by the battery, and z is the exponential factor. 

Authors suggest that, at low C-rates (lower than C/2), the effect of DOD on the esti-
mation of lost capacity has a negligible impact compared to time and temperature. The 
model obtained, however, is not suitable for application at high temperatures and rates 
larger than C/2. In this case, the final formulation is always obtained through the expo-
nential term (Arrhenius) but considering values of B, Ea and z that minimize the error 



Energies 2023, 16, 632 18 of 35 
 

 

between the estimated lost capacity of the model and the measured one. The result, alt-
hough semi-empirical, can estimate the lost capacity component of the battery in a wide 
range of operating conditions. However, it does not seem to be able to make online esti-
mates, as it is not possible to adapt the model to the temporal variation of operating con-
ditions, like for example, a varying rate of charge. 

In [107], an interesting model that allows the evaluation of the terms of capacity fad-
ing is proposed. In this case, the battery capacity loss was estimated as in (15) to evaluate 
the reliability margins and the residual capacity in terms of remaining life. The cumulative 
stress approach was used to estimate the lost capacity. Under these hypotheses, the Ar-
rhenius model was used to estimate the contribution of capacity lost due to calendar ag-
ing. 

Cc(t) = h1 e- h2
Tbatt  + h3, (15) 

where h1, h2 and h3 are constants to be determined, and Tbatt is the battery tempera-
ture. All contributions related to the effect of cycle aging are instead derived from the 
definition of capacity lost in a standard cycle, with appropriate corrective factors that take 
into account the different operating conditions. Operating conditions are defined based 
on DOD, temperature and charge and discharge rates. Examples of fading factor contri-
butions are displayed in Figure 5. 

 
Figure 5. Fading factor based on temperature (a), discharge rate (b), charge rate (c) and DOD (d). 

The final formulation of the total capacity lost in a second is expressed as in (16): 

Cp = Ct Fi-CD Fi-CC Fi-T Fi-DOD
nttl

,   (16)

where Cp represent the total capacity lost, and Ct is the capacity lost in nt standard cy-
cles of tl seconds, and  Fi-CD, Fi-CC , Fi-T and Fi-DOD represent the fading terms relating 
to discharge current, charge current, temperature and DOD, respectively. 

The method is purely based on the model and therefore does not include experi-
mental validations but provides a very easy-to-implement approach for estimating the 
useful life of a battery. 
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In [108], authors proposed single models for the estimation of the equivalent life cy-
cles of the battery as a function of the temperature of the cycles at constant current (charge 
and discharge) and of the DOD. In this case, the dataset was very large and allowed the 
identification of all the information regarding the fading mechanisms. The contribution of 
calendar aging in this case was not considered. All mathematical models were of expo-
nential type except the dependent model from the temperature, which was of polynomial 
type. The number of equivalent cycles was in turn linked to the loss of capacity by the 
relationship: 

CLeq= Cdis,act
Cref

, (17) 

where Cdis,act is the total net discharge capacity during the life of the battery, and Cref is 
the initial capacity. The coefficient values are estimated using the LS fitting method. The 
model is then compared with experimental data that shows a MAPE in the estimation of 
battery cycles of 5.4%. The authors emphasize that the main fading mechanism is the one 
linked to the increase in internal resistance. The increase of the internal resistance at high 
charge rates increases the losses due to the Joule effect with the consequence that the bat-
tery temperature increases, bringing the operating point outside the optimal operating 
conditions (>45 °C). 

Although many AMs provide very promising results in terms of predicting battery 
life, the parameters used for estimating mathematical models are often limited by the 
characterizations performed in the construction of the datasets. For this reason, it would 
be more useful to combine AMs with strategies for updating the constants of the online 
mathematical model. 

6. Data-Driven Methods 
AI refers to computer programs with the ability to mimic the cognitive function of 

humans, such as reasoning and learning, thus representing the effort to automate intellec-
tual tasks normally performed by humans. 

While AI expresses the general concept, ML is an application or subset of AI intended 
as a revolutionary programming approach whereby a computer algorithm can automati-
cally learn how to perform a specified task by looking at data, i.e., it is trained rather than 
explicitly programmed to perform a given task.  

ML algorithms can be broadly divided into two main branches, supervised and un-
supervised learning algorithms, depending on their functionality and the approach used 
to learn from experience.  

Supervised ML techniques take as input a known set of data and the corresponding 
responses and learn to generate reasonable predictions as a response to new data. Unsu-
pervised ML techniques consider just data without labelled responses to draw inferences 
from datasets. To better address the issue of batteries, this study will focus on supervised 
techniques, such as SVR and NNs, as they are suitable for modeling highly nonlinear sys-
tems [109]. 

6.1. Neural Networks 
Basically, an artificial neural network (ANN), usually simply called a NN, is a statis-

tical model that is designed to mimic the biological structures of the human brain. In the 
same vein, an NN consists of highly interconnected processing elements, called neurons, 
which communicate together to perform a learning task based on a set of observations. 
Even though ANN have been popular for decades, since the single perceptron was intro-
duced in 1958, the understanding of the processes underlying them is usually based solely 
on anecdotal evidence in a particular application domain or task [110].  

A deep neural network (DNN) is an augmented version of the conventional ANN 
whose capability has been greatly expanded by increasing the number of computational 
layers, overcoming hardware and software limitations. Practically, the DNN is an ANN 
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with deeper computational layers able to handle, in principle, any type of non-linear func-
tion as a powerful function approximator. That is why, in addition to being the current 
record holder in domains such as computer vision, speech recognition and natural lan-
guage processing, in recent years it has also been proposed for battery state estimation 
[111]. In short, as schematized in Figure 6, a DNN consists of at least three computational 
layers: the input layer, the hidden layer (so-called since its computation results are not 
directly visible to someone interacting with the network) and the output layer. According 
to the Universal Approximation Theorem, a three-layer structure can approximate, with 
an arbitrary level of precision, any measurable function, given that a sufficient number of 
processing neurons are available at the hidden layer. However, hidden layers can range 
from one to thousands.  

 
Figure 6. Typical NN structure. 

The main difference between the various possible architectures of a DNN lies in the 
interconnections between neurons: in the feedforward neural network (FNN), architec-
ture neurons form acyclic connections, with no internal loops, while in the recurrent neu-
ral network (RNN) architecture neurons form cyclic connections. Therefore, in the first 
case, the information flows only in one (input to output) direction, while, in the second 
case, it also flows in the opposite direction. This addition makes RNNs powerful models 
in the treatment of time-dependent data. RNNs are useful in the state forecasting of dy-
namic systems and thus in the long-term prediction of battery degradation. 

Below, a DNN with the task of SOH estimation is described. In this setting, the DNN 
is used to map the battery parameters such as voltage, current and temperature to the 
battery SOH. Mathematically, inputs and outputs vectors are defined respectively as in 
(18) and (19): 

X=[Vk,Ik, Tk], (18) 

Y=[SOHk], (19) 

where Vk represents the instantaneous voltage of the battery, Ik represents the instanta-
neous current of the battery, Tk represents the instantaneous temperature of the battery, 
and SOHk represents the instantaneous estimated SOH value.  
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Hence, the vector of inputs is fed to the input layer of the DNN going through a series 
of matrix multiplication to yield the vector of outputs at the output layer.  

To transfer an input data point to the next layer, a number called weight is associated 
with each link. In particular, wfg L  denote the weight of the connection from the gth neu-
ron in the (L-1)th layer to the fth neuron in the Lth layer. It is possible to use a similar 
notation for the network’s biases and activations. Explicitly, bf

L and af
L are, respectively, 

the bias and the activation of the fth neuron in Lth layer. With these notations, the activa-
tion af

L of the fth neuron in the Lth layer is related to the activations in the (L-1)th layer 
by (20) [112]: 

af
L = σ wfg L

g

ag
L-1+ bf

L  , (20) 

where σ is a generic activation function. The bias has the effect of increasing or decreasing 
the input of the activation function by a constant value, thus increasing network flexibility. 
A different activation function can be specified for each hidden layer. In the context of 
non-linear functions [113], among the most recurring functions, there are the sigmoid 
function and the hyperbolic tangent (Tanh) function. One of the new milestones in the 
deep learning revolution, practically used as a default function, is, however, represented 
by the ReLU function, which stands for the rectified liner unit [114]. Improvement varia-
tions are the leaky ReLU (LReLU), parametric ReLU (PReLU) and exponential linear unit 
(ELU) [115]. The saturation of the activation function causes the degrading of network 
performance since the gradient in the saturation regions is almost zero and no signal is 
transmitted through the node. Since, with basic ReLU function, gradients during negative 
input are always 0, the other ReLU variations act on the negative part to remedy this prob-
lem known as vanishing gradient. Conversely, the exploding gradients problem can occur 
when, in some cases, the gradients keep getting larger and larger as the backpropagation 
algorithm progresses. This, in turn, causes very large weight updates and causes the gra-
dient descent to diverge, requiring the application of the gradient clipping technique. 

Moreover, to directly control the behavior of the learning process, having a signifi-
cant effect on the performance of the model, specific parameters called hyperparameters 
are used; the batch size that identifies the number of training samples is just an example. 

Before the data is fed into the network, it must be normalized or standardized [116–
119]. However, in more complex NNs, after the original data are measured and recorded 
using offline experiments, a set of health features are extracted from them. The more rel-
evant and practical the features, the more accurate the predictions. In [120], different fea-
ture variables were summarized with advantages and disadvantages, deepening from 
four perspectives: incremental calculation, time, envelope area and model parameter. By 
the way, in [121], it was proven that preprocessing based on time-domain features, in 
which data are collected by constant time intervals, is insufficient to indicate a battery’s 
SOH. Considering the dataset from the NASA Prognostics Center, the voltage of aged 
batteries simply reaches the maximum cut-off voltage faster than newer ones, but, after 
4000 s, all batteries maintain the same maximum cut-off voltage until the end of the charge 
(a little less than 10,000 s), which means that almost 65% of voltage data have the same 
values. Similarly, a significant difference is not found in the current value in less than 4000 
s or over 6000 s, as well as the temperature is slightly different after 6000 s. Hence, a SOC-
based data sampling method by which data (relative SOC, voltage, current, temperature 
difference, and cycles) are collected by constant relative SOC interval, considering the bat-
tery’s energy, is proposed with a resulting difference in the battery voltage 40% higher 
than time-based preprocessing. 

According to a common approach, the available data is randomly separated into 
three subsets: one each for training, validation and testing. Various networks with differ-
ent levels of complexity are estimated using the training set. Hence, their performance is 
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evaluated on the validation set. Subsequently, to provide an unbiased evaluation, the net-
work that has the best performance for the validation set is further evaluated on the testing 
set [122]. In [123], a GA-based fuzzy C-means clustering technique was used to partition 
the training data sampled. In [124], an improved extreme learning machine (ELM) algo-
rithm consisting of three layers was implemented. About 70% of data were employed for 
model training and the remaining unseen 30% of data were used for data testing. The ELM 
training process was combined with a gravitational search algorithm (GSA) based on the 
law of Newtonian gravity and laws of motion in order to find the appropriate number of 
hidden-layer neurons. The ELM-based GSA model delivered more accurate SOC estima-
tion results both for two other NNs and other methods, having an RMSE of 1.1% in a 
dynamic stress test (DST) and of 1.4% in the federal urban driving schedule (FUDS). 

Another family of DNN is represented by CNNs. A CNN derives its name from the 
type of hidden layers adopted. In fact, typically it is composed of convolution, pooling 
and fully connected layers. The first two types of layers are used to perform feature ex-
traction, whereas the fully connected layer is used to map the extracted features into the 
final output, such as classification. Compared with traditional DNNs with the same num-
ber of layers, a CNN requires fewer weights to maintain accuracy, due to the sparse con-
nectivity, shared weights and pooling architectures. In [125], a CNN-based method only 
requiring a partial charging segment (with a fixed length of 225 consecutive points and a 
flexible starting point) of voltage, current and temperature curves was presented, making 
it possible to achieve fast online health monitoring. Comparing the results of networks 
with four, five and six convolutional layers and considering the total number of parame-
ters involved in each configuration, a CNN with four convolutional layers proved to be 
the best trade-off, achieving satisfactory estimation results with relatively fewer parame-
ters. CNN was tested on two different datasets of Li-ion batteries (the first provided by 
the Toyota Research Institute and the Oxford Battery Degradation Dataset one) and re-
sulting RMSEs, considering various combinations in the structure, are less than 2.54% and 
2.93%, respectively, on the two datasets. Moreover, a CNN with the configuration corre-
sponding to the minor RMSE was compared with an ANN and DNNs with a different 
number of hidden layers having a resulting RMSE of 0.95%, 1.72% and 1.23–1.34%, re-
spectively.  

Equations (18) and (19) describe a simple NN for calculating SOH. There are more 
complex NNs able to calculate SOH. By the way, confirming the possible integration with 
other methods, in [126], a three-layer NN was proposed to estimate SOH, whose inputs 
are the parameters of the first-order ECM (ohmic resistance, polarization resistance and 
polarization capacity) and the SOC. The aforementioned parameters were identified using 
an HPPC test exploiting the dropout voltage and dropout current when the current was 
changed suddenly, in addition to the continuous voltage change after the voltage leaps 
and the LS fitting method. The value of SOH was computed based on the definition, con-
sidering the ratio of the current maximum available capacity, obtained as the average ca-
pacity of three static capacity tests, and the nominal capacity. Ten LFP batteries with dif-
ferent aging degrees ere experimented on (five for training and five for testing) using a 
Sigmoid activation function. Resulting errors as differences between estimated and meas-
ured values were almost all less than 5%. 

For ease of reading, the data presented have been summarized in Table 2. 
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Table 2. Few relevant studies on SOH evaluation by applying NNs. 

Ref. Error Relevant Features Chemistry 
[125] 1.1% RMSE ELM-based GSA model, DST. 

NMC 
 1.4% RMSE ELM-based GSA model, FUDS. 

[126] <2.93% RMSE CNN (considering various combina-
tions in the structure). 

Li-ion Oxford Battery 
Degradation Dataset 

 <2.54% RMSE 
LFP (dataset provided 
by the Toyota Research 

Institute) 

 0.95% RMSE CNN with four convolutional layers. 
 1.72% RMSE ANN. 

 1.23–1.34% RMSE DNN (error variation due to different 
number of hidden layers). 

[127] < 5% MAE Three-layer NN using a sigmoid activa-
tion function. 

LFP 

6.2. Support Vector Regression 
The techniques based on support vector machines (SVMs) find many applications in 

the pattern recognition fields and are used by several authors to investigate various as-
pects related to the estimation of the SOH of batteries [127,128]. The idea behind SVR 
methods starts from the same assumptions but is not limited to simple classification. The 
technique can be applied at different levels for solving non-linear problems, both for what 
concerns pure data-driven analysis and for predictive investigations. In the literature, 
many papers use the SVR technique, both for the Q-V curve and thus applied to the pre-
dictive analysis (experimental based) and for the identification of the parameters of the 
battery circuit models (model-based). Let us consider a set of input data with x1, 
y1 ,… xl, yl  ⊂ X × R, where X indicates the space of the input variables. As expressed in 
(21), the basis of the technique is to estimate the function f(x) that best approximates y 
based on the input dataset: 

f(x)=〈w, x〉+b, (21) 

with w ∈ Rn, b ∈ R. The trend line to be determined is what is commonly referred to as a 
hyperplane. The ε insensitivity function is constructed in such a way as to consider as null 
the terms with an error y-f(x)<ε as reported in Figure 7. The remaining values are instead 
considered as inputs of the objective function. In its basic formulation represented by (22), 
only the data within this condition are considered reliable: 

minimize          
1
2

‖w‖2 
subject to        

yi-〈w, xi〉-b≤ε〈w, xi〉+b-yi≤ε
 

(22) 

where the term ‖.‖  represents the product in space X. However [129], in this formulation 
the optimization problem may have no solution because the function f(x) may not exist. 
For this reason, slack variables are considered. The final formulation of f(x) is therefore 
represented by (23): 

minimize    
1
2

‖w‖2+C ξi-ξi
*

l

i=1

 
subject to        

yi-〈w, xi〉-b≤ε+ξi〈w, xi〉+b-yi≤ε+ξi 
*

ξi,ξi
*≥0

 

(23) 
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where the constant C represents a compromise between the flatness of the function f(x) 
and the quantity for which a deviation greater than ε is tolerated. 

 
Figure 7. ε insensitivity with slack constrains. 

The choice of this parameter is of fundamental importance because it can often re-
duce the accuracy of the method. For this reason, the choice of this parameter is mostly 
dictated by the experience of the user. From the base just exposed, numerous variants 
have been proposed related to the Kernel function used and Lagrangians implemented in 
the optimization. Since these are often non-linear problems, it is easier to solve the dual 
formulation in these cases by using Lagrangian multipliers. The dual optimization prob-
lem is obtained by minimizing the Lagrangian function. The latter presents its basic for-
mulation in (24): 

L≔ 1
2

‖w‖2+C ξi-ξi
*

l

i=1

- ηiξi+ηi
*ξi

*
l

i=1

- αi ε+ξi-yi+〈w,xi〉+b
i

i=1

- αi ε+ξi
*+yi-〈w,xi〉-bi

i=1

 (24) 

where the parameters α and η are the Lagrangian multipliers. Using the Lagrangian mul-
tiplier theorem, the minimization point is the saddle point of the Lagrangian function. 
Therefore, by setting all partial derivatives to zero for the initial variables, (25) can be ob-
tained: 

f(x)= αi-αi
* 〈w, x〉l

i=1

+b. (25) 

This expression represents the so-called support vector expansion. 
The SVR method is heavily affected by the initial estimate of the C parameter and the 

kernel function. Furthermore, the choice of samples on which to train the SVs is of funda-
mental importance to reduce computational efforts to a minimum. Not only to obtain ac-
curate estimates with low processing times and low computational requirements, the 
combination of several methods is certainly more advantageous. For this reason, in recent 
years, many authors have combined experimental or model-based techniques with ML 
techniques. 

In [130], Weng et al. proposed the use of SVR for experimental-based applications 
wherein the measurement errors and low accuracy introduced by BMS can lead to prob-
lems in the reconstruction of QV and IC curves. In particular, the latter, being linked to 
the derivative, can easily lead to incorrect assessments due to the excessive sensitivity of 
the measurement and the presence of noise. Even with accurate filtering techniques, these 
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curves may show variations in the peaks and valleys and the relative voltage value typi-
cally used for estimating battery aging [131,132]. For this reason, the technique is applied 
to the QV curve, and the optimization algorithm was first applied to the identification of 
the parameters for the identification of the IC curve. In this article, SVR is addressed 
through linear programming [130,133]. The latter was solved through Monte Carlo simu-
lations. The authors proposed an interesting examination on the invariance of the SVs 
starting from the assumption that the drift with varying aging conditions is not a para-
metric drift, by mean of a variation of intrinsic parameters, but an offset. Under these 
conditions, the elements found in the system characterization stage can be used with low 
computational effort for online estimation. 

Among circuital models used to describe the behavior of a battery in real operating 
conditions, the Thevenin model is certainly the most suitable. In the literature, the number 
of elements used for circuit analysis varies according to the degree of complexity. In [134], 
the authors, starting from a second-order RC circuit model, proposed the implementation 
of an EKF algorithm to estimate SOC. The empirical formulation used to estimate the 
OCV–SOC relationship was a fifth-order polynomial relationship. RLS was used to esti-
mate the parameters of the RC model and the polynomial. The joint estimation of SOC 
and RC parameters was used as an SVR for estimating the actual capacity. The authors 
also proposed, to reduce the computational effort, an algorithm that updated the three 
models (SOC, RC and OCV–SOC) on three different time bases. The result was a faster 
procedure that nevertheless required an initial dataset to estimate the relationship be-
tween the RC parameters at different SOCs and the relative SOH. To reduce the execution 
time of the algorithm, only part of the results obtained from the process of identifying the 
RC parameters was considered. The authors used the subset of data that shows the best 
correlation with the Spearman method. 

In [135], a RC model was used to estimate the SOC starting from an empirical rela-
tionship between OCV and SOC [136]. The estimation of SOC and in this case, like the 
previous one, the identification of the circuital parameters was performed through the 
EKF RLS; however, the algorithm used for the optimization problem was based on particle 
swarm optimization (PSO). Precisely, a PSO–LSSVR approach was proposed testing ten 
10 Ah LiFePO4 batteries. The algorithm was used in such a way that the error due to the 
initial condition of C in minimization problems (23) and, in this way, the computational 
effort are both strongly reduced. Estimation results are compared with the LSSVR method 
without being optimized by PSO and a NN. RMSE is 0.93–1.60% with PSO–LSSVR, 1.02–
4.32% with LSSVR and 1.18–6% with NN. Moreover, also in dynamics tests, the SOH es-
timation error is always less than 3%.  

In [137], a method based on GAs and SVR was proposed. In this case, GAs were used 
to extrapolate the characteristics starting from the temperature, current and voltage data, 
solving a multi-objective optimization problem. The proposed function was the combina-
tion of an RMSE found starting from an estimate based on an AM with the features ob-
tained from the optimization process and used by the SVR model. In all cases, one of the 
main problems was that of the initial choice of the data used for the training of the SVR, 
which was a topic of considerable interest in allowing the method to be more flexible and 
faster. Validation was taken on the experimental data from three LFP batteries, indicating 
that the proposed approach could estimate the SOH with less than 0.5% MAE and that it 
was effective in about 95% of the actual charging operations. 

In [138], the authors used the amplitude of the second peak of the IC curve for the 
estimation of SOH through an SVR that implemented the PSO at the same time. The PSO–
SVR was used for the estimation of the parameters of (ε, C, σ) since the latter was related 
to the kernel function considered for the SVR. Although the choice of the values of the 
search ranges of the optimal values could already be an estimate based on experience, the 
method shows good accuracy when compared with other techniques. In fact, MAEs of the 
PSO–SVR estimation algorithm for two Li-ion batteries (dataset NASA) were 1.45% and 
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0.41%, respectively while RMSEs were 1.59% and 0.56%, respectively. SVR used for com-
parison had higher errors both in terms of MAE (2.29% and 1.98%, respectively) and 
RMSE (2.87% and 2.40%, respectively). 

For ease of reading, the data presented are summarized in Table 3. 

Table 3. Few relevant studies on SOH evaluation by applying SVR. 

Ref. Error Relevant Features Chemistry 

[136] 
0.93–1.60% RMSE PSO–LSSVR 

LFP 1.02–4.32% RMSE LSSVR 
1.18–6% RMSE NN 

[138] 0.5% MAE GA–SVR  LFP 

[139] 

0.41%–1.45% MAE 
0.56%–1.59% RMSE 

PSO–SVR Li-ion (provided by NASA 
prognostic center of excel-
lence) 1.98%–2.29% MAE 

2.40%–2.87% RMSE 
SVR 

7. Discussion 
Despite the various methods existing in the literature, the estimation of SOH remains 

a very complex task. The methods reported in this survey differ in the basic approach and 
the used techniques strongly depend on the amount of available data and how they can 
be processed. While extensive initial investigations under different charge and discharge 
rate conditions, DODs and temperature can provide a basis for modeling, as in the data-
driven case, these alone cannot guarantee an accurate estimate over the life of the battery. 
Large amounts of operational data, on the other hand, lead to an increase in the complex-
ity of the system and the computational effort required, especially if applied to online 
estimates, as for example in data optimization problems [18]. 

On a theoretical level, experimental methods allow obtaining detailed information 
on degradation and accurate SOH estimation results. A consistent comparison between 
EIS and ICA, relatively to the lithium nickel cobalt aluminum-carbon (NCA-C) cell type, 
was conducted in [139]. Both techniques were suitable for the identification and quantifi-
cation of the effects of the degradation modes (DMs). The growth of the effects of the DMs 
increased linearly when EIS is applied, while, in the ICA approach, DMs increased line-
arly from 0 cycles to 400 cycles but then reached a plateau until 500 cycles. This is because 
each technique used a different parameter (capacity or resistance) to quantify ageing and 
because, whereas resistance increased linearly (EIS case) with age, capacity decreased 
more like an exponential trend (ICA case). Moreover, EIS required a quick test duration 
(25 min/cell), while ICA uses a long test duration (10 h/cell). Unlike ICA, EIS enables meas-
urements at particular frequencies and SOC. However, calculations are certainly simpler 
in the ICA case with the advantage of accuracy as well, since it depends mostly on the 
measurement (C-rate used) and not on the model. 

For applications wherein an online estimation is preferable, capacity, resistance and 
other parameters can be estimated considering a model with adaptive filtering or data-
driven algorithms and then be used to quantify the degradation of batteries. The differ-
ence between these two categories lies mainly in the computation procedure [14]. In [140], 
a structured NN (SNN) and an EKF were developed and applied on an ECM of a Li-ion 
battery pack. The resulting values were compared with data from an electrical model of 
the battery, based on parameterization using EIS. In both cases, levels as well as trends 
were very similar, and successful detection was proven by matching the EIS reference 
data. However, with regard to the training process, EKF reached satisfactory values al-
ready after just half of the time taken by the SNN to train the given functions. However, 
the training in a SNN could be executed easily offline before implementation on the BMS. 
The opposite happens instead in applications wherein a correctly trained SNN immedi-
ately supplies adequate results with respect to the EKF, which always requires a certain 
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adaptation time. By simulating a drive profile of 8700 s on a commercial computer and 
measuring the required computation time, it is shown that SNN takes 4.7 s while EKF 
requires 13.5 s. Moreover, noticeable is the noisier output in case of the SNN in compari-
son to the smooth EKF. In summary, the statement of the authors is that the SNN indicates 
its advantages compared to an EKF in terms of computation speed and memory and 
should be preferred as long as a high number of vehicle data is achievable and can be used 
for offline training. Conversely, since the EKF requires high computational efforts like 
matrix inversion, it is not purposive for an online estimation, except in the case of a small 
number of training data in consequence of the fast adaption of the filter. 

However, since with ML, regular adjustments of the estimator algorithms are re-
quired, EIS has been proven to be an effective and comprehensive measurement technique 
to supply the required data for adjusting the estimator’s parameters. About that, new pos-
sibilities to obtain online EIS by power electronic converters are described in [36]. 

In [141], the results of an LSTM and an SVR model were compared, making use of 
three NASA datasets. The SVR model performed better, having an average MSE of 1.1% 
compared to that of the LSTM of 3.8%. In particular, LSTM suffered from overfitting to-
wards the end of the dataset, despite several dropout layers that set input elements to zero 
with a given probability and fine control of the batch size during training. Moreover, a 
noticeable delay, especially at points when the model was trying to predict the sharp and 
sudden capacity upward trends, occurred at random intervals. However, it confirmed 
that there were no absolute truths when comparing multiple methods, as each situation 
was different based on the type and history of the battery and the variants involving the 
algorithm construction. In [142], FNNs provided the smallest errors. Namely, in testing 
an NMC battery, the resulting RMSE was 0.51%, 0.16%, 0.23% and 0.22%, respectively, for 
SVR, FNN, LSTM and CNN; in addition, the resulting MSE was 0.28%, 0.10%, 0.15% and 
0.15%. In [135], the effect of SVR was compared to a backpropagation NN (BPNN) with 
the first layer hidden. Specifically, at the beginning, a parameter-identified EKF-RLS-
based algorithm was proposed, achieving good accuracy under both static and dynamic 
conditions (MAPE remains within 0.6% both under the DST and FUDS cycles). In short, 
SOC was estimated by applying the EKF algorithm, parameters of the ECM were identi-
fied using the RLS algorithm, and then, based on the RLS results, the OCV–SOC relation-
ship was corrected. Thus, the relationship model between SOH and critical model param-
eters was established via the SVR algorithm and the latter was compared with that of the 
BPNN trained with the above parameters of the ECM. Using a commercially available 2 
Ah, 18650 Li-ion battery and depending on the type of battery samples under different 
cyclic rates, RMSE was between 1.10–2.66% with SVR and 1.65–5.02% with BPNN. Con-
sidering different temperatures, RMSE was between 1.09–2.03% with SVR and 2.43–6.94% 
with BPNN. Hence, from the perspective of robustness verification both at different cycle 
rates and under different temperature conditions, the SVR-based SOH estimation algo-
rithm achieves better performances than the BPNN. This makes it suitable for effective 
judgments on the SOH of a battery, with a focus on the reliability and safety of battery 
management. SVR could provide timely battery failure warnings, as soon as the battery is 
close to its decommissioning criteria. 

In [50], ML and DA methods were compared. ML can be used in a dynamic situation, 
such as a driving cycle of an EV, while DA relies on the data measured during a static 
situation, which limits its usability. Moreover, ML can use temperature variations as the 
input features for model training and correlate it with ageing, while DA is significantly 
affected by temperature, which can cause large bias. On the other hand, while DA is easily 
implemented in a BMS by monitoring several cell parameters, the high computational ef-
fort required for ML methods is a major hurdle for their online application. Consequently, 
when cells operate in moderate environmental conditions and in predictable patterns, 
such as in stationary applications, it is believed that DA can offer sufficient performance, 
as the aging trend can be captured with simple mathematical functions; whereas in case 
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of more complex operating conditions, such as in EVs, ML is a better solution thanks to 
its ability to approximate non-linear function surfaces. 

A list of advantages and disadvantages of each method is provided in Table 4. 

Table 4. Advantages and disadvantages comparison of analyzed methods. 

 Advantages Disadvantages 
EXPERIMENTAL METHODS 

EIS 
⋅ Avoids complex calculation when using the 

standalone method. 
⋅ Good generality and electrochemical basis. 

⋅ Offline data processing even if studies for online 
data processing are ongoing. 

⋅ Requires specific current patterns. 
⋅ Vulnerable to temperature. 

ICA 

⋅ Easily implemented in a BMS.  
⋅ Easy to monitor, only needs two parameters. 
⋅ Low computational effort 
⋅ Works for partial charging/discharging condi-

tions. 

⋅ Requires controlled charging/discharging pro-
cesses. 

⋅ Temperature variation disturbs the estimation 
accuracy. 

⋅ Requires noise filtering. 
⋅ Limited to low C-rates even if studies at high C-

rates are ongoing. 
MODEL-BASED METHODS 

ECM 

⋅ Basic models, up to the Thevenin one, are very 
easy to implement in simulation platforms of 
low-cost microcontrollers. 

⋅ Intermediate models such as Runtime ensures 
better accuracy while integrating aging effects 
and thermal phenomena. 

⋅ More advanced circuits can model the behavior 
of the battery with high accuracy also in the case 
of quickly varying load conditions. 

⋅ Accuracy depends on complexity in terms of cir-
cuit topology and parameters identification pro-
cess. 

⋅ Basic models imply some limitations; for exam-
ple, they cannot predict capacity fading due to 
thermal or aging effects because their parame-
ters have constant values. 

⋅ Intermediate models cannot work under quickly 
varying load conditions. 

AM 

⋅ Low computational effort. 
⋅ Model equations based on real measurements. 
⋅ Arrhenius cumulative stress models can be ap-

plied. 

⋅ Too many parameters, some of which are confi-
dential. 

⋅ Extensive laboratory tests over the entire operat-
ing range are required, which are time consum-
ing and economically costly. 

⋅ Difficult to develop suitable laboratory ageing 
tests to analyze the interaction between different 
ageing processes and link them to lifetime ex-
pectancy on an experimental basis. 

⋅ Poor generalizability: developed models are re-
stricted to a specific battery type and operating 
conditions. 

⋅ Open loop approach. 
DATA-DRIVEN METHODS 

NN 

⋅ High prediction accuracy as far as sensitivity to 
the quantity and quality of training data. 

⋅ Can filter high degree of noise. 
⋅ Strong ability to consider nonlinearities, even 

when working with a large number of inputs. 
⋅ Easy for exacting global features from raw data. 
⋅ FNNs, being the simplest, are characterized by 

fast learning speed and less computational com-
plexity. 

⋅ Potential to cause overfitting problem. 
⋅ Poor uncertainty management ability. 
⋅ Performance highly depends on the training pro-

cess. 
⋅ Gradient vanishing and gradient exploding 

problems (particularly for RNN). 
⋅ FNN, compared to RNN, cannot capture the se-

quential information. 
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⋅ RNNs own strong long-term prediction ability 
due to recurrent links. 

⋅ DNNs work well with a large dataset. 
⋅ Easy to design without electrochemical 

knowledge. 

⋅ DNNs rely on a large training dataset and there-
fore on a considerable amount of storage space. 

SVR 

⋅ Easy to design without electrochemical 
knowledge. 

⋅ High prediction accuracy. 
⋅ Good efficiency in multidimensional tasks. 

⋅ It is not suitable for a large dataset: long time 
and computational effort required. 

⋅ Tuning of hyperparameters is not easy. 
⋅ Highly depends on the quality of the training 

data. 
⋅ The choice of the kernel function is not straight-

forward. 
OTHER SUPPORTIVE METHODS 

CC 
⋅ Simplicity. 
⋅ Low computational complexity. 
⋅ Low power consumption. 

⋅ Calibration is required after charge/discharge cy-
cle. 

⋅ Open loop approach. 
⋅ Inaccurate results from unknown disruptions. 
⋅ SOC starting value is difficult to determine.  
⋅ Determination errors accumulate over time. 

OCV 

⋅ Easy to implement. 
⋅ Low computational burdens. 
⋅ Suit for dynamic profiles. 
⋅ Good generality and electrochemical basis. 
⋅ Joint estimation of states. 

⋅ Cannot operate online. 
⋅ Achieving equilibrium takes a long time. 

KF 

⋅ KF estimates accurately states impacted by ex-
ternal disturbances like noises with a Gaussian 
distribution; more advanced version such as 
EKF can filter a high degree of noise and accu-
rately predicts the state of a nonlinear dynamic 
system. 

⋅ High computational complexity.  
⋅ If the system is significantly nonlinear, it may 

have limited robustness, and linearization errors 
may arise. 

8. Conclusions 
Energy storage is gaining a surge of interest worldwide as continents grapple with a 

worsening energy crisis. Moreover, an efficient use of batteries will be key to the clean 
energy transition as carbon dioxide emissions associated with the energy sector need to 
be reduced to limit climate change effects. Humanity is facing a gloomy scenario that can 
be successfully overcome through the generation of energy from renewable sources and 
the diffusion of electric mobility, making batteries a true key enabling technology for net 
zero. However, the efficiency of batteries must be increased, and consequently, a correct 
characterization of the state of health of batteries must be pursued. Nevertheless, Li-ion 
batteries are complex systems and the quantification of their aging processes is a difficult 
task. In this review, three different categories, each represented by two different ap-
proaches, are shown and compared in an innovative way. The first category is that of 
experimental methods, such as electrochemical impedance spectroscopy and incremental 
capacity analysis. The second category is that of model-based methods, such as equivalent 
electric circuit models and aging models. Finally, data-driven methods belong to the third 
category, including neural networks and support vector regression. For these methods, a 
review of the existing literature is offered to understand their applicability to different use 
cases. To this end, countless sources, including the scientific and technical literature, have 
been studied. The result shows that each method presents strengths and weaknesses. It 
means that there is not, in general, a method more appropriate than another one but that 
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it depends on the specific application. To promote performance in wider engineering ap-
plications, it is useful to analyze these methods by summarizing their advantages and 
disadvantages, starting from the general basic principles up to the specific proposals of 
the most recent works with relative results. Clearly, a comparison also based on one’s own 
experimental data would be even better. After all, an experimental comparison of such 
different methods, presented with well-defined and replicable structures, using only one 
type of battery and, therefore, the same dataset, is missing in the literature. For this reason, 
future works will aim at filling this gap with an experimental application of the aforemen-
tioned methods, according to the peculiarities found in the literature and meticulously 
reconstructed in this study. 
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