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Abstract: In an era of rapid technological improvements, state-of-the-art methodologies and tools
dedicated to protecting and promoting our cultural heritage should be developed and extensively
employed in the contemporary built environment and lifestyle. At the same time, sustainability
principles underline the importance of the continuous use of historic or vernacular buildings as part
of the building stock of our society. Adopting a holistic, integrated, multi-disciplinary strategy can
link technological innovation with the conservation and restoration of heritage buildings. This paper
presents the ongoing research and results of the application of Machine Learning methods for the
remote monitoring of the built environment of the historic cluster in Cypriot cities. This study is part
of an integrated, multi-scale, and multi-disciplinary study of heritage buildings, with the end goal of
creating an online HBIM platform for urban monitoring.

Keywords: machine learning; remote sensing; Sentinel-1; Sentinel-2; SNAP; land cover classification;
change detection; urban heritage; historic architecture clusters

1. Introduction

Historic urban environments are not given static formations that are disconnected
from the contemporary fabric of a city, but rather a set of tangible and intangible assets
subject to the dynamic pressures of economic, environmental, and social activities. Looking
beyond important historic cities previously preserved by authorities, numerous second-
and third-tier cities have grown from their historic centres due to prior urbanisation phe-
nomena. However, they have faced various difficulties in safeguarding and integrating
heritage buildings into the contemporary fabric of the city in a sustainable way. Examples of
such cities challenged by gentrification, depopulation, and neglect can be found in Cyprus,
Greece, South Italy, and elsewhere. Monitoring the pressures caused by the aforementioned
city-wide phenomena on historic clusters can prove helpful for local authorities to pre-
vent future losses of building stock. Different stakeholders and professionals have used
onsite analysis and Earth Observation methods separately. However, remote sensing and
computational tools have recently enabled the large-scale, real-time monitoring of cities.

Developing built heritage digitisation methods should focus on expanding the scope
of study beyond the individual buildings and allowing for a deeper understanding and
interdisciplinary interpretation of said building’s condition and performance within its
topographical context and the surrounding built environment. This could become a reality
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today using the advancements in remote sensing, algorithms, and the computation prowess
of hardware available to researchers. Expanding the scale and area of focus of heritage
studies to enable reuse of heritage can benefit from studies that look beyond the scale of the
building asset. Looking at the urban context can provide researchers, professionals, and the
relevant stakeholders with new insights into chronological urban studies through methods
that have been previously very resourceful and difficult to implement computationally.
The proliferation of digital methods and tools for creating digital twins of cities [1], as well
as the research contributing to the area of City Information Modelling, all demonstrate the
need for representated information to be handled on both a neighbourhood and city scale.

Nowadays, as the Earth Observation data volume is growing, the need to transform
this raw data into valuable products is highly required. In addition, the value of land
cover and land use monitoring has increased to understand the frequent environmental
changes and address the challenges of specific environmental problems. In this context,
this study demonstrates a user-friendly methodology that extracts meaningful information
from multi-temporal Copernicus Sentinel-1 and Sentinel-2 images to map urban growth
while recording details about the spatial changes.

The paper draws on the ongoing research and intermediate results of the project “Portal
for heritage buildings integration into the contemporary built environment” (PERIsCOPE)
(https://uperiscope.cyi.ac.cy/, accessed on 30 March 2023), which is co-financed by the
European Regional Development Fund and the Republic of Cyprus.

This paper begins with a literature review, followed by the aim of the research, the ob-
jectives, and the description of the case study areas. Following this, Section 6, with the title
“Method: Remote Sensing Analysis at Neighbourhood Scale,” outlines the methodology
and the data used in the study. Then, experiments and a detailed analysis of the results are
given in Section 4. Lastly, the discussion and conclusions are presented in Sections 5 and 6,
respectively.

2. Materials

International literature has mainly been mainly concerned with the recent rapid
increase in the urbanisation of cities. The concept of smart cities appears to meet the
challenges of urbanisation and be an appropriate strategy to address the difficulties of
urban sustainability. The three main pillars of the smart city concept seem to be the IoT, big
data, and theoretical analyses, including several application fields, numerous implemented
case studies, and citizen-related aspects [2]. As pointed out by Yarashynskaya and Prus [3],
the role of smart energy solutions is crucial for a proper Smart City function. It is grounded
on the escalating demand for energy in urban areas, as well as the importance of energy
in the development of other key Smart City sectors, such as manufacturing, construction,
and housing. However, Adibhesami et al. [4] declared that the effect of sustainable energy
policies on human physical and mental health should be examined when making decisions
in this domain.

Many studies have been conducted to map urban growth results and understand the
Earth’s Land Usage and Land Cover (LULC) chronologically by modeling the changes that
occur owing to artificial structures and natural phenomena. For instance, Bakr et al. [5]
declared that change detection of LULC using multi-temporal satellite image data pro-
vided effective methods and accurate results to estimate the interaction between human
activities and natural phenomena. Furthermore, Pesaresi et al. [6] presented an automatic
recognition of human settlements in arid regions with scattered vegetation, using the
multispectral Quick Bird satellite dataset. In their research, Rong et al. [7] analysed the
driving factors of land use carbon emissions in the area of the lower Yellow River, which
has experienced rapid industrialisation and urbanisation, with drastic land use changes
from 1995–2018. Jadraque Gago et al. [8] applied the Maximum Likelihood classifier to
produce land cover maps that examine the relationship between the pattern of the urban
fabric and the formation and evolution of the Surface Urban Heat Island (SUHI).

https://uperiscope.cyi.ac.cy/
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Remote sensing techniques have been broadly applied to build environment monitor-
ing. The substantial increase in satellite imagery provides a large amount of data support
for deep learning methods in urban monitoring and, subsequently, the opportunity to
explore various approaches in the field of remote sensing analysis. For instance, Chen
et al. [9] proposed a neural network-based method for extracting different Urban Green
Spaces (UGS) types, such as parks, using Sentinel-2 images and crowdsourced geospatial
big data. Verde et al. [10] used Sentinel-1 and PlanetScope imagery to model the essen-
tial land use components required for calculating Sustainable Development Goal (SDG)
11 indicators over the Athens metropolitan area, employing deep learning techniques. To
detect building changes, Liu et al. [11] presented a technique in which shape and spatial
features were used to improve the discriminability between buildings and other ground
objects. Also, Luo et al.’s research focused on building extraction from remote sensing
images, by reviewing the most commonly used deep learning methods [12]. Change
detection techniques are currently in an advanced stage and have been used to acquire
land cover change information for a wide range of applications related to environmental
monitoring. Li et al. [13] examined pre-processing techniques to identify newly constructed
structures using differences between two Sentinel-1 imageries of Nanjing City. This study
used Synthetic-Aperture Radar (SAR) images due to their ability to penetrate cloud cover,
as well as their insensitivity to atmospheric and lighting conditions. Papadomanolaki
et al.’s [14] research presented a deep-learning architecture for urban change detection us-
ing the Onera Satellite Change Detection dataset (OSCD). The proposed method combines
a U-Net architecture with Long Short-Term Memory (LSTM) blocks.

In this context, a widely used tool is Sentinel Application Platform (SNAP) [15],
a standard, open-source operational platform dedicated to Sentinel data exploitation.
For instance, Tsolakidis and Vafiadis [16] used this software to study the urban land
cover characteristics of Thessaloniki, Greece, in this software. In their methodology, they
applied the Random Forest classifier in both optical Sentinel-2 and radar Sentinel-1 images.
Moreover, Radudu et al. [17] used Sentinel-1 products for three years (2016–2019) to analyse
the dynamics of the Bucharest’s urban population, using change detection techniques in
SNAP. SNAP’s change detection process has also been applied in other scientific fields. For
example, in their research (2017), Sreechanth S and Kiran Yarrakula [18] used the SNAP
platform for flood inundation mapping. In their study, the Support-Vector Machine (SVM)
classification was performed to map flooded regions and existing water bodies, wherein
the changes were detected by the image differencing method.

The protection and preservation of cultural heritage and historical sources is a topic
that has garnered a lot of research attention, especially in Europe. A survey focused
on presenting a clearer picture of the potential and challenges that can occur during
the implementation of fuel-free approaches for projects within a historic city centre was
conducted by Simeone et al. [19]. Chahardowli et al.’s paper thoroughly analyses urban
regeneration as a multifaceted strategy for revitalizing cities’ historic cores. They point out
that sustainable regeneration is the outcome of the interaction of four physical, economic,
social, and cultural components that support the revitalisation of historic urban clusters [20].
Lastly, occupied with the region of Cyprus, Agapiou [21] used optical and radar data to
map the vegetation cover in the vicinity of archaeological sites and landscapes, such as
“Nea Paphos” and the “Tombs of the Kings.”

Generally, computational techniques – specifically machine learning – can be used
to process large amounts of data, with numerous applications in various scientific and
engineering fields. Multiple linear regression was applied in Iranmanesh et al.’s study [22],
to develop a three-parameter correlation to estimate biomass heat capacity, considering
bio-sample chemistry and operating condition. Understanding the complex dynamic
behaviours through the use of neural network algorithms has been a centre of interest for
researchers such as Roshani et al. [23], who monitor the density and velocity of fluids in
the oil and petroleum industries, as well as for Qing et al. [24], who integrated theoretical
and experimental data to develop a three-dimensional (3D) model of kerogen. Finally,
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intracorporeal suturing – which is one of the crucial hands-on tasks in Fundamentals of
Laparoscopic Surgery (FLS) training – is monitored by Mohaidat et al.’s [25] autonomous
skill evaluation system, using a variety of one-stage object detectors, including YOLOv4,
Scaled-YOLOv4, YOLOR, and YOLOX.

3. Method: Remote Sensing Analysis at Neighbourhood Scale

The research argues that by leveraging multi-scale knowledge with the support of
digital tools, such as Supplementary Material S2, it is possible to establish more accurate
monitoring strategies for authorities and critical city stakeholders. This in turn helps them
prioritise relevant policies and incentives for the sustainable management and development
of historic clusters in cities. The presented application of machine learning methods
in remote sensing datasets of urban environments in Cyprus was developed to assist
authorities through the use of a platform that integrates 3D GIS data from the Cyprus Land
and Survey Department. The platform also incorporates 3D models of the specific building
blocks under study. These datasets become accessible via an online platform that enables
multi-scale monitoring of heritage buildings by means of remote sensing, as well as three-
dimensional and reality-captured representations of the built environment. Specifically,
this online platform relies on an agile workflow that involves the following steps:

(a) Initial urban scale monitoring of built environment transformations, which may be
induced by natural or human activities. By utilising a semi-automated workflow
that compares remote sensing data from different time periods, changes in annotated
assets within the built environment can be identified. This approach offers a rapid
method for connecting large-scale urban phenomena to on-site building observation
studies and hypotheses.

(b) Climatic analysis of the site: a contextual survey of the conditions of the built environ-
ment surrounding the heritage buildings under study through remote sensing. This
study concerns information about the local environment, climatic and topographic
conditions of the area at the neighbourhood scale, as well as the assessment of changes
in environmental conditions, chronologically.

(c) The survey stage: This includes a conservation state analysis based on non-destructive,
diagnostic investigations of building structure and degradation (material, structural,
morphological). The analysis includes assessments of hygrothermal properties, decay
phenomena, and crack patterns, as well as the use of visual and textual interpretations
to identify moisture presence, while documenting and classifying possible causes
behind it.

(d) The next stage of the multi-scale advanced survey includes the direct study of the
building: e.g., topometric and photographic survey, as well as analysis of formal,
constructive, and material aspects. For example, this includes Terrestrial Laser Scan-
ning and photogrammetric surveys of the building, to produce the 3D point-cloud
models to be used in the Heritage-Building Information Modelling (HBIM). This also
supports the conservation state analysis, providing the accurate information needed
for any energy upgrade, retrofit or intervention.

This paper will focus on the first step of the process, which concerns the initial urban
scale monitoring of built environment transformations. Through remote sensing monitor-
ing, and onsite analytical digital tools and methodologies, this data-driven observation of
historical buildings would enable relevant stakeholders to monitor the built environment
and identify risks, such as decay, neglect, or pressures from real estate development and
urbanisation that may cause change in the building stock over time. In order to support
this aim, the presented research pursues the following objectives to enable remote sensing
monitoring of the built environment under study:

(1) As many studies have focused on detecting change with a visual interpretation of the
outputs, the proposed methodology addresses the need for combinational approaches.
It does this by integrating robust supervised land cover classification procedures with
coherent log-likelihood and image differencing change detection techniques. This
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combination transforms the results into meaningful insights into the urban landscape.
To this end, the key advantages of using Sentinel-1 and Sentinel-2 images, as well
as automatic, supervised, and unsupervised machine learning algorithms provides
key advantages including time reduction, flexibility in data exploration with multiple
solutions, and multilevel similarity modelling.

(2) The analysis of open-access radar and optical products using freely available platforms
such as SNAP, QGIS, and Google Earth encourages open data usage in urban planning.
As the use of open software is highly promoted in research, the employment of the
above tools ensures inclusive workflows and interoperability, contributing to the
literature.

The two pilot study areas (Figure 1) of the research were carefully selected to allow a
comparative understanding of the impact of environmental change and climatic conditions
on building assets. Hence the two clusters studied are located in two urban environments
in different climatic zones with varying seismic activity, in Limassol and Nicosia (located
in seismic zone 3 and 2, respectively) [26] Specifically, the testbed areas are the historic
cluster of Strovolos in Nicosia, and examples in the old city and Turkish-Cypriot quarter of
Limassol. Old Strovolos covers an area of approximately 50 hectares, with a population
of around 2500 inhabitants (2011 census). The majority of these inhabitants are of Cypriot
origin and are settled in around 1000 dwellings. The neighbourhood is a part of the
Strovolos Municipality Urban Area, which is the second largest municipality of Cyprus,
with a total population exceeding 70,000 inhabitants. The Turkish Cypriot quarter under
study in Limassol covers an area of approximately 35 hectares, with a population of
around 1400 inhabitants (2011 census). This includes Greek Cypriot refugees and economic
emigrants of various origins, all of whom have settled in approximately 500 dwellings.
This is a part of the Limassol Municipality Urban Area, which is the largest municipality
of Cyprus, with a total population of over 100,000 inhabitants. The chosen study area is
covered by ascending and descending passes of Sentinel-1 SAR images and Sentinel-2
multispectral images.
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3.1. Data Collection

SAR images and optical data are used to monitor and analyse the urban fabric of the
cities of Cyprus. The Sentinel-1 and Sentinel-2 satellite images were downloaded using the
Copernicus Open Access Hub (https://scihub.copernicus.eu/dhus, accessed on 25 January

https://scihub.copernicus.eu/dhus
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2023) operated by the European Space Agency (ESA). The Sentinel-1 mission performs
dual-polarisation C-band SAR imaging acquired at a global scale, with a revisit period of
six days. The Sentinel-2 mission supplies optical information ranging from visible to near
and medium infrared, with a spatial resolution between 10m and 20m, and a revisit period
between five to ten days [27].

Specifically, the two Sentinel-1 Ground Range Detected – High Resolution (GRDH)
images were acquired on 6 October 2016 and 29 September 2022, in Interferometric Wide
Swath Mode (IW). Detailed properties of the data are shown in Table 1. In order to devise a
strategy for the operational exploitation of both radar and optical data in the frame of urban
mapping, Sentinel-2 data were also required. In an ideal process, the images of both sensors
should be acquired at the same time. To ensure that each pixel’s information refers to the
same state of the Earth’s surface, the duration between the two imagees produced should
be reduced to a minimum. Subsequently, for the classification application, a margin of
1 month from the sensing date of the Sentinel-1 image was used to select the corresponding
optical image. Moreover, since this kind of image based documentation is prone to show
the clouds that cover the Earth’s surface, cloud-free images were selected for the purpose
of this study. Thus, the Sentinel-2 Level 2A image was acquired on 25 October 2022, with a
descending orbit direction and with a cloud cover percentage of 0.41%. Lastly, as no Level
2A products were available for the target area in 2016, the Level 1C image was used for
the change detection. So, for the analysis of Limassol, the Sentinel-2 Level 1C image has a
sensing date of 16 October 2016, and the area of Nicosia has a sensing date of 8 November
2022.

Table 1. SAR Data specifications.

Date of Dataset Sensor Product Type Sensor Mode Polarization Orbit Direction

6 October 2016 Sentinel-1A GRD IW VV + VH descending
29 September 2022 Sentinel-1A GRD IW VV + VH descending

Additionally, Open Street Map [28] labelled datasets were used to train the super-
vised classifiers, and Google Earth data were used for accuracy assessment and the visual
interpretation of the results.

3.2. Sentinel-1 Images Pre-Processing

Before using the Sentinel-1 products, applying identical pre-processing procedures to
all the scenes was necessary. Pre-processing and analysis of the images was conducted in
SNAP software (v9.0.0). SNAP is a scientific image-processing toolbox for Earth Observa-
tion studies [29]. During the image pre-processing, several procedures were carried out.
Figure 2 summarises the methodological steps of the pre-processing analysis of Sentinel-1
SAR data. The workflow diagram was created in draw.io software (v21.1.2).

Co-polarisation (VV) is used in this study because of its higher sensitivity to urban
structures (Figure 3). A subset is required in order to limit the loaded data to the area of
interest, minimise errors and speed up processing. In the case of the presented research,
this subset was the capital of Cyprus, Nicosia, and the surrounding area. The next step
is removing thermal noise using the noise Look-Up Table (LUT) file provided for each
product. Radiometric calibration is critical to collocate radar images of various dates,
sensors, or imaging geometries. Using a digital elevation model (DEM) to correct SAR
geometric errors, Geometric Correction geocodes the image and creates a map-projected
output [30]. Additionally, a logarithmic function is applied to the images via the conversion
to dB scale, resulting in the normal distribution of the backscatter intensity. Following
an evaluation of the available filters (Figure 4), the final phase of pre-processing was the
improvement of image quality by speckle filtering. After the speckle filter comparison step,
the Lee Sigma filter was selected since it preserves edges and eliminates the haziness of the
image [31]. The final products are the calibrated, orthorectified imageries.
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3.3. Sentinel-2 Images Pre-Processing

Pre-processing procedures and calibrations are also necessary for the optical data to
work properly with the images. The following diagram (Figure 5) summarises all of the
steps in the pre-processing chain. For Sentinel-2 Level-1C products, the first step of the
analysis is the implementation of the Senc2Cor processor. Sen2Cor is a Level-2A generator
whose primary purpose is to correct Sentinel-2 Level-1C Top-of-Atmosphere (TOA) data
from single-date atmospheric influences, to deliver a Level-2A Bottom-of-Atmosphere
(BOA) reflectance product [32]. As the dataset consists of Level-2A images at this point,
the next step is the creation of a subset, with the use of spectral bands. Lastly, as not all
bands in the Sentinel-2 product have the same resolution, combining some bands during
the exploration could cause issues. To combat this, the resampling step is fundamental, and
it was applied with the use of B2 as the reference band and the nearest neighbour technique
as the upsampling method.
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3.4. Landcover Classification

The classification methodology of this study consists of two main parts, the analysis
conducted in Sentinel-1 and Sentinel-2 products individually and the synergetic use of
optical and radar data.

Random Forest and Maximum Likelihood supervised machine learning algorithms
are utilised to classify the images. Maximum Likelihood classification determines the
likelihood that a given pixel belongs to a certain class under the assumption that the
statistics for each class in each band are normally distributed. [33]. In addition, the Random
Forest classifier uses different data subsets of both the input bands and the training pixels,
to determine the most reliable thresholds based on the input features with the highest
prediction importance [34].

Multi-sensor image fusion techniques combine two or more geometrically registered
images of the same scene into one single image that is more easily interpreted than any of the
originals. Existing fusion techniques combine data from various sensors to take advantage
of their complementary information content, generally at the pixel level. The following
section consequently explores the combination combination of SAR and optical features
to examine if the feature fusion of Sentinel-1 and 2 can improve the accuracy of the urban
mapping method and in order to select the optimal algorithm based on the experiments
conducted. For this reason, urban and vegetation indices were also computed. Specifically,
the Index-based Built-up Index (IBI), Normalised Difference Built-up Area Indicator (NDBI),
Urban Index (UI), and Normalized Difference Vegetation Index (NDVI) were all used in
the process. The IBI, NDBI, and UI are indices for quickly mapping built-up areas. In
contrast, the NDVI is a well-known spectral index for mapping vegetation distribution
and various conditions over land surfaces. In the past, though, the NDVI was also applied
for mapping the impervious area of urban areas. As the Modified Normalised Difference
Water Index (MNDWI) is suitable for enhancing open water features and extracting water
bodies, it was applied here in the analysis of the project area in Limassol. In the presented
process, the spectral indices were calculated by the classification process. All the source
bands were used in this step, including the ratio band created by the SAR image and the
spectral indices. Numerous experiments were carried out to discover the most accurate
and suitable combination of indices.
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One of the most fundamental parts of the classification process is the collection and
analysis of training samples. During the selection process of the training areas, the Open
Street Map labelled datasets were utilised, as well as land cover data provided by the
Cyprus Department of Lands and Surveys, which were used as guided maps. In the
presented case, the training data were grouped into three main categories (buildings,
vegetation, and water) based on the city’s urban structure and the scope of the study. These
groups were categorised in the QGIS environment [35] for processing flexibility and future
management of geodata. This includes cross-platform integration and open data provision,
to ensure the results of this activity can be integrated into the online PERIsCOPE project
platform.

3.5. Change Detection

According to Singh [36], change detection is the process of identifying differences
in the state of an object or phenomenon by observing it at different times. Over the
past decades, many detection techniques and methods have been developed in order to
analyse the frequent environmental changes and overcome the challenges of particular
environmental concerns. Lu et al. [37] state that change detection methods are grouped
into seven categories: algebra, transformation, classification, advanced models, geographic
information system (GIS) approaches, visual analysis, and other approaches.

Applying multi-looking and co-registration of the calibrated products results in the
temporal images being connected and prepared for further analysis. In the case of SAR
images, the SNAP change detection module is applied in the stacked output. The SNAP
change detection tool is based on log-likelihood estimation, which is the difference between
the log intensity estimates. In this way, the areas of major change were highlighted. The
results were vectorised and displayed in the QGIS [36] environment. QGIS (v3.28.4) is an
open-source geospatial software that views, edits, and analyses geographic information.

In the case of optical products, image differencing was applied, a widely used tech-
nique for many applications involving change detection. Close et al. [38] showed that
image differencing achieves one of the highest overall accuracy scores (94%).

ChangeMap =

(
B2022 − B2016

B2022 + B2016

)2

where B corresponds to the different bands of Sentinel-2 images (B2, B3, B4, B5, B6, B7, B8,
B11 and B12) of the collocation of 2016 and 2018 images. In this equation, the normalised
squared difference was applied, which rescales the values into a range of 0 to 1. The
normalised squared difference facilitates thresholding since it regroups the change pixels
distributed initially in the tails of the distribution curve around the mean to a unique
direction. After comparing the differences between the various bands, B8 was selected.
Once the created index is differenced, the resulting image values are then thresholded to
identify areas of change.

4. Results

The results of this study are presented here in two parts. The first part describes the
land cover classification outputs in the areas of interest, and the second part deals with the
change detection in the urban regions.

4.1. Land Cover Analysis

It is necessary to compare the two supervised machine learning approaches to de-
termine the most effective in the areas under study. In addition, Sentinel-2 images were
included in this procedure to achieve the finest results possible. The final classified images
and the detailed outcomes of the algorithms are presented in Figures 6 and 7 for both urban
areas under study.
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According to the evaluation of the classifiers, the Random Forest algorithm performs
better than the Maximum Likelihood algorithm, especially for the urban category. The



Energies 2023, 16, 3461 11 of 20

overall accuracy of 85.01% manifests how well the training data was classified, based on
the hierarchical thresholding of the Random Forest.

In the case of Nicosia, the Random Forest classifier was also applied in Sentinel-2
optical products, using the 2nd, 3rd, 4th, 8th, 11th, and 12th bands. It is concluded that
the Random Forest algorithm utilised in Sentinel-2 produces the best results based on the
visual interpretation of the classified images (Figure 6) and the evaluation of the methods.
Table 2 presents the different accuracy metrics for the three trained classes.

Table 2. Training accuracy metrics for the three classifiers.

Buildings Open/Green Spaces Water

RF-S1 ML-S1 RF-S2 RF-S1 ML-S1 RF-S2 RF-S1 ML-S1 RF-S2

accuracy 0.794 0.845 0.940 0.692 0.744 0.925 0.819 0.881 0.980
precision 0.707 0.846 0.930 0.570 0.611 0.915 0.688 0.831 0.970

correlation 0.646 0.702 0.886 0.537 0.602 0.860 0.630 0.730 0.866
error rate 0.206 0.155 0.060 0.309 0.256 0.074 0.181 0.120 0.020

True Positives 727 695 947 572 782 919 520 572 154
False Positives 302 127 80 432 497 86 236 116 7
True Negatives 1487 1662 1113 1357 1292 1107 1764 1884 1993
False Negatives 273 305 52 428 218 80 269 217 38

During the procedure of joint use of Sentinel-1 and Sentinel-2 data, various combi-
nations of source bands and spectral indices were performed. It is concluded that in the
case of Limassol, the finest classification output was achieved with the use of all radar
and optical bands and also the NDBI, IBI, NDVI, UI, and MNDWI indices. Based on the
classifier evaluation, the overall accuracy equals 90.40%. The output demonstrates that
the synergetic methodology outperforms Limassol, as the percentage is higher by 5%. The
classification output is displayed in Figure 8.
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Based on the assessment and the interpretation of the classification maps, the Random
Forest algorithm is applied on all radar and optical bands, while the NDBI, IBI, NDVI, and
UI spectral indices deliver the optimal outcome. This combination achieved an overall
accuracy of 94.10%. The high accuracy of the classifier compared to the previous results in
the case of Nicosia (91%), indicated that the joint use of Sentinel-1 and Sentinel-2 products
achieves the highest performance—Figure 9 provides the classified image. The most
accurate classification maps were used in the following steps.
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4.2. Change Detection

Multi-temporal colour composite images can be used to visualise the land usage of
an area. This method uses images of different dates to construct a colour composite that
produces an image which displays features changing through time as various colours,
while areas of no change are displayed as grey tones. Specifically, the red color in the
images indicates the changes that occurred over the period of coverage. This step is useful
to better understand the changes that occurred. For example, Figure 10 displays the RGB
composite, and therefore the locations of Nicosia that changed between 2016 and today.
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The following step is the change detection tracking in SAR images. The procedure
includes implementing the change detection SNAP module in the created stack containing
the corrected radar images of 2016 and 2019. The result is a ratio band, which indicates
the differences in the dB values from the before and after images. Figure 11 shows the
visualisation of the changed pixels in Google Earth. The detected changes are marked in
the figure in red.
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Figure 11. Changes tracked in SAR images visualized on Google Earth: (a) Limassol; (b) Nicosia.

To enrich the results, change detection techniques in Sentinel-2 images were also
applied. The normalised squared difference was performed in the areas under study in
Nicosia and Limassol, and the outputs were extracted as Geotiffs and KML file formats.
The tracked changes in both cities on the Google Earth environment are illustrated in
Figure 12. In the case of Limassol, the pixels that correspond to the sea were removed for
the algorithm to focus on the city’s urban fabric.
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Subsequently, output data were transferred from SNAP into the QGIS environment as
a GeoTIFF file for post-processing to generate valuable urban change detection maps. Open
Street Map was used as the base map for the representative visualisation of the results.
The vectorisation of the raster data was considered necessary to overlay the changed parts
with the corresponding classified images. As a result, the changes were then categorised,
and areas of the built environment that changed the most over the past six years were
highlighted. Figure 13 shows a change detection map of Nicosia and Limassol produced by
SAR data, and combined with the classification results. Figure 14 illustrates the changes
generated by optical data in both cities.

As indicated in both Nicosia and Limassol, the areas with noticeable differences in
the readings are detected in the class of buildings. This fact confirms the dynamic of urban
growth, as described in previous sections. In addition, it is clear that the percentage of
tracked changes obtained from the SAR images is higher. This fact confirms the conclusion
of Li et al. [12] that multi-temporal SAR images are the most suitable choice for change
detection applications.

In the context of PERIScOPE, the historic cluster of Strovolos in Nicosia and the Turkish-
Cypriot quarter of Limassol were selected as the testbed areas for further, focused analysis.
Figure 15a displays a map that visualises changes in the Strovolos area and the land cover
layer. The identified changes in Strovolos’ surrounding environment can be interpreted
from the expansion and transformation of the region over the past few years. In addition to
residential uses, the area was recently transformed into a semi-commercial centre.
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Figure 15. Focused analysis of the study areas by means of change detection maps of (a) Strovolos;
(b) the Turkish-Cypriot quarter of Limassol.

In the Limassol neighbourhoods, the classification analysis was conducted again with
the joint use of radar and optical data to detect the borders between the Limassol Marina
and the sea in detail. 93% overall accuracy was achieved. In that case, the change detection
was performed in SAR data, implementing the SNAP change detection tool. Fewer changes
were tracked that were interpreted as typical built environment changes through new
building construction and the creation of the marina of Limassol, cf. Figure 15b.

As the final results of this study are expected to be integrated into the PERIsCOPE plat-
form, it was required to convert the research outputs into two-dimensional georeferenced
data, as well as to generate their three-dimensional representations. The 3D maps provide
a realistic representation of the tracked changes that professionals and city stakeholders
may use. Figure 16 displays a screenshot of the change detection 3D map of Limassol.
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The authors envision that using chronological series of satellite images to understand
changes in the built environment over time can help to better inform relevant city authorities
about urban fabric transformations and identify possible threats. This insight can thus be
valued as a useful tool that contributes to the sustainable management of a city.
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5. Discussion

In this study, the classification results were derived from supervised machine learning
algorithms, such as the Random Forest and the Maximum Likelihood classifier. This kind
of approach demands labelled data to predict outcomes. However, obtaining an adequate
amount of data might be a challenge for researchers. For instance, in this study, the
supervised algorithms could not be utilised on 2016 images due to the limited availability of
OpenStreetMap land cover data from that year. In this case, unsupervised machine learning
algorithms could be applied. The study presented how unsupervised learning can identify
hidden patterns or intrinsic structures in the data, and can be used to draw conclusions
from datasets composed of unlabelled input data. Specifically, in this research process step,
the k-means algorithm was applied, which assigns each data point to the cluster whose
centre is closer [39]. The k-means classifier was selected as it is one of the most widely
used unsupervised algorithms. Figure 17 displays the result of k-means classification in
Nicosia, as applied in both Sentinel-1 and Sentinel-2 images. Thirty iterations and three
clusters were chosen as the parameters of the algorithm. As can be noticed, the outputs
of the k-means analysis are imprecise. For instance, in the radar image, the water bodies
of Nicosia were not detected, and in the optical image, water class covers 22.286% of the
region of interest, which is not valid. The study showed that supervised Random Forest
and Maximum Likelihood classification could be much more accurate than unsupervised
k-means classification, but unsupervised classification is particularly useful when data or
prior knowledge about the study area is unavailable.
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The next steps in the development of the research comprise the integration of the
QGIS datasets delivered by this process into the PERIsCOPE platform (Figure 18). More
specifically, the results will be available in GeoTIFF format, downloadable, and also vi-
sualised in interactive maps. Future research on this topic includes the integration of the
presented methodology as a tool into the content management system that supports the
PERIsCOPE platform. In the future, this tool will facilitate the identification of multi-
temporal changes in the vicinity of heritage building clusters based on satellite images in
an online, user-friendly environment. Combined with land surface temperature maps [38]
of the areas under study, the authors envision this tool becoming a valuable support mech-
anism for data interpretation and decision-making in heritage management and building
conservation processes.
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6. Conclusions

The aim of this study was to present a methodology for change detection in urban
environments with the employment of supervised machine learning algorithms. Addi-
tionally, the performance of the synergetic use of radar and optical data was examined.
Specifically, the Sentinel-1 SAR images were combined with Sentinel-2 images, indicating
that a significant improvement in land cover classification accuracy can be achieved, com-
pared to the case where only optical or radar imagery is used. The temporal analysis was
conducted for the time period 2016–2019 for two Cypriot cities – Nicosia and Limassol –
and the required Sentinel-1 and Sentinel-2 images were acquired by the European Space
Agency’s (ESA) Copernicus Hub. The entire processing workflow was completed on the
SNAP environment – a tool used for Earth Observation analysis. The study’s results deliver
information concerning the cities’ expansion trends, simultaneously mapping the urban
landscape changes and dynamics.

The main contribution of this study concerns the evaluation of a workflow that can
be used in the built environment of historic clusters in Cypriot cities, to enable authorities
to monitor the urban fabric of sensitive areas threatened by climate decay through the
PERIsCOPE platform. Here, ‘monitoring’ is used in terms of a process that enabled
the study and observation of the built environment as a multifactorial topic, since it
employs a two-part approach that includes classification and change detection analysis.
Furthermore, this study contributes to field of sustainable and energy efficient heritage-built
environment, as it provides the ground for analysis related to the urban heat island effect.
The development and delivery of tools, which allow for the comprehensive investigation
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of changes in urban density and spatial planning, establishes the conditions for detailed
insights into parameters that affect the city microclimate. The value-adding service of the
PERIsCOPE HBIM platform, presented in this study, delivers new perspectives for HBIM
tools Supplementary Material S1, enabling the combination of information in different
layers, towards a more energy-efficient built environment.

The presented workflow and methods are applied as a pilot in the analysis of vul-
nerable historic clusters in Cypriot cities that face rapid urbanisation challenges and the
impact of climate change. However, the research can also be applied to other historical
city regions, using the technical guidelines, workflows, and instructions delivered under
the context of this study. The potential of promoting heritage reuse and safeguarding as a
pillar of socio-economic growth and sustainable development is gaining acknowledgment
by policymakers and decision-makers. This study addresses the need for agile digitisation
and open access to comprehensive information resources for building energy upgrades.

Supplementary Materials: The following supporting information can be downloaded at: S1: https://
youtu.be/lFMau9XZrKs (accessed on 12 February 2023) [alpha version of the UPERIsCOPE platform];
S2: https://youtu.be/tFZ_aDuhWw8 (accessed on 18 January 2023) [data fusion].
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