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Abstract: As the electric vehicle (EV) market continues to grow, wireless charging technologies are
constantly evolving. Considering the limitations of traditional charging methods, the adoption
of wireless charging technology is an essential strategy, and the distribution of wireless charging
systems is expected to accelerate in the global market with initiatives such as international standards
for wireless charging systems. With regard to this technological trend, this study experimentally
analyzed the effects of the boost coil and the alignment of the transmitting and receiving coils on
the transmission efficiency in wireless power transfer systems. The boost coil amplifies the magnetic
field using a high-frequency signal and transfers the field to the receiving coil. Moreover, simulations
were conducted based on the theory that using the boost coil could increase the efficiency of wireless
power transfer, and the impact of the alignment between the transmitting and receiving coils on the
transmission efficiency was also analyzed.
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1. Introduction

Wireless Power Transmission (WPT) systems for electric vehicles (EVs) are emerging
technologies that are attracting considerable attention due to their potential to overcome
the limitations of traditional charging methods. The WPT system uses electromagnetic
waves to transfer power from the charging infrastructure to the EV’s battery pack without
physical contact. This allows you to charge the EV by simply parking it on the wireless
charging pad, making the charging process more convenient and efficient.

Currently, the market [1] for wireless charging systems for EVs is growing rapidly, and
many companies are investing in research and development of this technology, and wireless
power transmission standards [2] for EVs, such as SAE J2954, enable interoperability
between different wireless charging systems. This ensures the safety and efficiency of
wireless charging systems, enabling manufacturers to develop interoperable systems and
facilitate widespread adoption of wireless charging technologies for EVs.

1.1. Wireless Power Transfer Method

Wireless power transmission is a technology that transfers electrical energy from
power to load without using wires. Research is being conducted on various wireless power
transmission technologies using RF signals, lasers, and sound waves. Wireless power
transmission technology uses magnetic fields and electromagnetic fields, and magnetic
induction and magnetic resonance methods [3] are classified. The magnetic inductive
wireless power transmission system is widely used in small, low-power electronic devices,
such as smartphones, after technical standardization and commercialization. In fields that
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require high-power transmission, such as digital home appliances and electric vehicles,
research using magnetic resonance methods is being actively conducted.

As shown in Figure 1, magnetic induction [4] charges the battery by generating an
induced current in two adjacent coils within a few mm. The receiving coil uses the principle
of electromagnetic induction, which induces electricity under the influence of a magnetic
field. It is harmless to the human body and standardized, so many applied products are
sold. It can be applied to low-power small devices and is more than 90% efficient compared
to power. Still, the distance between the charger and the receiver is very short, generating
much heat. If the center of the transmitting and receiving coils does not exactly match, the
efficiency decreases rapidly.
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Figure 1. Inductive wireless power transfer system.

As shown in Figure 2, magnetic resonance method is advantageous for transmitting
distance using each coil’s resonant and energy transmission frequencies. Still, the size of
each coil must be larger than the magnetic induction method to secure high Q [5]. This
magnetic resonance method can be applied to various fields compared to the magnetic
induction method. Resonance is a state in which capacitors and inductors exchange energy
and store energy, and the impedance changes significantly near the resonance frequency,
and is widely used in band-pass filters, band-removal filters, and oscillation circuits.
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Figure 2. Wireless power transmission system of an electric vehicle.

The purpose of using a resonant converter is to achieve high efficiency, compactness,
and weight reduction of the system, while improving switching losses from semiconductor
devices in a typical PWM-type power conversion circuit. Soft switching technology can
improve the switching loss of semiconductor devices for power in resonance converters.
The principle of soft switching is ZVS [6,7], which operates when the current and voltage
of a semiconductor device are zero voltage, and ZCS [8], which is used when the switch
current is zero current. Each can be implemented as a resonant circuit, called a resonant
tank, consisting of an inductor L and a capacitor C. This wireless power transmission
method is a technology using magnetic fields that can affect the human body. Research has
been conducted on guidelines [9] for the amount and time of exposure to the human body,
and other studies are steadily underway to minimize the impact on humans [10,11].

1.2. Wireless Power Transmission System for Electric Vehicles

Wireless power transfer (WPT) is a promising technology currently being researched
and developed in various fields, with electric vehicle (EV) wireless charging being a critical
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application [12]. Figure 3 is a configuration diagram of a wireless power transmission
system for an electric vehicle. Conventional WPT systems for EVs typically use two-coil
configurations, and research efforts are underway to develop more efficient configurations
consisting of two to four coils, which have shown efficiency levels from 90 to 95%. However,
a significant challenge in WPT-based EV charging is maintaining spatial charging freedom,
as precise alignment between the transmitting and receiving coils is required for high-
efficiency power transmission, which can be obstructed by the vehicle’s parking position or
posture. To address this problem, we present a simulation study that evaluates the magnetic
field strength of a WPT system, using a boost coil to improve efficiency. Additionally, we
designed and constructed a circuit using a full-bridge converter topology and a resonant
magnetic induction topology suitable for high-power WPTs at the kW level to investigate
the impact of coil alignment on power transfer efficiency and spatial degrees of freedom. To
improve the coupling coefficient of the coils, ferrite cores were placed in the transmission
and reception coils. Our experimental results were obtained using a widely used circular
coil in WPT, and they demonstrate the potential of the proposed approach to overcome the
challenges associated with WPT-based EV charging.
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2. Materials and Methods
2.1. Series Resonant Converters

Figure 4 illustrates a series resonant circuit (SRC). The series resonant tank consists
of a resonant inverter Lr and a resonant capacitor Cr, and the current flowing through the
resonant tank is transferred to the secondary side through a transformer. To simplify the
circuit, only a resistor is used as the load. When interpreting the frequency response of
the RLC AC equivalent circuit, the input and output voltages exhibit a relationship, as
expressed in Equation (1).
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The resonant frequency fo of the resonant circuit is expressed in Equation (2) based on
the resonant inductor Lr and the resonant capacitor Cr. The switching frequency response
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characteristics are interpreted in Equation (3), and the voltage gain characteristics according
to the resonant frequency can be defined as plotted in Figure 5.

fo =
1

2π
√

LrCr
(2)

Q =
woLr

RL
(3)
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Generally, in resonant converters, the switching frequency fs of the power semicon-
ductor devices is set higher than the resonant frequency fr of the resonant circuit, and the
power semiconductor devices are always operated with zero-voltage switching (ZVS) to
improve the efficiency of the converter. In the SRC, the output voltage can be controlled
using the frequency ratio between fs and fr; as the frequency ratio approaches 1, the output
increases, and vice versa. Therefore, the switching frequency of the power semiconductor
devices can be varied to control the converter output. However, under no-load or light-
load conditions, the output cannot be controlled, and the following challenge exists: the
input impedance of the resonant circuit becomes extremely low under a load short-circuit
condition. Moreover, as the resonant circuit and the load are connected in series, almost
no current flows through the resonant circuit under no-load conditions. Therefore, the
converter yields an extremely high efficiency under no-load conditions.

2.2. Full-Bridge Series Resonant Converter

Full-bridge converters are power electronic circuits widely used in DC-to-DC power
conversion, voltage regulation, and energy storage systems. They are applied to various
applications, such as electric vehicles, renewable energy systems, and industrial power
supplies. Control of the full-bridge converter is essential to regulate the output voltage,
current, and power transmission efficiency. The choice of control strategies depends on the
specific requirements of the application.

Linear control techniques, such as PI and PID controllers [13], are widely used for the
control of the full-bridge converter due to their simplicity, ease of implementation, and
robustness. Linear control is suitable for applications in which the dynamics of a system
can be approximated by a linear model, and the performance requirements are moderate.
PI and PID controllers use feedback from the output voltage and current to adjust the duty
cycle of the switching devices to achieve the desired output regulation. Linear control
techniques are effective in regulating the output voltage and current and maintaining the
stability of the system.

Nonlinear control techniques [14], such as sliding mode control (SMC) [15] and model
predictive control (MPC) [16], are required for high-performance applications in which the
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system exhibits complex dynamics, such as the presence of nonlinear loads or time-varying
disturbances. Nonlinear control provides robust and efficient management by using system
models and optimizing control tasks to achieve the desired performance. SMC is based on
the sliding mode principle and controls the output voltage and current by regulating the
sliding surface. MPC uses a model of the full-bridge converter [17] to predict the future
behavior of the system and optimize the control actions to achieve the desired performance.

Figure 6 represents the entire circuit of the full-bridge series resonant converter [18].
The circuit consists of four switching devices (Q1, Q2, Q3, Q4), a high-frequency trans-
former, a series-connected resonant inductor, and a capacitor. The secondary side of the
transformer comprises a rectifying diode and an output voltage filter.
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Figure 6. Full-bridge series resonant converter.

Except for the fact that the resonant circuit composed of RLAC , Lr, and Cr is seri-
ally connected, the circuit structure is identical to that of a typical full-bridge DC-DC
converter [19–21], wherein the RL on the secondary side of the transformer is converted
to the primary side. The waveform changes according to the resonant frequency and
the switching frequency, which are plotted in Figure 7, showing the voltage and current
waveforms of each part according to the magnitude of the switching frequency and the
resonant frequency.
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Generally, the inductance and capacitance of the primary and secondary coils for
resonance in WPT are defined according to Equation (4).

LpCp ∼= LsCs (4)

The equivalent circuit is represented in Figure 8, on which each parameter is defined.
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Figure 8. Equivalent circuit of wireless power transfer system.

Given that Equation (4) holds true, the resonant angular frequency wr and the resonant
frequency fr can be defined as expressed in Equations (5) and (6), respectively.

wr =
1√

LpCp
=

1√
Ls Cs

(5)

fr =
wr

2π
(6)

The full-bridge inverter generates a sine wave voltage between Vdc and −Vdc with
a duty cycle of 50%. In addition, the nominal operating frequency fo is kept fixed. Con-
sidering the standardization trend of the International Automobile Technology Associa-
tion, the operating frequency fo for electric vehicle wireless charging systems is fixed
at 85 kHz, which lies within the internationally available operating frequency band
(81.38 kHz–90.00 kHz) [7]. Under the assumption that the full-bridge inverter operates
at a fixed frequency, the WPT system is defined as expressed in Equations (7)–(10).

Vp(t) = Rpip(t) + Lp
dip(t)

dt
+

1
Cp

∫ t

0
ip(τ)dτ + Mps

dis(t)
dt

(7)

vs(t) = Mps
dip(t)

dt
+ Rsis(t) + Ls

dis(t)
dt

+
1

Cs

∫ t

0
is(τ)dτ (8)

vs(t) = −Racis(t) (9)

Rac =
8

π2 Ro (10)

Assuming the initial values to be zero, the equations can be transformed into
Equations (11) and (12) through Laplace transformation.

Vp(s) =
(

Rp + sLp +
1

sCp

)
Ip(s) + sMps Is(s) (11)

Vs(s) = sMps Ip(s) +
(

Rs + sLs +
1

sCs

)
Is(s) (12)

If Rp and Rs are set to 0, as they are infinitesimal values within the system, the voltage
equation can be simplified, and Vp and Vs can be defined as shown in Equations (13) and
(14), respectively.

Vp(s) =
(

sLp +
1

sCp

)
Ip(s) + s Mps Is(s) (13)

Vs = sMps Ip(s) +
(

sLs +
1

sCs

)
Is(s) (14)
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To prevent a spike in the voltage ratio at the resonant frequency in wireless power
transmission, the frequency range from 81.38 to 90.00 kHz [22] is proposed as an essential
strategy. Therefore, when designing, the voltage ratio should be considered according to
the load. Considering the coupling coefficient kps between the primary and secondary
coils, the resonant frequency and mutual inductance Mps can be defined as presented in
Equations (15) and (16), respectively.

w =
1√(

1− kps
)

LpCp

(15)

Mps = kps

√
LpLs (16)

Considering the kps, the operating frequency fo can be expressed as presented in
Equation (17).

fo =
1

2π
√(

1− kps
)

LpCp)
(17)

2.3. Circuit Design Specifications and Prototype

Table 1 provides an overview of the experimental conditions used in this study, in-
cluding input and output voltages set at DC 400 V, maximum output capacity designed at
3.3 kW, and operating frequency at 85 kHz [22].

Table 1. Experimental conditions of wireless power transmission system.

Input voltage (Vdc) DC 400 V

Output voltage (Vo) DC 400 V

Output power (Po) 3.3 k W

Operating frequency (fo) 85 kHz

Figure 9 shows the coils manufactured in this study. The transmission coils are both
800 mm in diameter, and the distance between the coils is 150 mm. In addition, eight
ferrite cores were placed in each coil, improving the coupling coefficient between coils. The
manufactured coil is a commonly used coil system designed to check the efficiency that
changes according to the alignment of the coils.

Energies 2023, 16, x FOR PEER REVIEW 8 of 17 
 

 

manufactured coil is a commonly used coil system designed to check the efficiency that 
changes according to the alignment of the coils. 

 
Figure 9. Coils built for power transmission. 

Table 2 shows the design specifications of the experimental wireless power transfer 
system. 

Table 2. Design specifications of the wireless power transfer system for the experiment. 𝑉௜௡ 400 V 𝑀௣௦ 49.25 uH 𝑉ை௎் 400 V 𝐾௣௦ 0.29 𝐼௢௨௧ 8.25 A 𝐿௟௞௣ 136.18 uH 𝑁௣ 3300 W 𝐿௟௞௦ 102.31 uH 𝐿௣ 193 uH 𝐿௠ 56.82 uH 𝐿௦ 145 uH 𝐹௢ 85 kHz 𝐿௦௛௢௥௧ 176 uH 𝐶௣ 20.30 nF 𝑁௣ 11 Turn 𝐶ௌ 27.02 nF 𝑁௦ 10 Turn 𝐿௥ 173 uH N 1 𝑅௔௖ 39.30 

Figure 10 depicts the power conversion module, which is a key component of the 
wireless power transmission system. The module is composed of two main components: 
the primary-side transmission module and the secondary-side receiver module. 

The primary-side transmission module is responsible for converting the input power 
into a form that is suitable for wireless transmission. This is achieved using a full-bridge 
converter circuit, which is a type of circuit that converts a DC input voltage into a variable 
AC voltage. The full-bridge converter circuit is connected to the power source and pro-
vides the necessary voltage and current regulation to the wireless power transmission 
system. Additionally, the primary-side transmission module also includes overcurrent 
and overvoltage protection circuits to prevent damage to the system in case of power 
surges or other anomalies. Finally, a controller circuit is included to ensure that the power 
transmission is conducted efficiently and safely. 

On the other hand, the secondary-side receiver module is responsible for converting 
the wireless power signal back into usable electrical energy. This is accomplished using a 
rectifier circuit that uses diodes to convert the AC signal received from the wireless trans-
mission into a DC signal. A DC capacitor is also included in the secondary-side receiver 
module to smooth out any voltage fluctuations and ensure a stable output voltage. 

Figure 9. Coils built for power transmission.

Table 2 shows the design specifications of the experimental wireless power trans-
fer system.
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Table 2. Design specifications of the wireless power transfer system for the experiment.

Vin 400 V Mps 49.25 uH

VOUT 400 V Kps 0.29

Iout 8.25 A Llkp 136.18 uH

Np 3300 W Llks 102.31 uH

Lp 193 uH Lm 56.82 uH

Ls 145 uH Fo 85 kHz

Lshort 176 uH Cp 20.30 nF

Np 11 Turn CS 27.02 nF

Ns 10 Turn Lr 173 uH

N 1 Rac 39.30

Figure 10 depicts the power conversion module, which is a key component of the
wireless power transmission system. The module is composed of two main components:
the primary-side transmission module and the secondary-side receiver module.
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The primary-side transmission module is responsible for converting the input power
into a form that is suitable for wireless transmission. This is achieved using a full-bridge
converter circuit, which is a type of circuit that converts a DC input voltage into a variable
AC voltage. The full-bridge converter circuit is connected to the power source and provides
the necessary voltage and current regulation to the wireless power transmission system.
Additionally, the primary-side transmission module also includes overcurrent and over-
voltage protection circuits to prevent damage to the system in case of power surges or other
anomalies. Finally, a controller circuit is included to ensure that the power transmission is
conducted efficiently and safely.

On the other hand, the secondary-side receiver module is responsible for converting
the wireless power signal back into usable electrical energy. This is accomplished using
a rectifier circuit that uses diodes to convert the AC signal received from the wireless
transmission into a DC signal. A DC capacitor is also included in the secondary-side
receiver module to smooth out any voltage fluctuations and ensure a stable output voltage.
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2.4. Modeling of Coils for Simulation
2.4.1. Modeling of the Circular Two-Coil System

One of the main challenges of wireless power transmission systems is the efficiency
of power transmission, which can be affected by several factors, including coil alignment.
Various strategies have been proposed to solve this problem, including using different coil
sizes on the primary and secondary sides.

In a circular two-coil system, the primary coil is designed to be wider than the sec-
ondary coil. This design helps minimize transmission efficiency degradation when coils
are misaligned. In addition, eight ferrite cores were placed in each coil to improve the
coupling coefficient, while also improving the magnetic coupling between coils and in-
creasing power transfer efficiency. The design of wireless power transmission systems
includes various factors, such as efficiency, size, and compatibility with multiple devices.
By carefully considering these factors, you can create a system that can provide reliable
and efficient power transmission in demanding environments or conditions.

Figures 11 and 12 show the specifications of the circular 2-coil system, including
the size and shape of the coils, the number of ferrite cores, and other parameters. The
primary coil is designed to be wider than the secondary coil, minimizing the reduction in
transmission efficiency due to poor coil alignment.
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2.4.2. Modeling of Circular Five-Coil System

The 5-coil wireless power transmission system is a noteworthy design that aims to
enhance power transmission efficiency and mitigate the effects of power losses during the
wireless energy transfer process.

Figures 13 and 14 illustrate the configuration of the 5-coil wireless power transmission
system. The structure of this system is identical to the previously mentioned 2-coil system,
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except for the addition of three boost coils. Specifically, two boost coils were introduced on
the transmitting side, and one boost coil was incorporated on the receiving side. The boost
coils in this system play a critical role in increasing power transfer efficiency by providing
additional energy to the system. These boost coils are carefully positioned to optimize
the magnetic coupling between the primary and secondary coils, which enhances energy
transfer efficiency.
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Under the proposed wireless power transmission scenario, the coil structure of the
transmission side is positioned above the ground level, while the receiving-side coil is
installed beneath the bottom of the car. In line with the experimental setup, the distance
between the two coils was set to a fixed value of 15 cm.

2.5. Configuration of Experimental System

The proposed experimental setup for wireless power transmission is visualized in
Figure 15, which includes a power supply unit, a power transmission module (consisting
of a transmitter module, coils, and receiver module), and an electric load. The primary
transmitter unit in the power transmission module consists of a full-bridge converter circuit,
overcurrent and overvoltage protection circuits, and a controller circuit. The secondary
receiver unit comprises a diode-based rectifier circuit and a capacitor. To measure transmis-
sion efficiency, input/output voltage and current were measured using a digital multimeter
for high power. An input source configured the input power of the system using a high-
power DC power supply capable of supplying up to 15 kW, and a high voltage DC electric
load with a capacity of 600 W–14.4 kW was used on the power terminal.
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3. Results
3.1. Effect of Coil Alignment on Efficiency

Figures 16–18 present the current waveforms on the primary and secondary coils of
the circular two-coil system.
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Table 3 and Figure 19 provide detailed measurements of the efficiency changes ob-
served in the two-coil wireless power transmission system manufactured for this study.
The results indicate that power transmission efficiency varies significantly depending on
the load and alignment of the coils. Specifically, the efficiency decreases as the load de-
creases, and the highest efficiency of 92.9% was observed at the maximum output capacity
of 3.3 kW.

Table 3. Efficiency data of circular 2-coil system.

Horizontal Distance
0 cm

Horizontal Distance
10 cm

Horizontal Distance
15 cm

Pout (W) Efficiency
(%) Pout (W) Efficiency

(%) Pout (W) Efficiency
(%)

501 67.0 504 66.8 509 66.4

1046 81.0 1016 80.1 1069 80.4

1525 86.2 1584 86.1 1535 84.9

2025 89.1 2020 88.5 2115 88.1

2518 90.9 2537 90.4 2528 89.4

3031 92.3 3017 91.6 3076 90.6

3325 92.9 3310 92.3 3314 90.9

The measurement results also reveal that the alignment of the coils significantly
impacts the efficiency of power transmission. The maximum efficiency of 92.9% was
achieved when the coils were well aligned, with the center of the receiving coil positioned
near the center of the transmitting coil. When the center of the receiving coil was placed
10 cm away from the center of the transmitting coil, the efficiency only decreased slightly to
92.3%, indicating that the efficiency change was relatively insignificant. However, when the
distance between the two coils was increased to 15 cm, the transmission efficiency decreased
to 90.9%, and the efficiency dropped exponentially as the horizontal distance increased.

These findings highlight the importance of coil alignment in optimizing the efficiency
of wireless power transmission systems and suggest that even minor deviations in align-
ment can significantly impact power transfer efficiency.
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3.2. Simulation

To investigate the effect of the amplification coil on the magnetic field, simulations
were performed by comparing the two- and five-coil systems to the boost coil. The coil
alignment was changed from 0 mm to 150 mm in increases of 50 mm to analyze the magnetic
field strength. The simulation results for the magnetic field strength of each system are
analyzed and presented in Figures 20 and 21. The purpose of this analysis is to examine the
effect of coil alignment on the performance of wireless power transmission systems. These
simulation results illustrate the advantages of the five-coil system, including improved
magnetic field strength and the smooth flow of magnetic fields from the transmission coil
to the reception coil.
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Figure 21. Magnetic field strength of the coil system.

Figure 20 shows that the magnetic field intensity graph of the five-coil system with
boost coils is more potent than that of the two-coil system. When the coil centers are aligned,
the magnetic field intensity of the two-coil system is close to zero due to the difference
in coil diameters, indicating no coupling between the coils. Except for when the coils
are aligned, both systems generate magnetic fields up to a horizontal separation distance
of 150 mm. However, it was confirmed that the magnetic field intensity of the five-coil
system with boost coils is more potent than that of the two-coil system. In particular, it
was observed that the effect of the boost coil is most significant at a separation distance of
100 mm.
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As shown in Figure 21, these amplification coils can significantly improve the magnetic
field strength and increase the area affected by the magnetic field. This, in turn, can lead
to more efficient power transfer and a better response to coil misalignment. In particular,
the difference between the two-coil system and the five-coil system shows that the flow of
magnetic fields from the transmitting coil to the receiving coil is smoother with the five-coil
system, especially when the receiving coil is 100 mm off the center of the transmitting coil.

These findings are significant because they suggest that the five-coil system is well
suited for wireless power transmission systems for electric vehicles. With the increasing
popularity of electric vehicles, there is a growing need for efficient and reliable wireless
power transmission systems to keep vehicles on the road. Using amplification coils in
a five-coil system represents a promising approach to meeting this need and ensuring
that electric vehicles can be charged quickly and efficiently, even in less-than-ideal coil
alignment scenarios.

4. Discussion

In this study, to confirm and improve the efficiency change according to the alignment
of the coils of the wireless power transmission system, a five-coil system with a booster coil
was designed, and its potential effectiveness was investigated through simulation.

A full-bridge serial resonance converter was designed and manufactured to investigate
the effect of alignment on the efficiency of a two-coil wireless charging system. The results
showed that the initial efficiency of 92.929% was achieved when the coils were perfectly
aligned. A minor decrease in efficiency to 92.252% was observed when the center of
the receiving coil was shifted horizontally by 10 cm from the center of the transmitting
coil. However, a significant drop in efficiency was observed as the horizontal separation
distance increased to 15 cm. To address this issue, a coil system was designed to minimize
the efficiency change when the center of the receiving coil was 150 mm away from the
center of the transmitting coil, which is within the allowable deviation range of a parked
car in a standard 2.3 m wide parking lot.

A two-boost-coil transmitting system and a single-boost-coil receiving system were
designed and implemented, adding eight ferrite cores per coil to improve the coupling
coefficient. To further improve the system’s flexibility, the transmitting coil was designed
to be approximately 1.8 times larger than the receiving coil. Simulation analyses were
conducted to verify the effectiveness of the design, including a comparison between the
two-coil and five-coil systems.

In conclusion, the effectiveness of the proposed five-coil system, incorporating boost
coils and changes in coil shape, was confirmed through experiments and simulation analy-
ses. Compared to the two-coil system, the magnetic field strength of the five-coil system
was observed to increase, providing greater power transmission capacity and distance. The
use of boost coils is expected to be particularly beneficial for wireless charging systems for
electric vehicles, improving efficiency, even in cases of coil misalignment, and potentially re-
ducing system costs. Future research should focus on developing compensation techniques
that can maintain stable transmission efficiency within the design range, even in cases of
coil misalignment. Overall, the findings of this study contribute to the advancement of
wireless power transfer technology and its potential applications in various industries.
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