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Abstract: A single sensible thermal storage system has the disadvantage of poor system efficiency,
and a sensible-latent graded thermal storage system can effectively solve this problem. Moreover,
the graded thermal storage system has the virtue of being adjustable, which can be adapted to many
power generation systems. Therefore, this paper first analyzes the influence factors of the graded
thermal storage system’s exergy and thermal efficiency. Subsequently, each factor’s significance was
analyzed using the response surface method, and the prediction model for system exergy efficiency
and cost was established using the support vector machine method. Finally, the second-generation
nondominated sorting genetic algorithm (NSGA-II) was used to globally optimize the graded thermal
storage system’s exergy efficiency and cost by Matlab software. As a result, the exergy efficiency
was increased by 11.01%, and the cost was reduced by RMB 5.85 million. In general, the effect of
multi-objective optimization is obvious.

Keywords: sensible-latent graded thermal storage system; dish type solar thermal power; direct
steam generation; multi-objective optimization

1. Introduction

Concentrated solar power with thermal energy storage (TES) is an essential solar
thermal power (STP) technology. When the sunlight is insufficient or the power grid needs
peak shaving, the stored thermal energy is converted to electric energy to meet the demand
for a stable power supply [1–3]. Therefore, STP is a promising generation technology for
renewable energy. Sunlight is concentrated on the heat absorber through the parabolic
reflector, and the working medium is heated. Then, the high pressure and temperature
steam is generated to drive the turbine to achieve electric energy. STP technology can be
divided into four types: tower, dish, trough, and linear Fresnel [4–6]. Compared with
the other three forms, the dish-type STP has a simple structure, flexible layout, higher
power generation efficiency, and great potential for cost reduction [7]. In addition, different
positions and different energies of solar energy have minimal impact on the dish-type
STP. Currently, research on the dish-type STP is mainly focused on solar Stirling power
generation. However, this type of power generation system cannot store heat and does
not have the capability of stable and continuous power output, so it cannot be applied to
commercial applications. Therefore, research on dish-type STP with TES is urgently needed.

According to the heat storage principle, TES technologies include thermochemical heat
storage and thermophysical heat storage (sensible and latent TES) [8]. The thermochemical
TES has a much higher energy density than the thermophysical TES. Sensible TES has the
advantages of low cost, simple principles, convenient management, etc., and is widely
used in the STP field. The benefits of latent TES are high TES density, relatively small heat
storage volume, and slight temperature fluctuation [9–11]. In the dish-type STP, water
as the heat transfer medium has the characteristics of no pollution, no corrosion, and
low price. At the same time, direct steam generation technology is mature and has good
application prospects [12–14]. However, the water-working medium undergoes a phase

Energies 2023, 16, 2404. https://doi.org/10.3390/en16052404 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16052404
https://doi.org/10.3390/en16052404
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-6724-5681
https://doi.org/10.3390/en16052404
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16052404?type=check_update&version=1


Energies 2023, 16, 2404 2 of 21

change, and it is difficult for a single sensible TES to match the temperature–enthalpy curve
of the water-working medium, resulting in a large energy loss. The graded TES, which
couples sensible and latent TES, can solve this problem. The graded TES has a broader
range of adjustable parameters and can be adapted to various power generation systems
compared with the single-stage TES. However, minimal research on graded TES restricts
its development and application to some degree.

Among the graded TES, the sensible-latent graded TES is mostly studied. In 2009,
Laing et al. [15] first proposed a solid concrete three-tank graded sensible-latent graded TES.
The material’s melting point shows that the phase change material (PCM) uses sodium ni-
trate (NaNO3). To study the process of heat storage/release for the graded TES, the German
Aerospace Center [16] has built a sensible-latent graded TES for the Spanish direct steam
power generation system. To improve the PCM’s thermal conductivity, Laing et al. [15]
used a PCM system containing aluminum fins and tested this system for 172 cycles at
400 °C/11.0 MPa. The results showed that the PCM would not degrade and had a reason-
able heat storage/heat release rate. This experimental system’s successful implementation
guaranteed the later experiments’ safety. Additionally, it confirmed the feasibility of apply-
ing sensible-latent graded TES in direct steam solar thermal power generation.

Birnbaum et al. [17] studied the direct steam generation power system based on
Spain’s 50 MW installed capacity power station. It was found that the temperature of
the reheated steam was significantly lower than that of the main steam. Guo et al. [18]
proposed a three-tank graded TES, in which a sensible TES consists of two-tank indirect
TES and two heat exchangers. An intermediate buffer tank is added, and the mass flow
rate of liquid sensible heat storage material could be adjusted according to the temperature–
enthalpy characteristic curve of hydraulic characteristics so that the temperature–enthalpy
characteristic curve of heat storage material could be better matched with water-based
working medium and the system efficiency is improved. Guo et al. [19] compared the
exergy efficiency and thermal efficiency of the two-tank sensible, three-tank sensible,
and two-tank sensible-latent graded TES based on the previous three-stage graded TES
through thermodynamic calculation. The results showed that the temperature–enthalpy
characteristic curve of double-tank sensible TES is well matched with the water-based
working medium, which effectively solved the problem of excessive loss caused by the
pinch analysis. The exergy efficiency and thermal efficiency were about twice that of the
single-stage sensible TES. Based on the above studies, Bian et al. [20] studied the energy
level matching of sensible-latent graded TES and adopted a single objective optimization
method to optimize the system’s exergy efficiency. After optimization, the exergy efficiency
of the graded TES increased by 20%.

Due to the internal complexity of the sensible-latent graded TES, the experimental
method has some limitations, such as low efficiency, long time consumption, and a large
investment. The thermodynamic calculation method can solve this problem. However,
thermodynamic calculation of a sensible-latent graded TES is still time-consuming, and
the data-driven surrogate models can effectively solve this problem. The artificial neural
network (ANN) [21] and support vector machine (SVM) [22] are widely used surrogate
models. Compared with the traditional ANNs, the SVM has good generalization ability
and can obtain the optimal solution with fewer samples. This method is an intelligent
algorithm proposed in 1995 by Cortes and Vapnik. Due to this study’s small number of
sample points, SVM was chosen to establish the surrogate model.

The sensible-latent graded TES generally considers the two factors of exergy efficiency
and cost. While ensuring high exergy efficiency, the cost is also low, resulting in better
overall system performance. With the development of computer science, optimization
algorithms are more and more widely used in system optimization [23]. Based on the
first nondominated sorting genetic algorithm (NSGA), NSGA-II [24] studied the fast non-
dominated sorting method and crowded comparison operator. Therefore, this algorithm
has good global search performance and is the most popular multi-objective optimization
algorithm [25]. Rahder et al. [26] applied the NSGA-II method in the optimization of
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ice thermal energy storage air conditioning system, and the results showed that energy
consumption and annual carbon dioxide emissions were reduced by 11% after optimization.
Yuan et al. [27] improved the performance of household air conditioners based on NSGA-II
method, saving 20–26% of energy after optimization and about $1.8–3.4 in cost. Li et al. [28]
studied the optimization of dish-shaped Brayton system based on NSGA-II method and
finally got the optimal solution. However, it was found that there needs to be research on
the optimization design of the dish-type graded TES.

In summary, the energy level match for the dish-type sensible-latent graded TES is
relatively low. Thus, the system may have low exergy efficiency and high cost. There needs
to be more research on the performance optimization design of the dish-type STP. Therefore,
this paper intends to study the system’s heat storage and release performance by analyzing
the effects of different factors on the exergy efficiency of the system. BBD experimental
design and response surface methodology were used to analyze the significance of various
factors on the cost of graded TES. The prediction model for the exergy efficiency and cost
of the sensible-latent graded TES was established using the SVM. The NSGA-II algorithm
globally optimizes the graded TES to realize the optimal parameter configuration for the
exergy efficiency and cost.

2. System and Method
2.1. System Introduction

Figure 1 illustrates the working process of the dish-type direct steam generation STP
system with TES [29–31]. The low-temperature water absorbs the concentrated solar energy
in the absorber and turns it into high-temperature and high-pressure steam. Then, the
steam drives the turbine to generate electricity and stores/releases energy according to
the load. The amount of superheated steam generated by the heat absorber during the
daytime operation is far greater than the steam amount required by the system. The excess
superheated steam heat is stored in the TES material. When the heat absorber cannot work,
it serves as the heat source to supply the system to run normally.
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Using a two-tank sensible-latent graded TES can effectively solve the difficulty of a
single-stage TES by matching the temperature–enthalpy characteristic curve of the working
fluid [32–34]. However, the temperature–enthalpy characteristic curve of the working fluid
in this system cannot have the same slope for the sensible heat section. The reason is that the
specific heat capacity of the superheated steam and liquid water varies greatly. Therefore,
an intermediate tank is added between the high-temperature and low-temperature heat
exchangers to solve this problem. Figure 2 shows the sensible-latent graded TES sketch
map with an intermediate tank.
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2.2. Theoretical Method of the TES System

The power generation system is a 25 kW dish-type direct steam thermal power gener-
ation system. The power generation is in the form of a steam turbine driving a generator
to generate electricity. The heat storage time is the operating hours of the steam turbine
at night. According to the energy balance, the heat required for normal operation of the
turbine during the TES period is called the TES capacity of the TES system. The formula of
the heat required for normal operation of the turbo-generator is as follows:

Q0 =
3600·Pe·t

ηe
(1)

where Q0 is the heat required by the turbo-generator, kJ; Pe is the installed capacity of the
power station, kW; t is the TES time, h; and ηe is the absolute electrical efficiency of the
turbo-generator.

Heat loss will occur during the operation of the TES system, resulting in insufficient
utilization of the stored heat. Therefore, the heat loss of these parts must be considered
when calculating the mass of the TES material. The formula for the mass of the TES material
in the system is as follows:

m =
Q1

cp · ∆t
=

Q0

η2 · cp · ∆t
=

3600 · Pe · t
ηe · η2 · cp · ∆t

(2)

where Q1 is the total amount of TES, kJ; cp is the specific heat capacity of the working
fluid, kJ/kg·◦C; ∆t is the TES temperature difference of the TES material, ◦C; η2 is the
thermal efficiency of the TES system, since the thermal efficiency of the TES system is
unknown when calculating the mass of the TES material, it is necessary to perform a certain
number of iterations until the equation reaches equilibrium to obtain the total mass of the
TES material.

During the process of heat storage and release, the calculation formula for the temper-
ature enthalpy characteristic curve of the system is as follows:

Q = m · cp · ∆T (3)
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where Q is the heat change, kJ; m is the mass flow rate of the working fluid, kg/s; cp is the
specific heat capacity of the working fluid, kJ/kg·◦C; and ∆T is the temperature difference
of the working fluid at different positions, ◦C.

The exergy analysis method was used to compare and evaluate the thermodynamic
performance of the graded TES system [35].

Ex = ∆H − Te∆S (4)

where Ex is exergy, kJ; ∆H is the enthalpy change of the working fluid in the TES or heat
release process, kJ; Te is the ambient temperature, ◦C; and ∆S is the entropy change caused
by the heat exchange process, kJ/kg·◦C [36,37].

The formula for the entropy change is as follows:

∆S = mhcp,h ln
(

Th,o

Th,i

)
+ mccp,c ln

(
Tc,o

Tc,i

)
(5)

where h and c respectively represent the hot- and cold-working fluids, and i and o denote
the inlet and outlet.

The exergy efficiency (REx) of TES system was obtained by substituting REx from
Equations (2)–(4) into the following equation.

REx =
ExD
ExC

(6)

The effectiveness for high-temperature heat exchangers can be written as [38]:

ε =
1− exp

[
−NtuH

(
1−

(
mcp

)
min/

(
mcp

)
max

)]
1−

((
mcp

)
min/

(
mcp

)
max

)
exp

[
−NtuH

(
1−

(
mcp

)
min/

(
mcp

)
max

)] (7)

where NtuH is the number of heat transfer units of high-temperature heat exchanger. The
outlet temperatures of liquid LBE and superheated steam in high-temperature heat ex-
changer can be derived from the entry condition and Equation (7).

2.3. Economic Calculation Method for TES System

The cost of the TES system is composed of direct and indirect costs. The direct cost
comprises TES material cost, TES tank cost, and miscellaneous cost, and the indirect cost
includes tax and engineering cost. Because the research is mainly based on theoretical
analysis, only direct costs are considered when calculating the cost of the TES system.

2.3.1. Calculation of TES Tank Parameters

The TES tank is an essential component of the TES system. According to the calculation
results of Formula (2), the volume of the TES material is calculated. The calculation formula
is as follows:

V1 =
m
ρ

(8)

When calculating the internal volume of the tank, for practical safety considerations,
the volume of the TES tank is calculated as 1.15 times the volume of the TES material.

V = 1.15×V1 (9)

After the calculation result of the Formula (2) is determined, the internal diameter of
the tank can be calculated. The calculation method is as follows:

d =
3

√
4V · n

π
(10)

where n is the ratio of the tank’s inner diameter and height. In this paper, this ratio is 3.
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2.3.2. Cost Calculation of the TES System

The calculation formula for the cost of TES material is:

Csm = C∗sm ·Msm × 10−3 (11)

where Csm is the cost of TES material; C∗sm is the unit price of the TES material; and Msm is
the total mass of the TES material, kg.

The calculation formula for the cost of a single TES tank is:

Cst = C∗st · ρst

(
Vtan k − 1.15

Msm

ρsm

)
× 10−3 (12)

where Cst is the cost of a single TES tank, RMB; C∗st is the unit price of tank steel, yuan/t;
ρst and ρsm are the density of the steel material and the density of the heat storage material
in kg/m3; Vtank is the total volume of the TES tank.

The unit prices of different materials in the calculation of the TES system cost are
shown in Table 1.

Table 1. Unit price of different materials in thermal energy storage systems.

Parameter Numeric (RMB/t)

NaNO3 2548
Solar Salt 3388

Steel tanks 19,403

2.4. Optimization Design Analysis Method
2.4.1. Response Surface Method

When analyzing the significance of factors using the response surface method, the
commonly used sample design methods include the central composite design (CCD) and
the Box–Behnken design (BBD) [39,40]. Compared with the CCD test, the overall number
of test combinations in the BBD test is smaller and thus has higher economic efficiency.
Therefore, this paper selects the BBD experimental design for the optimization study and
Design Expert 11 was used to design the structural parameter scheme of the graded TES.
The BBD method was used to obtain the structural parameter design scheme of the 17-
component TES system. The specific structural design parameters are shown in Table 2.
The above test scheme was calculated using the thermodynamic and economic calculation
program of the graded TES system.

Table 2. Parameter design scheme of Box–Behnken Design.

Number Rm Ts (°C) ms (kg/s)
1 0.5 650 18
2 0.9 550 22
3 0.5 450 22
4 0.1 450 20
5 0.9 550 18
6 0.5 550 20
7 0.9 650 20
8 0.5 450 18
9 0.5 550 20

10 0.5 650 22
11 0.1 550 18
12 0.5 550 20
13 0.1 650 20
14 0.9 450 20
15 0.1 550 22
16 0.5 550 20
17 0.5 550 20
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2.4.2. Data-Driven Surrogate Model

In multi-objective optimization, the physical model has the disadvantages of long
computing time and low computing efficiency. Thus, a data-driven surrogate model is
established using the SVM [41]. As a fast and efficient forecasting tool, SVM can predict the
REx and cost of graded TES efficiently and quickly. The surrogate model via the SVM can
be expressed as follows:

f (x) = ∑
xi∈SVM

(αi − α∗i )K(xi − x) + b (13)

where αi, α∗i is the Lagrange multipliers; b is the undetermined coefficient vector;
K(xi − x) = φ(xi)φ

(
xj
)

is the kernel function.
The surrogate model is implemented using the open-source MATLAB library LIBSVM.

LIBSVM provides the linear, polynomial, radial basis (RBF), sigmoid, and precomputed
kernel functions. By comparing the adaptability, the present work uses the RBF kernel
function. The expression is as follows:

K
(
xi, xj

)
= exp

(
−‖xi − xj‖2/2γ2

)
(14)

Figure 3 shows the structure diagram of SVM. Each support vector can be represented
by an intermediate node, and the linear combination of the intermediate nodes can obtain
the output.
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Therefore, this study firstly determines the constraint conditions for the optimal
design of a graded TES according to the pitch point constraint conditions and uses the
BBD experimental design method to obtain the sample solution set required for prediction.
Secondly, thermodynamics is applied to calculate the REx and total system cost of each
design sample to obtain a rapid prediction model of the system.

2.4.3. Multi-Objective Optimization Method

The multi-objective problem usually has multiple objectives, which are mutually
exclusive. If one of them increases, the other one decreases. Therefore, multi-objective
optimization is not the optimal global solution but a series of optimal solution sets. The
goal of multi-objective optimization is to find the Pareto optimal solution set for a specific
optimization problem. Figure 4 illustrates the principle of the NSGA-II algorithm. More
details about the NSGA-II algorithm are provided elsewhere.
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Figure 5 illustrates the optimization flow chart of the NSGA-II algorithm. The fitness
functions (i.e., cost parameter and REx) are evaluated via SVM using the data-driven
surrogate model. The parameter settings are shown in Table 3.
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Table 3. Genetic algorithm parameter settings.

Parameter Values

Population 200
Probability of crossing: Pc 0.85

Probability of variation: Pm 0.1
Number of iterations 500

3. Results and Discussion
3.1. Analysis of Influencing Factors

In this section, the control variable method is adopted. Different parameters are
studied by thermodynamic calculation, including the mass flow rate of the TES material
from the cold tank to the intermediate tank (ms), the superheated steam temperature at the
inlet of the system (Ts), and the ratio of the mass flow rate of the regenerative material from
the cold tank to the intermediate tank to the thermal material from the intermediate tank to
the hot tank (Rm). The calculation case parameters are shown in Table 4.

Table 4. Design table of calculation case.

Number ms (kg/s) Ts (°C) Rm

Benchmark 20 550 0.5

1 18 550 0.1
2 19 550 0.3
3 20 550 0.5
4 21 550 0.7
5 22 550 0.9
6 20 450 0.5

7 20 500 0.5
8 20 550 0.5
9 20 600 0.5
10 20 650 0.5

11 20 550 0.5
12 20 550 0.5
13 20 550 0.5
14 20 550 0.5
15 20 550 0.5

3.1.1. The Effect of ms of TES Material on the Graded TES

The TS and Rm were fixed to study the effect of ms on the graded TES. The TES
conditions with ms of 18 kg/s, 19 kg/s, 20 kg/s, 21 kg/s, and 22 kg/s were studied. To
prevent the sensible TES material from solidifying during the heat storage and release
process, the temperature of the sensible TES material in the fixed cold tank is 227 ◦C. At the
same time, the temperature of the working fluid at the outlet was set to 247 ◦C.

Figure 6 shows the variation in the sensible heat of the superheated steam absorbed
by the sensible TES material and the latent TES material with the steam at the system’s
inlet during the TES process of the graded TES system. It can be seen from the figure that
as the ms of the TES material in the system increases, the sensible heat storage material
absorbs heat in the superheated steam section under heat storage condition (QCS) and the
superheated steam section gradually increases, but the latent heat storage material in the
superheated steam section absorbs heat under heat storage conditions (QCN) and gradually
decreases. As the ms of the TES material increases, the temperature of the system hot tank
first decreases and then increases. The reason is that when the ms of the TES material
is changed, the heat capacity flow (the product of the ms and the specific heat capacity)
between the TES material and the working fluid changes, which causes the heat exchanger
performance to change significantly, which affects the outlet temperature of TES material



Energies 2023, 16, 2404 10 of 21

of the heat exchanger and the outlet temperature of hot material. Other factors need to be
analyzed to obtain the change of the different ms of the sensible TES material on the TES
and release performance of the system.
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increasing with the ms of TES materials.

Figure 7 shows the variation pattern of the energy level in the high-temperature and
low-temperature heat exchangers with the ms of the TES material during the heat release
process. For the energy level heat QDL in the low-temperature heat exchanger, the ms of
the sensible TES material was increased from 18 kg/s to 22 kg/s, and QDL increased from
2.4 MW to 2.7 MW. At the same time, the energy level QDH in the high-temperature heat
exchanger rapidly increased from 1.6 MW to 2.0 MW. The figure shows that when the
ms of the working fluid increases from 20 kg/s to 21 kg/s, the energy level heat QDL of
the high-temperature heat exchanger suddenly increases. The primary cause is that the
efficiency of the heat exchanger is significantly improved, which increases the heat transfer
temperature difference, increasing the energy level of the high-temperature heat exchanger.
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Based on the variation pattern of the energy level heat in the high-temperature and
low-temperature heat exchangers with the ms, the storage and release performance of the
system is further studied. As shown in Figure 8, when the ms of the TES material increases,
the exergy efficiency of the system REx and the thermal efficiency of the system RQ of the
system both decrease. As the ms of the TES material increased from 18 kg/s to 20 kg/s,
the REx and RQ of the system decreased to 87.49% and 86.44%, respectively. As the ms of
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the TES material increases from 20 kg/s to 21 kg/s, the change in efficiency reduces the
energy level of the low-temperature heat exchanger during the process of heat release. It
simultaneously increases the energy level of the high-temperature heat exchanger, which
eventually leads to the REx of the system’s significant increase.
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3.1.2. Effect of TS on the Graded TES System

When studying the effect of system inlet steam on the graded TES system, the fixed
variable method was also used to study the working conditions of the TS of 450 ◦C, 500 ◦C,
550 ◦C, 600 ◦C, and 650 ◦C.

Figure 9 shows the curve of sensible heat absorbed by superheated steam in the heat
storage process in the graded TES. It can be seen from the figure that as the temperature
of the superheated steam at the inlet of the system increases, the QCS and QCN of the
superheated steam section gradually increase. Moreover, with the increase in superheated
steam temperature, the growth rate of QCS is greater than the growth rate of QCN. Since
the amount of heat used to absorb the latent heat of the working fluid in the latent TES
energy level remains unchanged, it can be concluded that when the temperature of the
superheated steam at the inlet of the system is changed, the heat increase of the energy
level of the high-temperature heat exchanger is much larger than that of the phase change
TES energy level, considering that the energy level matching of TES materials under TES
conditions is not sufficient to explain the effect of energy level matching on the overall TES
and release performance of the graded TES system. Therefore, it is necessary to study the
energy level matching in the exothermic process systematically.
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Figure 10 shows the variation pattern of the energy level of the high- and low-
temperature heat exchangers with the TS during the heat release process. For the energy
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level heat QDL of the low-temperature heat exchanger, as the TS increases from 450 ◦C to
650 ◦C, QDL gently increases from 2.1 MW to 2.3 MW. Meanwhile, the high-temperature
heat exchanger heat exchange QDH rapidly increased from 1.2 MW to 2.3 MW. From the
above data, it can be seen that during the heat release process, the energy level heat of the
high- and low-temperature heat exchangers gradually increases with increasing TS; the
energy level heat and heat loss of the low-temperature heat exchanger increase slightly
with increasing TS. The high-temperature heat exchanger’s energy level heat and heat
loss increased significantly with increasing TS, and the change was dramatic. From the
numerical analysis of the energy level heat, the energy level heat of the low-temperature
heat exchanger always has a relatively large impact on the TES and release performance of
the graded TES system, but the resulting system exergy loss does not significantly increase
with the increase in the inlet superheated steam. On the other hand, as the temperature
of the superheated steam at the inlet of the system increases, the energy level of the high-
temperature heat exchanger increases significantly, and the corresponding exergy loss
increases significantly. Therefore, for the exothermic process, the increase in the exergy loss
caused by the increase in the TS is principal because of the change in the energy level of the
high-temperature heat exchanger.
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Figure 10. The law of the heat exchange rate of high and low-temperature heat exchangers rising
with the inlet steam temperature of the system during heat release.

The variation pattern of the REx and RQ of the system with the TS is shown in Figure 11.
As the inlet superheated steam increases, the REx and RQ of the system both decrease. As
the TS increased from 450 ◦C to 650 ◦C, the REx of the system decreased from 92.9% to
85.5%. The RQ also showed a decreasing trend with the decrease in the superheated steam
inlet temperature, and the RQ of the system decreased from 92.19% to 83.06%.
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3.1.3. Effect of the TES Material Rm on the Graded TES System

When studying the effect of the TES material Rm, the fixed variable method was also
used to study the TES system working conditions when the TES material Rm is 0.1, 0.3, 0.5,
0.7, and 0.9. Based on the temperature–enthalpy characteristic curve, the Rm’s effect on the
graded TES’s energy level matching was analyzed.

Figure 12 shows the variation in the sensible heat of the superheated steam absorbed
by the sensible TES material with the Rm. It can be seen from the figure that as the Rm of
the TES material increases, the QCS of the superheated steam section gradually increases,
but the QCN gradually decreases. Due to the control of factors such as the TS, the outlet
temperature of the TES material gradually decreases. Other factors need to be analyzed to
obtain the change of the different Rm of the sensible TES material more clearly on the TES
and release performance of the system.
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Figure 12. The law of sensible heat absorbed by superheated steam of sensible-latent storage materials
increases with the Rm of TES materials.

The variation pattern of the REx and RQ of the system with the Rm of the TES material
is shown in Figure 13. As the Rm of the TES material increases, the REx and RQ of the
system both increase. As the Rm of the TES material increases from 0.1 to 0.9, the REx and
RQ of the system increase from 78.50% to 92.91%. Meanwhile, the RQ increased with the
Rm of the TES material, from 77.47% to 91.08%.
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3.2. Response Surface Method

Figure 14 shows the comparison between the actual calculated value and the predicted
value using the graded TES system cost model as the optimization target. According to
the distribution of the calculation results of different design combinations in the figure,
the actual values are basically distributed near the prediction line of the regression model,
indicating that the calculated results are basically consistent with the predicted values, and
the prediction results of the regression model have high accuracy.
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To further discuss the impact of each variable of the two-tank sensible-latent graded
TES system on the system cost, Figure 15 shows the cost changes of the graded TES system
under different system parameters. Figure 15a shows the interaction response surface
diagram of the system cost between the superheated steam temperature and the sensible
TES material mass flow at the inlet and outlet of the graded TES system when the Rm of
the sensible TES material at the inlet and outlet of the graded TES system is 0.5. It can be
seen from the figure that as the inlet steam temperature of the system increases, the system
cost changes significantly. Taking the TES material ms of 18 kg/s as an example, when the
system steam inlet temperature increases from 450 ◦C to 650 ◦C, the system cost increases
from RMB 6.41 m to RMB 6.87 m. In comparison, when the steam inlet temperature of the
system is 450 ◦C, the system cost only rises from RMB 6.41 m to RMB 6.56 m when the ms
of the TES material changed.
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Figure 15b shows the response surface diagram of the interaction between the super-
heated steam temperature at the inlet of the system and the Rm of sensible TES material
on the system cost when the ms of the sensible TES material in the graded TES system
is 20 kg/s. The figure shows that the Rm of the TES material and the temperature of the
superheated steam at the inlet of the system have a large impact on the system cost, and the
system cost changes significantly with the change in parameters. Taking the TES material
Rm as an example, when the system steam inlet temperature increased from 450 ◦C to
650 ◦C, the system cost increased from RMB 7.21 m to RMB 8.35 m; when the system steam
inlet temperature was 450 ◦C, the Rm of the TES material is changed, the system cost was
only reduced from RMB 7.21 m to RMB 6.18 m.

Figure 15c shows the interaction response surface of the sensible TES material Rm and
the sensible TES material ms on the system cost when the inlet steam temperature of the
graded TES system is 550 ◦C. It can be seen from the figure that as the Rm of the system
sensible TES material increases, the system cost changes significantly. Taking the ms of
the TES material as 18 kg/s as an example, when the ms of the sensible TES material in
the system increases from 0.1 to 0.9, the system cost is reduced from RMB 7.62 m to RMB
6.26 m. In comparison, when the Rm of the TES material in the system is 0.1, the system cost
only rises from RMB 7.62 m to RMB 7.99 m when the ms of the TES material is changed.

3.3. Rapid System Prediction Model Based on Support Vector Machine

The thermodynamic calculation results of the above BBD design samples were used to
establish a fast model of the graded TES, the REx and cost of the system were determined.
The comparison results are shown in Figure 16. The results of the comparison between the
predicted values and the calculated values of most of the design samples are good, which
proves the reliability of the prediction model. Through the analysis, the prediction results
of the SVM were compared with the thermodynamic calculation. The maximum errors
were 4.39% and 3.26%, and mean deviation value was 0.86% and 0.82%. In summary, the
SVM rapid prediction model obtained in this work has high accuracy and can accurately
and rapidly predict the REx and cost of the graded TES.

3.4. Multi-Objective Optimization Based on the NSGA-II Algorithm

The multi-objective optimization of the graded TES system studied in this section uses
the Rm of the TES material at the inlet and outlet of the system buffer tank, the TS, and
the Rm of the TES material as the optimized fitness values. The overall cost is used as two
functions of the optimization objective. Figure 17 shows the calculation results.



Energies 2023, 16, 2404 16 of 21

Energies 2023, 16, x FOR PEER REVIEW 17 of 23 
 

 

  
(c)  

Figure 15. Interaction of different design variables on the cost of graded multistage TES system. (a) 
Response surface diagram of the interaction between superheated steam temperature and ms of 
TES material on system cost. (b) Response surface diagram of the interaction between superheated 
steam temperature and Rm of TES materials for system cost. (c) Response surface diagram of the 
interaction between ms of TES material and Rm of TES material to system cost. 

3.3. Rapid System Prediction Model Based on Support Vector Machine 
The thermodynamic calculation results of the above BBD design samples were used 

to establish a fast model of the graded TES, the REx and cost of the system were deter-
mined. The comparison results are shown in Figure 16. The results of the comparison be-
tween the predicted values and the calculated values of most of the design samples are 
good, which proves the reliability of the prediction model. Through the analysis, the pre-
diction results of the SVM were compared with the thermodynamic calculation. The max-
imum errors were 4.39% and 3.26%, and mean deviation value was 0.86% and 0.82%. In 
summary, the SVM rapid prediction model obtained in this work has high accuracy and 
can accurately and rapidly predict the REx and cost of the graded TES. 

 
(a) exergy efficiency 

Energies 2023, 16, x FOR PEER REVIEW 18 of 23 
 

 

 
(b) cost 

Figure 16. Comparison between the support vector machine’s predicted value and calculated value. 

3.4. Multi-Objective Optimization Based on the NSGA-II Algorithm 
The multi-objective optimization of the graded TES system studied in this section 

uses the Rm of the TES material at the inlet and outlet of the system buffer tank, the TS, 
and the Rm of the TES material as the optimized fitness values. The overall cost is used as 
two functions of the optimization objective. Figure 17 shows the calculation results. 

 
Figure 17. Pareto optimal solutions for the graded multistage TES system. 

It can be analyzed from the optimization implementation results in the figure that a 
total of 60 nondominant Pareto optimal solution sets are obtained. The variance trend of 
the two targets in the figure is not obvious. The primary cause is that when the Rm of the 
system sensible TES material and the inlet super steamed steam temperature reaches the 
optimal value, the REx and cost of the system have been basically determined and will 
only fluctuate slightly with the variation of ms of TES materials. This also confirms that 
the factors in the response surface method affect the research results. There are five special 
optimization design points in the optimization solution set. The REx and cost at point A 
are at the lowest level, and the REx and cost at point E are at the highest level. In the process 
of moving from point A to point B, the REx increase is more significant than cost increases, 
and while moving from point D to point E, the significance of the increase in cost is much 

Figure 16. Comparison between the support vector machine’s predicted value and calculated value.

Energies 2023, 16, x FOR PEER REVIEW 18 of 23 
 

 

 
(b) cost 

Figure 16. Comparison between the support vector machine’s predicted value and calculated value. 

3.4. Multi-Objective Optimization Based on the NSGA-II Algorithm 
The multi-objective optimization of the graded TES system studied in this section 

uses the Rm of the TES material at the inlet and outlet of the system buffer tank, the TS, and 
the Rm of the TES material as the optimized fitness values. The overall cost is used as two 
functions of the optimization objective. Figure 17 shows the calculation results. 

 
Figure 17. Pareto optimal solutions for the graded multistage TES system. 

It can be analyzed from the optimization implementation results in the figure that a 
total of 60 nondominant Pareto optimal solution sets are obtained. The variance trend of 
the two targets in the figure is not obvious. The primary cause is that when the Rm of the 
system sensible TES material and the inlet super steamed steam temperature reaches the 
optimal value, the REx and cost of the system have been basically determined and will only 
fluctuate slightly with the variation of ms of TES materials. This also confirms that the 
factors in the response surface method affect the research results. There are five special 
optimization design points in the optimization solution set. The REx and cost at point A 
are at the lowest level, and the REx and cost at point E are at the highest level. In the process 
of moving from point A to point B, the REx increase is more significant than cost increases, 
and while moving from point D to point E, the significance of the increase in cost is much 

Figure 17. Pareto optimal solutions for the graded multistage TES system.



Energies 2023, 16, 2404 17 of 21

It can be analyzed from the optimization implementation results in the figure that a
total of 60 nondominant Pareto optimal solution sets are obtained. The variance trend of
the two targets in the figure is not obvious. The primary cause is that when the Rm of the
system sensible TES material and the inlet super steamed steam temperature reaches the
optimal value, the REx and cost of the system have been basically determined and will
only fluctuate slightly with the variation of ms of TES materials. This also confirms that
the factors in the response surface method affect the research results. There are five special
optimization design points in the optimization solution set. The REx and cost at point A are
at the lowest level, and the REx and cost at point E are at the highest level. In the process of
moving from point A to point B, the REx increase is more significant than cost increases,
and while moving from point D to point E, the significance of the increase in cost is much
greater than the significance of the increase in REx. In the two-tank sensible-latent graded
TES system studied in this paper, point C is an optimal design point for the REx and cost of
the system. Table 5 shows the corresponding factor design.

Table 5. Optimal design results of multi-objective optimization on point C for the graded TES system.

Design Variables Optimization Results

Rm 0.9
TS 450 ◦C
ms 19.1 kg/s

Figure 18 compares the calculation results of REx and cost at point C and the results
of multi-objective optimization. As shown in the figure, according to the comparison,
it was found that the difference between the calculation results of REx and cost and the
multi-objective optimization result is 0.0001 and RMB 36,000, respectively, and the error
is within the allowable range. In addition, the REx and cost of the graded TES can be
accurately predicted by the prediction model.
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Figure 19 compares the calculation results of the REx and cost of the samples before
and after optimization. As shown in the figure, the results show that after optimization,
the calculation result of REx is 11.01% higher than that before optimization, and the cost
calculation result after optimization is reduced by RMB 585,000 compared with that before
optimization. It proves that the optimization model has a significant optimization effect
while ensuring high accuracy.
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4. Conclusions

The present study established a data-driven surrogate model for a two-tank sensible-
latent graded TES system by using the SVM. Then, the NSGA-II algorithm is used for
multi-objective optimization of the graded TES system, in which the efficiency and cost of
the graded TES are calculated using the surrogate model. The conclusions of the study are
as follows:

1. Using the response surface method as the objective function, the significance of the
impact of the three factors is studied. The results show that the system TS and the Rm
of the sensible TES material have a significant impact on the system cost, and there
is an optimal mass flow of sensible TES material, thereby maximizing the overall
performance of the system.

2. The rapid cost prediction model of the graded TES based on SVM is trained. The
results showed that the predicted cost was in good agreement with the thermodynamic
calculation results. The maximum error is 3.26%, and the average error is 0.82%, which
aligns with the demand for rapid performance prediction of the graded TES system.

3. By comparing the REx and cost corresponding to design point C obtained from the
multi-objective optimization with the thermodynamic calculation results, the REx
calculation result after optimization was 11.01% higher than that before optimization,
and the cost calculation result after optimization was 585,000 yuan less than that before
optimization. Its accuracy is at a high level, and the optimization effect is obvious.
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Abbreviations

Q heat quantity (kJ)
p working pressure (MPa)
t time (h)
η efficiency (%)
Ex exergy(W)
cp specific heat (J/kg·K)
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T temperature (°C)
H enthalpy (J)
S entropy (J/K)
V volume (m3)
n ratio of the tank’s inner diameter and height (-)
C cost (RMB)
ρ density
Greek letters
ε efficiency of heat exchanger[-]
∆ difference[-]
Subscripts
0 turbo-generator
e environment
c cold
h hot
sm Thermal energy storage material
st steel material
* unit price
TES Thermal energy storage
STP solar thermal power
ANN artificial neural network
SVM support vector machine
NSGA nondominated sorting genetic algorithm
CCD central composite design
BBD Box–Behnken design
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