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Abstract: This paper presents a novel observer-based robust fault predictive control (OBRFPC)
approach for a wind turbine time-delay system subject to constraints, actuator/sensor faults, and
external disturbances. The proposed approach is based on an augmented state-space representation
that contains state-space variables and estimation errors. The proposed augmented representation
is then used to synthesize a robust predictive controller. In addition, an observer is developed
and used to estimate both state variables and actuator/sensor faults. To ensure that the proposed
approach has disturbance rejection capabilities, the disturbance estimates were merged with the
prediction model. In addition, the disturbance rejection capabilities and fault tolerance were insured
by formulating the control process as an optimization problem subject to constraints in terms of linear
matrix inequalities (LMIs). As a result, the controller gains are acquired by solving an LMI problem to
guarantee input-to-state stability in the presence of sensor and actuator faults. A simulation example
is conducted on a nonlinear wind turbine (1 MW) model with 3 blades, a horizontal axis, and upwind
variable speed subject to actuator/sensor faults in the pitch system. The results demonstrate the
ability of the proposed method in dealing with nonlinear systems subject to external disturbances
and keeping the control performance acceptable in the presence of actuator/sensor faults.

Keywords: robust model predictive control; fault-tolerant control; observer-based control; sensor
and actuator faults; linear matrix inequalities (LMIs); wind turbine model

1. Introduction

Wind energy research and technology has been experiencing a strong revival of inter-
est since the early 1990s, particularly in the European Union, where its annual growth is
around 20%. However, due to the complexity of the wind turbine structure and challeng-
ing operational conditions, several types of actuator or/and sensor faults are frequently
encountered, which may drive the system far from its main objectives and even cause
significant damage to the system’s components in certain critical cases. When faults appear
in sensors and/or actuators, the characteristics of the sensors and/or actuators can change
over time, and this will affect the performance of the designed controller and even the
stability of the overall system [1–3]. As a consequence, the implementation of fault tolerant
control (FTC) systems is crucial in order to ensure acceptable performance and to maintain
certain properties of the system such as stability and performance [4,5].

Generally, consideration of actuator faults that may happen on the steering system
of the blades is important to ensure acceptable performance of the control system. Many
researchers have proposed several FTC algorithms to deal with actuator faults where the
basic approach is done by compensating the constant (zero) control of the actuator faulty
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actuator by distributing the control (or the effort) over the non-defective actuators [6,7].
Based on the backpropagation artificial neural network (BPANN), an estimator is developed
and employed to estimate the pitch rotor and generator speeds to detect the faults in these
actuators with unknown inputs, such as modeling defects, perturbations, disturbances,
and parameters uncertainties [8,9]. An active fault-tolerant control method is proposed
in [10] to overcome the partial loss of actuator effectiveness. Data-driven fault detection
and diagnosis algorithm is presented in [11] where historical data of the turbine is used
instead of the model for the estimation process. An approach based on unknown input
observers for detection and isolation of sensor faults on the rotor speed and generator speed
is also proposed, in which the speed estimation results obtained by the observer are used in
the current control process [12]. A nonlinear static state feedback control with asymptotic
tracking at the optimal rotation speed is developed in [13] to compensate for sensor faults
in the maximum power capturing procedure of the wind turbine. A fault tolerant control
scheme using the virtual actuators and sensors is proposed in [14] to deal with both sensor
and actuator faults. In [15], the analytical redundancy of the system is used to harvest fault
information. Moreover, the FTTC strategy, proposed in [16], is designed to maintain the
wind turbine nominal controller without any change in the fault and non-fault cases.

Recently, fault tolerance techniques for the robust model predictive control design
problem have gained more attraction in dealing with faulty nonlinear systems [17–20].
In [21], a new robust constrained model predictive fault-tolerant control method was
proposed for uncertain time-delay systems with unknown disturbances and partial actuator
failures. In this approach, a control law with an optimized cost and H∞ performance was
derived where feasible solutions were obtained by solving the LMI constraints. In [22], an
approach was proposed for evaluating the actuator fault tolerance of a nonlinear model
predictive control (NMPC) model. The proposed approach used the zonotopes method to
evaluate viability sets, while a new algorithm is developed and implemented to assess the
tolerance of the NMPC controller. In [23], an MPC scheme based on a min-max optimization
algorithm was proposed to assure the satisfaction of constraints of the control subject to
pitch actuator fault. Furthermore, actuators or/and sensor faults in the pitch system have
been considered in many research papers [17,24,25] where the FTC schemes are designed
to compensate for the effects of faults. In addition, a novel fault tolerant scheme with a
system health management module and MPC was built up by using a fatigue-based model
and rain-flow counting in [26]. In [27], a fault-tolerant MPC based on a min-max approach
was developed and designed to guarantee the constraint satisfaction of the system with the
pitch actuator fault.

Resultantly, the consideration of faults of sensors and/or actuators in the control
schemes is important to assure acceptable performance when faults occur where the ob-
jective is to maintain certain properties, such as stability, of the system. However, most
of the research that has been conducted on FTC approaches deals with either sensor or
actuator faults for the MPC controller. Only limited investigations can handle both sensor
and actuator faults simultaneously. In [28,29], the authors have proposed a predictive
control with multiplicative sensor and actuator faults, which does not present modeling
close to the defects. It should be noted that the states of many control systems are not
always measurable, especially in the presence of additive faults. In [29], a predictive fault
tolerant control scheme is developed to capture the maximum power for wind turbines in
the partial-load region, and based on the sliding mode control, an observer is designed to
estimate the actual states and actuator/sensor faults simultaneously in a class of uncertain
systems. Unfortunately, only a few research papers have considered robust constrained
model predictive fault-tolerant control for time-delay systems that also copes with both
input and output constraints, sensor and actuator faults, and external disturbances.

In this paper, an observer-based robust model predictive control design is proposed
and investigated to stabilize a wind turbine-constrained time-delays system with sensor
and actuator faults and subject to external disturbances. Firstly, an augmented closed-loop
system with the state and sensor/actuator faults observation error is proposed for describ-
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ing the system. The stability conditions of closed-loop systems are designed to consider
the presence of input constraints, time delay, and additive sensor and/or actuator faults.
The main objective of this research is to synthesize the proposed OBRFPC approach that
deals with time-delays systems in the presence of sensor and actuator faults and subject
to external disturbances. In order to achieve the above goals, an LMI-based minimization
problem is formulated to solve the robust control design. To ensure robust stability and
performance, such a robust control strategy can be realized by employing several math-
ematical lemmas and well-known linear matrix inequalities theorems. In addition, the
robustness of the system performance is analytically shown in the worst-case conditions.
The observer-based RMPC scheme can reduce the effect of faults and disturbances and
guarantee the stability of the wind turbine system even in the presence of the actuator
faults, sensor faults, and wind speed external disturbances.

This paper is organized as follows: Section 2 provides the problem formulation. Sec-
tion 3 describes the design of observers to estimate the states of the system and sensor and
actuator faults. In Section 4, we present an observer-based controller MPC to stabilize the
system with time delays using the Lyapupnov–Krasovskii functions. Section 5 demon-
strates a case study in which the proposed method is applied and investigated. Finally,
certain remarks and conclusions are provided in Section 6.

Notation 1. The symbols used in this paper are standard unless otherwise specified. K is the
controller gains matrices and L is the observer gain matrix. dk is a varying delay. Rn denotes the
n-dimensional Euclidean space, and Sn×n, Rn×m, Rm×n are the set of n× n , n× m , m× n
real matrices, respectively. 0n and I represent the zero and the identity matrices with proper
dimensions, respectively. S1 , S2 , W1 , W2 , G , M , and H are the symmetric positive definite
matrices. Matrix Y ≥ 0 (Y > 0) signifies that each entry of Y is non-negative (positive). Q, R are
the weighting matrices.

2. Problem Statement

In this section, two cases are studied: a system with both sensor and actuator faults
in the absence of external disturbance and time-delay systems with the external distur-
bance ω(k) 6= 0. Firstly, an observer for estimating the states of the system (1) and the
corresponding faults is designed. Secondly, an observer-based RMPC is established based
on the designed observer.

Case 1. Sensor/Actuator Faults

Consider the following discrete-time systems:{
x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)
(1)

The control action is required to satisfy the following constraints.

||u(k)||2 ≤ umax (2)

where umax is the upper constraint of the control input.
In this paper, we consider both types (sensor and actuator) of faults. When a sensor

fault occurs, the real measurement of the system output can be described by:

y(k) = Cx(k) + fs(k) (3)

where fs ∈ Rny is the vector of additive sensor faults.
In addition, when an actuator fault occurs, the control input torque can be repre-

sented by
u(k) = uc(k) + fa(k) (4)

where the fa(k) is the actuator’s fault, and the uc(k) is the control input signal.
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In the following, the model of the wind turbine (1) is augmented by a state that
represents the effective wind speed disturbances (k). In addition, we design a wind
estimator to estimate the fictitious wind speed, which is an unmeasurable quantity.

In this work, the following Lemmas and assumptions are used.

Lemma 1. (Schur Complement). [30] Given any real matrices X, Y, and Z with X = XT and
Z > 0, we have

X−YZ−1YT < 0

If and only if [
X YT

Y Z

]
< 0

The following assumptions and definitions are needed to acquire our main results.

Assumption 1. Defining the following variables

∆ fa(k) = fa(k + 1)− fa(k)

∆ fs(k) = fs(k + 1)− fs(k)

∆ω(k) = ω(k + 1)−ω(k)

The following augmented matrices and variables are defined:

A =

A B 0
0 I 0
0 0 I

, B =

B
0
0

, C =
[
C 0 I

]

x(k) =

 x(k)
fa(k)
fs(k)

, ω(k) =

 ω(k)
∆ fa(k)
∆ fs(k)


The augmented system can be obtained as:{

x(k + 1) = Ax(k) + Buc(k)
y(k) = Cx(k)

(5)

Remark 1. It is worth noting that the state vector x(k) in (5) is a combination of the states x(k), the
actuator fault fa(k) and the sensor fault fs(k). Therefore, if the fault-tolerant observer is designed for
the augmented system in (5), the estimation of the states and faults can be obtained simultaneously.

To estimate the state of the system in Equation (1), x(k), actuator fault fa(k), and sensor
fault fs(k), an augmented observer is designed for the discrete-time system in (5):

z(k + 1) =
(

A− LC
)
x̂(k) + Buc(k) + L(yc(k)− Cx̂(k))

x̂(k) = z(k) + Cy(k)
(6)

where z(k) ∈ Rnx̂ x̂(k) ∈ Rnx̂ are the observer state and estimated state, respectively. The
matrix L ∈ Rnx×ny is the gain of the observer.

In addition, an observer-based state-feedback controller is considered such as:

uc(k) = Kx̂(k) (7)

The main objective is then to propose an observer-based feedback fault-tolerant con-
troller that can assure that the system in Equation (1), subject to both the sensor and actuator
faults, is asymptotically stable with OBRFPC performance.
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3. Observer-Based Model Predictive Control

In this section, an observer-based model predictive controller is designed for the linear
discrete-time systems in Equation (1) subject to sensor/actuator faults. First, the following
state observer is adopted to estimate the augmented state vector of the system:

x̂(k + 1) =
(

A− LC
)

x̂(k) + Buc(k) + L
(
yc(k)− Cx̂(k)

)
+ Cy(k + 1) (8)

where x̂ ∈ Rnx is the estimation of x(k). The matrix L ∈ Rnx×ny is the gain of the state
observer. We consider an observer-based state-feedback control strategy as:

uc(k) = Kx̂(k) (9)

Define the state estimation e(k) = x(k)− x̂(k).
From Equations (5) and (8), the estimation error can be expressed as:

e(k + 1) =
(

A− LC
)
e(k) (10)

Substituting (7) into (5), we have

x(k + 1) =
(

A + BK
)
x(k)− BKe(k) (11)

For simplicity, denote ζ(k) = [x(k) e(k)],
Now, we consider the problem of minimizing the following worst-case quadratic

objective function with an infinite horizon:

min︸︷︷︸
uc(k)

maxJ∞(k)

subject to (7) and ||u(k)||2 ≤ umax

(12)

such as J∞(k) = ∑∞
i=0 ||ξ(k + i) ||2Q +||uc(k + i)||2R .

The weighting matrices Q and R are known positive-definite matrices.
The following theorem is used to present the stability condition for the overall closed-

loop system given in Equation (11):

Theorem 1. Given the augmented state-space model in (5), the state-feedback controller given by
Equation (7) robustly stabilizes the discrete-time system, in Equation (5), subject to actuator faults,
disturbances, and time delays. There are symmetric positive definite matrices X1, X2, G, Y, M, and
H and a positive scalar γ satisfying the following convex optimization problem:

min
γ,S1, S2, W1, W2, G, Y, M

γ (13)

subject to  −1 ∗ ∗
x(k) −X1 ∗
e(k) 0 −X2

 (14)

[
−u2

max ∗
YT X1 − GT − G

]
≤ 0 (15)
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−Ξ1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
R1/2Y −γI ∗ ∗ ∗ ∗ ∗ ∗
Q1/2G 0n −γI ∗ ∗ ∗ ∗ ∗

0 0n 0n −Ξ2 ∗ ∗ ∗ ∗
−R1/2Y 0n 0n 0n −γI ∗ ∗ ∗
Q1/2G 0n 0n 0n 0n −γI ∗ ∗

AG + BY −BY 0n 0n 0n 0n −X1 ∗
0n MA− HC 0n 0n 0n 0n 0n −X2


< 0 (16)

where Ξ1 = −X1 + GT + G and Ξ2 = −X2 + GT + G.

Furthermore, the gain of the controller can be easily obtained by K = YX−1
1 and the

gain of the state observer by L = M−1H.

Proof of Theorem 1. To obtain the stability conditions of the proposed controller, a Lya-
punov function is defined as:

V(ζ(k/k)) = ζT(k/k)Sζ(k/k) (17)

S =

[
S1 0
0 S2

]
> 0,

and
V(ζ(k + i)) = ζT(k + i)Sζ(k + i) (18)

For any i ≥ 0, suppose that V(ζ(k/k)) satisfies the following stability constraint:

V(ζ(k + i + 1/k))−V(ζ(k + i/k)) ≤ −
[
||ζ(k + i/k) ||2Q +||u(k + i/k)||2R

]
(19)

since the summation is performed up to ∞, i.e., i→ ∞ , x(∞) = 0. Summing from i = 0 to
∞ yields:

J∞(k) ≤ V(ζ(k/k)) (20)

By defining V(ζ(k/k)) ≤ γ, an upper bound is introduced to the performance index
such as J∞(k) ≤ γ.

Therefore, the first inequality in Equation (20) holds. Next, we show that the second
inequality of Equation (20) holds.

ζ(k/k)S ζ(k/k) ≤ γ (21)

Since the inequality in Equation (16) implies that V(ζ(k + j + 1/k)) strictly decreases
as j approaches to ∞ and V(ζ(k/k)) ≤ γ from (17), we have

1
γ

ζ(k/k)S ζ(k/k) ≤ 1 (22)

By implementing the Schur complement, we find:[
−1 ∗

ζ(k) −γS−1

]
(23)

and by substituting S = γX−1 into the above inequality, and then applying the congruence
transformation to the resulting inequality with diag [1, X−1], we verify that the constraint
in Equation (14) holds.

Next, the input constraint in Equation (2) is considered such as:

||u(k + i/k)||max , max
i

ui(k + i/k) (24)
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max
i>0
||u(k)||max = max

i>0
||Kx̂(k) ||max (25)

max
i>0
||u(k)||max ≤ ||KQ

1
2 ||22 ⇔ u2

max ≤ Q
1
2 KTKQ

1
2

− u2
max + Q

1
2 KTKQ

1
2 ≤ 0 (26)

Using the Schur complement, we obtain:[
−u2

max K
KT −Q−1

]
≤ 0 (27)

Multiplying the right by
[

I O
0 G

]
and the left by

[
I O
0 GT

]
, we get (15).

Next, we consider Equation (19) which implies that:[
A + BK BK

0 A− LC

]T[S1 0
0 S2

][
A + BK BK

0 A− LC

]
−
[

S1 −Q− KRK 0
0 S2 −Q + KRK

]
< 0 (28)

Applying the Schur complement, we get

−S1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
R1/2K −γI ∗ ∗ ∗ ∗ ∗ ∗
Q1/2 0n −γI ∗ ∗ ∗ ∗ ∗

0 0n 0n −S2 ∗ ∗ ∗ ∗
−R1/2K 0n 0n 0n −γI ∗ ∗ ∗

Q1/2 0n 0n 0n 0n −γI ∗ ∗
A + BK −BK 0n 0n 0n 0n −S−1

1 ∗
0n A− LC 0n 0n 0n 0n 0n −S−1

2


< 0 (29)

Substituting S1 = γX−1
1 and S2 = γX−1

2 into (26), there is

−X−1
1 ∗ ∗ ∗ ∗ ∗ ∗ ∗

R1/2K −γI ∗ ∗ ∗ ∗ ∗ ∗
Q1/2 0n −γI ∗ ∗ ∗ ∗ ∗

0 0n 0n −X−1
2 ∗ ∗ ∗ ∗

−R1/2K 0n 0n 0n −γI ∗ ∗ ∗
Q1/2 0n 0n 0n 0n −γI ∗ ∗

A + BK −BK 0n 0n 0n 0n −X1 ∗
0n A− LC 0n 0n 0n 0n 0n −X2


< 0 (30)

By substituting K = YG−1, L = M−1H and using Schur complement followed by
congruence transformations, Equation (16) is easily verified. �

Case 2. Sensor/Actuator Faults and time delay systems with external disturbances

In this case, discrete-time systems with state delay subject to external disturbance is
considered such as:{

x(k + 1) = Ax(k) + Adx(k− τ) + Bu(k) + Dω(k)
y(k) = Cx(k)

x(k) = Φ(k), k ∈ [−τ, 0]
(31)

where x(k) ∈ Rnx is the system state vector, y(k) ∈ Rny is the system’s output vector,
u(k) ∈ Rnu is the control input vector, A, Ad and B are known real constant matrices with
appropriate dimensions. The term τ > 0 represents the bound of state delay, and finally
the term Φ(k) is a compatible vector-valued discrete function.
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Assumption 2. Actuator fault fa(k), sensors faults fs(k), and the external disturbance ω(k)
are all considered bounded functions. There exists a positive scalar β such that the disturbance
magnitude ||ω(k)|| < β .

Remark 2. Assumptions 1 and 2 ensure that the increments of faults and disturbances between
two sampling time instants are bounded.

Based on the state space of the system, the following augmented matrices and state
variables are defined:

A =

A B 0
0 I 0
0 0 I

, B =

B
0
0

, Ad =

Ad
0
0

 C =
[
C 0 I

]
D =

[
D 0 0

]
x(k) =

 x(k)
fa(k)
fs(k)

, ω(k) =

 ω(k)
∆ fa(k)
∆ fs(k)


The augmented system is{

x(k + 1) = Ax(k) + Adx(k− τ) + Buc(k) + Dω(k)
y(k) = Cx(k)

(32)

Remark 3. Again, the state vector x(k) in Equation (29) is a combination of x(k), fa(k), and
fs(k). Therefore, if the fault-tolerant observer is designed for the augmented system in (32), then the
estimation of states and faults is obtained at the same time.

For estimating the state of the discrete system in Equation (31), x(k), and actuator fault
fa(k) and sensor fault fs(k), the following observer for the discrete-time augmented plant
in Equation (32) is designed such as:

z(k + 1) =
(

A− LC
)

x̂(k) + Ad x̂(k− τ) + Buc(k) + L(yc(k)− Cx̂(k) (33)

x̂(k) = z(k) + Cy(k)

where z(k) ∈ Rnx̂ and x̂(k) ∈ Rnx̂ are the observer state and the estimated state for the
augmented representation, respectively. The matrix L ∈ Rnx×ny is the gain of the state
observer.

Next, we consider an observer-based state-feedback control strategy as follows:

uc(k) = Kx̂(k) (34)

The main objective is to construct an observer-based feedback fault-tolerant controller
that guarantees the stability of the system in Equation (31) with OBRMPC performance
while the system is subject to sensor/actuator faults, time delay, and external disturbances.

We adopt the following state observer to estimate the state of the system:

x̂(k + 1) =
(

A− LC
)
x̂(k) + Ad x̂(k− τ) + Buc(k) + L

(
yc(k)− Cx̂(k)

)
+ Cy(k + 1) (35)

where x̂ ∈ Rnx is the estimation of x(k). The matrix L ∈ Rnx×ny is the gain of the state
observer.

Define the state estimation e(k) = x(k)− x̂(k). From (32) and (34), the estimation error
dynamics can be given as

e(k + 1) =
(

A− LC
)
e(k) + Ae(k− 1) + Dω(k) (36)
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Substituting (34) into (32), we obtain:

x(k + 1) =
(

A + BK
)

x(k) + Adx(k− τ)− BKe(k) + Dω(k) (37)

For simplicity, we use the terms ζ(k) = [x(k) e(k)], and ζ(k− τ) = [x(k− τ) e(k− τ)].
Next, we consider the optimization problem that minimizes the following worst-case

quadratic objective function in an infinite horizon:

min︸︷︷︸
uc(k)

maxJ∞(k)

Subject to (31) and ||u(k)||2 ≤ umax

(38)

where J∞(k) = ∑∞
i=0 ||ξ(k + i) ||2Q +||uc(k + i) ||2R−µ||ω||2, the weighting matrices Q and

R are known positive-definite matrices, and the constant µ > 0 is a known scalar.

Theorem 2. Given the augmented state-space representation in Equation (32), the state-feedback
controller described by Equation (34), can robustly stabilize the system in (32) subject to actuator
faults, disturbances, and time delays. There are symmetric positive definite matrices X1, X2, W1,
W2, G, Y, M, and H and a positive scalar γ that satisfy the following convex optimization problem:

min
γ,S1, S2, W1, W2, G, Y, M

γ (39)

subject to 
−1 ∗ ∗ ∗ ∗

ζ(k) −X ∗ ∗ ∗
ζ(k− 1) 0 −W ∗ ∗

...
...

...
. . .

...
ζ(k− τ) 0 0 . . . −W

 ≤ 0 (40)

[
−u2

max Y
YT X1 − GT − G

]
≤ 0 (41)
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−𝑢௫ଶ 𝑌𝑌் 𝑋ଵ − 𝐺் − 𝐺൨ ≤ 0   −𝛯ଵ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗𝑅ଵ/ଶ𝑌 −𝛾𝐼 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗𝑄ଵ/ଶ𝐺 0 −𝛾𝐼 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗𝐼 0 0 −𝑊ଵ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗0    0    0    0 −𝑊ଵ ∗ ∗ ∗ ∗ ∗ ∗ ∗0 0 0 0 0 − 𝜇ଶ𝛾 𝐼 ∗ ∗ ∗ ∗ ∗ ∗0 0 0 0 0 0 −𝛯ଶ ∗ ∗ ∗ ∗ ∗−𝑅ଵ/ଶ𝑌 0 0 0 0 0 0 −𝛾𝐼 ∗ ∗ ∗ ∗𝑄ଵ/ଶ𝐺 0 0 0 0 0 0 0 −𝛾𝐼 ∗ ∗ ∗𝐼 0 0 0 0 0 0 0 0 −𝑊ଶ ∗ ∗0 0 0 0 0 0 0 0 0 0 −𝑊ଶ ∗�̅�𝐺 + 𝐵ത𝑌 �̅�ௗ𝐺 𝐷ഥ𝐺 −𝐵ത𝑌 0 0 0 0 0 0 0 −𝑋    0     0 𝑀𝐷ഥ 𝑀�̅� − 𝐻�̅� 𝑀�̅�ௗ  0 0 0 0 0 0 0

(41)

−𝛯ଵ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗𝑅ଵ/ଶ𝑌 −𝛾𝐼 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗𝑄ଵ/ଶ𝐺 0 −𝛾𝐼 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗𝐼 0 0 −𝑊ଵ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗0    0    0    0 −𝑊ଵ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗0 0 0 0 0 − 𝜇ଶ𝛾 𝐼 ∗ ∗ ∗ ∗ ∗ ∗ ∗0 0 0 0 0 0 −𝛯ଶ ∗ ∗ ∗ ∗ ∗ ∗−𝑅ଵ/ଶ𝑌 0 0 0 0 0 0 −𝛾𝐼 ∗ ∗ ∗ ∗ ∗𝑄ଵ/ଶ𝐺 0 0 0 0 0 0 0 −𝛾𝐼 ∗ ∗ ∗ ∗𝐼 0 0 0 0 0 0 0 0 −𝑊ଶ ∗ ∗ ∗0 0 0 0 0 0 0 0 0 0 −𝑊ଶ ∗ ∗�̅�𝐺 + 𝐵ത𝑌 �̅�ௗ𝐺 𝐷ഥ𝐺 −𝐵ത𝑌 0 0 0 0 0 0 0 −𝑋ଵ ∗    0     0 𝑀𝐷ഥ 𝑀�̅� − 𝐻�̅� 𝑀�̅�ௗ  0 0 0 0 0 0 0 −𝑋ଶ

 (42)

where 𝛯ଵ = 𝐺் + 𝐺 − 𝑋ଵ and 𝛯ଶ = 𝐺் + 𝐺 − 𝑋ଶ 

Proof of Theorem 2. To formulate the stability conditions, the following Lyapunov–Kra-
sovskii function is considered such as: 𝑉(𝜁 (𝑘 𝑘))⁄ = 𝜁் (𝑘 𝑘)⁄ 𝑆𝜁 (𝑘 𝑘)⁄ +  𝜁் (𝑘 − 𝑚 𝑘)𝑃⁄ 𝜁(𝑘 − 𝑚)ఛ

ୀଵ  𝑆 = 𝑆ଵ 00 𝑆ଶ൨ > 0, 𝑃 = 𝑃ଵ 00 𝑃ଶ൨ > 0 
(43)

and 

𝑉൫𝜁(𝑘 + 𝑖)൯ = 𝜁்(𝑘 + 𝑖)𝑆𝜁(𝑘 + 𝑖) +  𝜁்(𝑘 + 𝑖 − 𝑚)𝑃𝜁(𝑘 + 𝑖 − 𝑚)ఛ
ୀଵ  (44)



< 0 (42)

where Ξ1 = GT + G− X1 and Ξ2 = GT + G− X2.
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Proof of Theorem 2. To formulate the stability conditions, the following Lyapunov–
Krasovskii function is considered such as:

V(ζ(k/k)) = ζT(k/k)Sζ(k/k) +
τ

∑
m=1

ζT(k−m/k)Pζ(k−m)

S =

[
S1 0
0 S2

]
> 0, P =

[
P1 0
0 P2

]
> 0

(43)

and

V(ζ(k + i)) = ζT(k + i)Sζ(k + i) +
τ

∑
m=1

ζT(k + i−m)Pζ(k + i−m) (44)

For any i ≥ 0, suppose V(ζ(k/k)) satisfies the following stability constraint:

V(ζ(k + i + 1/k))−V(ζ(k + i/k)) ≤ −
[
||ζ(k + i/k) ||2Q +||u(k + i/k)||2R

]
+||ω(k + i/K)||2µ2 (45)

Note that the summation is up to ∞, i.e., i→ ∞ , x(∞) = 0. Summing from i = 0 to ∞
yields

J∞(k) ≤ V(ζ(k/k)) (46)

With V(ζ(k/k)) ≤ γ, an upper bound on the performance index is obtained as
J∞(k) ≤ γ. Hence, the first inequality of (40) holds. Then, we show that the second
inequality of (40) holds.

ζ(k/k)S ζ(k/k) +
τ

∑
m=1

ζT(k−m/k)Pζ(k−m) ≤ γ (47)

Since the inequality (43) implies that V(ζ(k + j + 1/k)) strictly decreases as j goes to
∞ and V(ζ(k/k)) ≤ γ from (44), we have

1
γ

ζ(k/k)S ζ(k/k) +
1
γ

τ

∑
m=1

ζT(k−m/k)Pζ(k−m) ≤ 1 (48)

On the basis of Schur complement, we have
−1 ∗ ∗ ∗ ∗

ζ(k) −γS−1 ∗ ∗ ∗
ζ(k− 1) 0 −γP−1 ∗ ∗

...
...

...
. . .

...
ζ(k− τ) 0 0 . . . −γP−1

 (49)

Substituting S = γX−1 and P = γW−1 into the above inequality and applying the
congruence transformation to the resulting inequality with diag [1, X−1, W−1, . . . , W−1],
we conclude that the inequality of (40) holds.

Inequality (45) implies that:[(
A + BK

)
x(k) + Ad x(k− τ)− BKe(k) + Dω(k)

]T S1
[(

A + BK
)

x(k) + Ad x(k− τ)− BKe(k) + Dω(k)
]

+
[(

TA− LC
)
e(k) + Ae(k− 1) + Dω(k)

]TS2
[(

TA− LC
)
e(k) + Ae(k− 1) + Dω(k)

]
−x(k)TS1x(k)− e(k)TS2e(k) + x(k)T P1x(k) + e(k)T P2e(k)−+x(k− τ)T P1x(k− τ)
+e(k− τ)TTP2 e(k− τ) ≤ −x(k)T (Q + KR) x(k)− e(k)T (Q + KR)e(k) + µ2 ω(k)Tω(k)
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The above inequality can be in the following form:
A + BK 0n

Ad 0n
D D
−BK A− LC

0n Ad


[

S1 0
0 S2

][
A + BK Ad D −BK 0n

0n 0n D A− LC Ad

]

+


−S1 + P1 + Q + KR ∗ ∗ ∗ ∗

0n −P1 ∗ ∗ ∗
0n 0n −µ2 I ∗ ∗
0n 0n 0n −S2 + P2 + Q + KR ∗
0n 0n 0n 0n −P2

 < 0 (50)

Applying Schur complement to (49) we get

−S1 + P1 + Q + KT RK ∗ ∗ ∗ ∗ ∗ ∗
0n −P1 ∗ ∗ ∗ ∗ ∗
0n 0n −µ2 I ∗ ∗ ∗ ∗
0n 0n 0n −S2 + P2 + Q + KT RK ∗ ∗ ∗
0n 0n 0n 0n −P2 ∗ ∗

A + BK Ad D −BK 0n −S−1
1 0n

0n 0n D A− LC Ad 0n −S−1
2


(51)

Substituting S1 = γX−1
1 , S2 = γX−1

2 , P1 = γW−1
1 and P2 = γW−1

2 into (51) and
applying the Schur complement, we obtain
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It follows from (52) that −𝐺் − 𝐺 + 𝑋ଵ < 0, and G is a nonsingular matrix, which 
implies −𝐺் − 𝐺 + 𝑋ଵ ≥ −𝐺்𝑋ଵି ଵ𝐺 

By substituting 𝐾 = 𝑌𝐺ିଵ, 𝐿 = 𝑀ିଵ𝐻 and applying Schur complement and then us-
ing the congruence transformations, we obtain the exact result in Equation (42). □ 

4. Robust Stability Analysis 
This section offers the mathematical formulation for demonstrating that the pro-

posed control rule described in Equation (34), and subject to constraints in Equation (41), 
can robustly stabilize closed-loop systems subject to sensor/actuator faults and in the pres-
ence of external disturbances. The proposed mathematical formulation presented in this 
work is based on the work that has been done by Kothare et al. [31]. To maintain the as-
ymptotic stability of the control loop in Equation (32), the previously described optimiza-
tion problem must have a viable solution at each iteration (sampling time). As a conse-
quence, the following feasibility lemma will be introduced: 

Lemma 2. Feasibility [31,32]. Any feasible solution to an optimization problem that is found at 
sampling instant 𝑘 and satisfies Theorem 2 is also a feasible solution for all times 𝑡 > 𝑘. Thus, if 
the objective optimization problem discussed earlier in Theorem 2 is feasible at the sampling in-
stant 𝑘, then it is feasible at any sample time 𝑡 > 𝑘. 

Proof. To prove Lemma 2, it is necessary to verify that the inequality in Equation (40) 
holds for all future states, where 𝜁 (𝑘 + 𝑖 𝑘 + 𝑖) = 𝜁 (𝑘 + 𝑖 𝑘)⁄⁄  𝑖 ≥ 1 are future measure-
ments of state. Assuming that the optimization problem in Theorem 1 is feasible given a 
sample instance 𝑘, the following inequalities hold: 

𝜁் (𝑘 𝑘)⁄ 𝑆𝜁 (𝑘 𝑘)⁄ ≤ 𝛾 (53)



< 0 (52)

It follows from (52) that −GT − G + X1 < 0, and G is a nonsingular matrix, which
implies

− GT − G + X1 ≥ −GTX−1
1 G

By substituting K = YG−1, L = M−1H and applying Schur complement and then
using the congruence transformations, we obtain the exact result in Equation (42). �

4. Robust Stability Analysis

This section offers the mathematical formulation for demonstrating that the proposed
control rule described in Equation (34), and subject to constraints in Equation (41), can
robustly stabilize closed-loop systems subject to sensor/actuator faults and in the presence
of external disturbances. The proposed mathematical formulation presented in this work is
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based on the work that has been done by Kothare et al. [31]. To maintain the asymptotic
stability of the control loop in Equation (32), the previously described optimization problem
must have a viable solution at each iteration (sampling time). As a consequence, the
following feasibility lemma will be introduced:

Lemma 2. Feasibility [31,32]. Any feasible solution to an optimization problem that is found at
sampling instant k and satisfies Theorem 2 is also a feasible solution for all times t > k. Thus, if the
objective optimization problem discussed earlier in Theorem 2 is feasible at the sampling instant k,
then it is feasible at any sample time t > k.

Proof. To prove Lemma 2, it is necessary to verify that the inequality in Equation (40) holds
for all future states, where ζ(k + i/k + i) = ζ(k + i/k) i ≥ 1 are future measurements of
state. Assuming that the optimization problem in Theorem 1 is feasible given a sample
instance k, the following inequalities hold:

ζT(k/k)Sζ(k/k) ≤ γ (53)

The inequality in Equation (53) needs to be feasible for all future measurements to
prove Lemma 2, which means:

ζT(k + 1/k + 1)Sζ(k + 1/k + 1) ≤ γ (54)

The feasible solution obtained by Theorem 2 is feasible at sampling instant k, and also
feasible at instants k + 1. By repeating this argument for all instants k + 2, k + 3, . . ., ∞, we
complete the proof of Lemma 2. �

Theorem 3. Robust stability [31]. Assume that Theorem 2 holds for the system in Equation (32) at
sampling instant k, then the feasible solution of the feedback control law obtained by Theorem 2 will
robustly asymptotically stabilize the closed-loop system.

Proof. To ensure the robust asymptotic stability of the closed-loop system, the Lyapunov
function V(k/k) = }T(k/k)Ω}(k/k) must be a decreasing Lyapunov function, where

}T(k/k) = [ζT(k/k), ζT(k− 1/k), . . . ζT(k−m/k)]T and Ω =

[
S 0
0 P

]
.

Indicating that Ω(k) and Ω(k + 1) are matrices that correspond to the optimal solution
at instants k and k + 1, respectively, we obtain the following:

}T(k + 1/k + 1)Ω(k + 1)}(k + 1/k + 1) ≤ }T(k + 1/k + 1)Ω(k)}(k + 1/k + 1) (55)

This is obvious, since Ω(k + 1) is optimal at the instance k + 1, while Ω(k) is only
feasible at instant k + 1.

The controller is said to be a stabilizing controller for all possible states of the system,
and the matrix Ω(k) is a Lyapunov matrix if the following inequality holds:

}T(k + 1/k + 1)Ω(k + 1)}(k + 1/k + 1) ≤ }T(k/k)Ω(k)}(k/k), ∀k ≥ 0 (56)

If at sampling instant k, the controller obtained at that sampling instant k is applied
to the system, then the state vector at the next instant k + 1, }(k + 1/k + 1) = }(k + 1/k),
also satisfies the inequality (56). Combining this result with the inequality in Equation (55),
we obtain the following:

}T
(

k +
1
k
+ 1
)

Ω(k)}
(

k +
1
k
+ 1
)
≤ }T

(
k
k

)
Ω(k)}

(
k
k

)
, ∀k ≥ 0 (57)

Therefore, V(k/k) is a strictly decreasing Lyapunov function, which confirms that
}(k)→ 0 , ζ(k)→ 0, or x(k)→ 0 as k→ ∞ . �
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5. Results and Discussions

In this section, we focus on studying the robustness of the wind turbine (1 MW) with
actuator/sensor faults and wind speed disturbance affecting the system. The mathematical
system along with all its parameters is given in [33,34].

The state vector is x =
[
θs, ωr, ωg, β

]
, the control input is u = [βd, Td], and the

output vector is y =
[
ωg, Pg

]
. The input is turbulence, which is the wind speed value

with disturbance, where θs is torsion angle, ωr is the angular velocity of the rotor,ωg is
the angular velocity of the generator, β and βd are the actual and desired pitch angles,
respectively, kr,β is the pitch angle to aerodynamic torque gain and kr,V denotes the gain
between the wind speed and the aerodynamic torque. In addition, the term Td does
represent the generator torque reference and the term Pg denotes the power produced
by the generator. In this wind turbine control system, three faults are considered, which
influence the three measured variables from the wind turbine: βd, Td, ωg. The software
LMI control toolbox in MATLAB environment is used to obtain the solution to the LMI
optimization problem. To demonstrate the effectiveness of the proposed approach, we
consider the results in [33] without faults and with different faults occurring in the wind
turbine system.

A =


0 1 −1 0

−Ks
Jr
− Bs+Br

Jr
Bs
Jr

− kr,β
Jr

Ks
Jg

Bs
Jg

− Bs+Bg
Jg

0

0 0 0 − 1
σ

, B =


0 0
0 0
0 Bs

Jg
1
σ 0



D =


0

kr,V
Jr
0
0

, C =

[
0 0 1 0
0 0 Bg

Jg
0

]

The parameters of the wind turbine are given in the following Table 1:

Table 1. Numerical values of a wind turbine with three blades.

Parameters Description Title 3

Ks Stiffness of the transmission 1.566× 106 N/m
Bs Damping of the transmission 3029.5 Nms/rad
Bg Damping of generator 15.993 Nms/rad
Jg Generator inertia 5.9 kgm2

Jr Rotor inertia 830, 000 kgm2

ρ Air density 1.225 kg/m3

R Length of the rotor blades 30.3 m
σ The time constant 500 µs
T The sampling time 0.001 s

Case 1. Simulation with the nominal condition and without any fault

In this case, the proposed MPC has been used for the wind turbine system as the nom-
inal controller without any faults. The proposed controller aims to capture the maximum
power by tracking the optimal generator speed. Another objective is the satisfaction of
physical constraints and robustness against the system’s uncertainties.

The MPC parameters are selected as follows: the weight matrices of the cost function
in Equation (16) are Q = 0.2I and R = 15I. The control constraints are ||βd|| ≤ 3 and
||Td|| ≤ 3200 N.m. We consider the generator speed at 160 (rad/s) to maintain the power
value of the generator at around 640 kW. For the simulation, we set the initial values as
x(0) = [0, 0, 30, 1].

The parameters of the predictive controller are obtained by solving the corresponding
LMIs problem. Simulations are carried out with both the generator torque and the pitch and
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a wind profile 17 ∼ 32 [m/s] (see Figure 1). Figure 2 shows that the predicted generator
speed can reach 80% of the desired speed at 25 s, which varies between 136 rad/s and
172 rad/s between 0 and 5 s. This is acceptable, since the deviation ofωg remains below
10%. We can also observe that the common objective of regulating the electrical power
while restricting the variations of the generator speed is achieved through multivariable
pitch and torque control Figure 3. From Figures 4 and 5, we conclude that the RMPC is
robust, and has achieved less turbulent control efforts with high accuracy so that the system
can track the given reference speed very well.

Figure 1. Wind speed 17 w 32 (m/s).

Figure 2. Generator speed predicted without faults.

Figure 3. Pg predicted without faults.
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Figure 4. Pitch angle control without faults.

Figure 5. Generator torque control without faults.

From the above simulation results, it is clear that the performance acquired by the
RMPC [33] is satisfactory and the multivariable controller tolerates minimizing variations
in the speed of the generator and control forces. The combination of these two controls can
yield the best results in terms of power regulation. It is also worth noting that:

• The oscillations in the torque speed and generator torque are smoothed, and a good
tracking of the nominal power around 610 kW is obtained with the RMPC.

• At the steady regime, the predicted generator rotated speed can reach 95% of the
desired speed in 37 s.

Case 2. Simulation with sensor and actuator faults

In this case, it is assumed that the sensor faults in ωg and actuator fault in the wind
turbine system contains an additive pitch and generator torque actuators faults βd and
Td, respectively. The hydraulic pitch systems can have defects on all three blades. These
defects are referred to as βd. Defects considered in the hydraulic system may lead to a
change in the dynamics of the system due to a drop in the main line pressure or high air
content in the oil. The fault on the torque actuator is mainly due to the internal loop of the
power electronics converter which may lead to an offset. This offset can be estimated by
a simple comparison between the desired torque (determined by the controller) and the
measured torque.

The actuator faults are described as:

fa(k) =
[

2.5e−0.5k

3200sin(0.5k + 0.4)e−0.5k

]
The sensor fault for the generator speed is defined as a bounded random signal.
The MPC parameters are selected as follows: the weight matrices of the cost func-

tion in Equation (16) are Q = 20I and R = 0.5I. The control constraints are ||βd|| ≤ 3,
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||Td|| ≤ 3200 N.m with time delays specified as x(k− 2), the desired value of the generator
speed at 160 (rad/s), and the targeted power value of the generator around 640 kW. In the sim-
ulations, we set the initial values to be: x(0) = [0, 0, 30, 1], z(0) = [0, 0, 30, 0, 2.5, 1246, 0].
In addition, the LMI toolbox is used to deal with the optimization problem described in
Equations (39)–(42) at every sampling time. The observer gain matrix L and controller gain
matrix K can are obtained for each sampling time. Simulations are carried out with both
the generator torque and the pitch and a wind profile 20–31 (m/s) (see Figure 6).

Figure 6. Wind speed disturbances and its estimation.

The objective of the proposed FTC approach is to design a control system to guarantee
a good trajectory tracking while robust performance is obtained despite the existence of the
fault, and with the constraints on the inputs. Figure 6 shows the results of the observer-
based fault predictive controller, which allows us to estimate the fictitious wind speed
disturbances. Figures 7 and 8 illustrate the temporal responses of the generator power and
the generator speed, from which it is apparent that both variables can converge rapidly
with the actuator faults and the estimations of the power and speed lead to an excellent
estimation performance. Note that the faults have an impact during the transient period in
the state change. i.e., even in the presence of faults, the power and speeds can only reach
the desired values of 84% at 25 s and 82% at 22 s, respectively.

Figure 7. Pg with a fault inωg is present and its estimation.
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Figure 8. ωg with a fault present and its estimation.

The control inputs, pitch angle, and torque signals are shown in Figures 9–11. It is
observed that the constraints on the control inputs can be handled by our method, and they
do not exceed 3◦ and 3200 N.m. This meets the requirement of the engineering practice, i.e.,
the limited control capacity, which is reflected in the minimization of control forces as well
as the transient loads experienced by the wind turbine.

Figure 9. βd control input with fault.

Figure 10. Td with a fault present.
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Figure 11. Pitch system fault and its estimation.

Figures 11–13 show the time responses of the actuator/sensor faults signal and their
estimations. We can see that the estimation of sensor fault can reach up to 90% of real values
within 20 s. It should be highlighted that the robust asymptotic stability of the closed loop
system is guaranteed in the case of wind speed disturbances, sensor, and actuator faults. In
addition, the tracking values of the generator speed and generator power can reach 95% of
the desired values at around 40 s and 50 s respectively. According to the simulation results,
we conclude that the system states and fault information can be estimated with acceptable
accuracy by using our observer-based fault predictive controller. From all figures, it is
noted that the delay effect with the proposed OBRFPC approach is negligible because the
computation of the controller is done in a prediction horizon that considers time delays
and allows to anticipate and compensate for its effect in advance.

Figure 12. Generator fault and its estimation.

Figure 13. Random generator fault and its estimation.

Table 2 shows the root mean square (RMS) error comparison between the proposed
OBRFPC approach and the method discussed in [33].
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Table 2. RMS comparison of wind turbine responses with sensor faults.

Approaches Power Generator
(kW) Generator Speed (m) Generator Torque (m)

Max RMS Max RMS Max RMS
[33] 710 5.518 186 0.213 1910 4.369 × 10−2

OBRFPC 680 0.45 180 0.081 1800 1.31 × 10−4

The comparison describes the RMS errors of the wind turbine responses in terms
of suspension stroke, the power produced by the generator, Generator speed, generator
torque under generator torque, and random generator faults excitation in the presence
of wind disturbances. In addition, Table 2 describes the maximum values reached in
power produced by the power generator, generator speed, and generator torque with
RMS errors of 95% of the desired values at around 40 s and 50 s, respectively. The results
suggested that the proposed robust predictive controller has better performance than
the approach discussed in [33] when the system is subject to sensor faults and external
disturbances. As can be seen from the error obtained by RMS, the error in the case of the
proposed robust approach remains less than 5% of the desired value. This means that the
significant fluctuation in blade pitch actuation and energy production, which is due to
disturbances and faults in the wind turbine, decreases significantly. On the other hand, the
deviation exceeds 15% in the approach cited in [33], which implies instability in energy
production [33].

Note that the illustrated performance of the proposed fault predictive controller is due
to the following two points.

As a result, the proposed robust predictive control method is well-suited for multi-
variable systems. In addition, external disturbances and faults in the output channel are
already taken into account in the predictive control design procedures, which means that
the multivariable control minimizes variations in the generator speed and control forces
and the observer can estimate the system states correctly when system suffers from external
disturbances and faults. In conclusion, the proposed robust predictive controller has the
ability to anticipate any errors caused by external disturbances and actuator/sensor faults
and provides reliable control for power regulation while minimizing mechanical loads on
the wind turbine structure.

6. Conclusions

In this paper, an observer-based robust predictive control problem in wind turbine sys-
tems with time delays subject to actuator faults, sensor faults, and wind speed disturbances
is investigated. Based on an augmented system composed of the state variables, actuator
fault, and sensor fault, an augmented robust observer is designed and used to estimate
states and faults. The main difficulty of the above problem is that the design conditions
must satisfy the hard constraints of the system states and inputs and guarantee the system’s
stability conditions. Therefore, in the proposed work, the observer design is formulated as
an LMI optimization problem. Note that by formulating the main proposed controlling
scheme as linear matrix inequalities (LMIs) problem, the infinite time domain “min-max”
optimization problems are converted into convex optimization problems, and the sufficient
conditions for the existence of this controller and its expression are easily derived. In the
numerical example, the augmented robust observer can accurately estimate wind speed
disturbances, actuator faults, and sensor faults.in addition, the simulation results show that
this approach can effectively guarantee the asymptotical stability of the closed-loop control
systems. In future research, we will focus on an extension of the presented approach for
the wind turbine with a time-varying delay in the actuator.
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