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Abstract: This paper introduces a simple diesel train energy consumption model that calculates
the instantaneous energy consumption using vehicle operational input variables, including the
instantaneous speed, acceleration, and roadway grade, which can be easily obtained from global
positioning system (GPS) loggers. The model was tested against real-world data and produced an
error of −1.33% for all data and errors ranging from −12.4% to +8.0% for energy consumption of
four train datasets amounting to a total of 5854 km trips. The study also validated the proposed
model with separate data that were collected between Valencia and Cuenca, Spain, which had a
total length of 198 km and found that the model was accurate, yielding a relative error of −1.55%
for the total energy consumption. These results show that the proposed model can be used by train
operators, transportation planners, policy makers, and environmental engineers to evaluate the
energy consumption effects of train operational projects and train simulation within intermodal
transportation planning tools.

Keywords: diesel train; energy consumption model; train simulation

1. Introduction

In 2021, the transportation sector was responsible for about 28% of the total U.S. energy
consumption [1]. The train sector accounts for a small portion of this total transportation
energy consumption. Based on the 2020 U.S. Bureau of Transportation Statistics data, the
railroad sector accounted for 1.8% of the total transportation energy consumption and
moved 27.4% of all intercity freight ton-miles. In contrast, trucks consume 23.8% of all total
transportation energy and move 46.2% of all total intercity freight ton-miles [2]. For energy
efficiency, trains have significant aerodynamic advantages compared to trucks since their
cars are closely spaced. Trains are labor efficient since only a few people are required to
operate a single train with multiple cars and each railcar is equivalent to three trucks.

Energy consumption and railroad operations are of major interest to train operators
and railroad policy makers. An energy efficient railroad operation can significantly reduce
the transportation sector’s total energy consumption since trains are relatively more en-
ergy efficient compared to other transportation modes in other sectors. Train simulation
is a useful method for performing model train operations and estimating train energy
use. A train simulator also requires an adequate energy model to estimate accurate train
energy consumption.

However, globally, the railroad sector has diverse characteristics, making modeling
more difficult. Each country has different railway systems that are operated by various
public and private companies. Passenger rail systems vary from low-speed small trains
with frequent stops to intercity high-speed passenger trains. Additionally, there are long-
haul high-speed freight trains that carry goods. The objective of this study is to develop a
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diesel train energy consumption model that can be implemented into train simulators and
applied to various ecodriving train operational applications.

Ecodriving and optimum train speed control strategies to reduce energy consumption
in railways are found in various references [3–15]. Lukaszewicz [3] conducted research
on train driver models to assess the train’s running time and energy usage in simulations.
Bocharnikov [4] and colleagues examined the tradeoff between saving energy and reducing
travel time by designing a fitness function with variable weightings. They utilized a genetic
algorithm search method to determine the best train trajectories. Sicre et al. [5] developed
a simulation-based model for manual driving strategies that can minimize energy con-
sumption in high-speed trains. The model used the train’s motion based on track and train
characteristics, as well as operational constraints, with a genetic algorithm to select the
optimal driving approach. Haahr et al. [7] developed a dynamic programming algorithm to
reduce train energy consumption by creating better train speed profiles using a time–space
graph formulation. Zhang et al. [8] introduced a new method called deep reinforcement-
based train operation (DRTO), which involves a deterministic deep reinforcement learning
algorithm, a dynamic incentive system, and an event-driven approach to improve DRTO
performance based on event-driven strategies. Cao [9] and colleagues proposed a trajectory
optimization approach for high-speed trains to reduce traction energy consumption and
enhance riding comfort. The study considered three new factors: discrete throttle settings,
neutral zones, and sectionalized tunnel resistance. The model was discretized and trans-
formed into a multistep decision optimization problem. George [10] created an algorithm
that determines the best trajectory for a freight train carrying cargo over a specific distance
by optimizing acceleration, coasting, and deceleration. The ecodriving problem was solved
using mixed-integer nonlinear programming (MINLP) from the Opti-Solver toolbox. Zhu
and colleagues developed a Q-Learning-based model for ecodriving in trains. The study
used a finite Markov decision process and Q-Learning approach to determine the most
energy-efficient distribution policy. The study introduced two state definitions based on
trip time and energy distribution and formulated the energy-efficient train control problem
using the two state definitions. The study introduced two state definitions based on trip
time and energy distributions and formulated the energy-efficient train control problem
using the two state definitions. Yuan and Frey [13] investigated inter-run variability in
Metrorail segment speed trajectories, taking into account factors such as operation mode
(OM) sequence, peak speed, acceleration/deceleration rate, and speed transients. Through
100 simulations per segment, the study found that energy savings ranging from 5% to
50% among segments and from 14% to 18% at the system level can be achieved without
changing travel time. Sicre [14] proposed an effective driving approach for high-speed
trains using a genetic algorithm with fuzzy parameters based on an accurate simulation
of the train’s motion. The proposed model was applied to an actual Spanish high-speed
line to assess the energy savings provided by the efficient regulation algorithm compared
to typical driving styles. Fernández-Rodríguez [15] and colleagues developed a dynamic
multiobjective model to calculate a set of efficient drivings that can be updated during
real-time operation. Using this model, it is possible to react when delays arise by replacing
the current driving with a faster and more energy-efficient one. The model is solved using
the extension of NSGA-II for dynamic optimization problems (DNSGA-II), combined with
a detailed simulator of the train’s motion. When developing an energy-use reduction strat-
egy, it is essential to estimate accurate energy consumption and to utilize an appropriate
energy consumption model. Various factors affect the energy consumption of trains, includ-
ing train characteristics, trip-related factors, and route-related factors. The major factors
influencing energy consumption include train type; travel distance; trip route, including
grade and curvature; and load. Electric trains are typically powered by electricity from the
grid and diesel-powered trains are powered by diesel engines consuming diesel fuel.

A train’s energy efficiency can be measured as total energy used per unit of distance
traveled (e.g., gallons/L per mile/km). For light trains, the energy consumption estimation
is typically expressed as the energy required to operate the train per weight-distance. This
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mass-specific method can be used for all locomotive types, including diesel, electric, or
hydrogen, and is easy to use for estimating macroscopic energy consumption for overall en-
ergy efficiency. However, this method is not suitable to evaluate new operational strategies
such as ecospeed control and ecotransit programs.

The study presents a train energy consumption model that estimates a train’s in-
stantaneous energy usage by utilizing vehicle operational input variables, such as speed,
acceleration, roadway grade, and track curvature, which can be simply obtained from GPS
loggers or various applications [16]. The proposed model can be used as a supplemental
energy model given that it develops a simple model that can be applied in various train
operational applications and train simulators. The rest of the paper is organized as follows:
the subsequent section outlines the train fuel consumption data that were utilized for the
study, followed by a description of the proposed model development and validation results
in the following sections. Finally, the study’s conclusions are summarized.

2. Fuel Consumption Data

This study utilized a dataset that was collected by North Carolina State University.
The data were collected for the Amtrak-operated Piedmont train rail route between Raleigh,
NC, and Charlotte, NC. Diesel passenger trains are pulled by a diesel-electric locomotive
with a diesel prime mover engine, which typically has 3000 hp or larger power. All data
were collected from an EMD F59PH locomotive and all trains included three passenger
cars. The total weight of test trains was 344 tons. Fuel measurements were conducted
using a portable emissions measurement system (PEMS). A detailed description of the data
collection can be found in [17–22]. We utilized data from 23 one-way trips in which four
single locomotive trains traveled between Raleigh, NC, and Charlotte, NC. The data were
collected and recorded every second for a total of 247,103 s (or 68.6 h). When analyzing the
train data, the study did not consider the energy effects of the external environment. The
train’s operational data were gathered on several occasions between May 2013 and August
2018 in North Carolina, USA. The data collection occurred within the temperature range of
11 to 31 ◦C, which falls within the normal temperature range. Additionally, the study did
not consider the load factor and assumed that the total weight of the train remains constant
throughout the entire journey, including a constant number of passengers.

Table 1 summarizes the train trip characteristics. The dataset for Train 1, NC1797,
included five one-way trips and the dataset collected from Trains 2, 3, and 4 (or NC1810,
NC1859, and NC1893) included six one-way trips. Some trip data were missing from the
Train 2 and 4 datasets. Consequently, the trip distance for Trains 2 and 4 was shorter than
the trip distance of Train 3. The total trip durations were 16.3, 16.9, 20.1, and 15.4 h for
Trains 1 through 4, respectively. Table 1 also demonstrates that Train 1 consumed more fuel
than Trains 2 and 4 even though they traveled shorter distances; the fuel consumption rates
(kg/km) of Trains 1, 2, 3, and 4 were 2.41, 2.19, 2.09, and 2.04 kg/km, respectively. Train 1
consumed significantly more fuel than the other trains and the data show that Trains 2, 3,
and 4 were 11.3%, 13.2%, and 15.3% more fuel efficient than Train 1 for the collected dataset.
According to information from Wikipedia [23], the typical efficiency of trains in the USA
is 0.478 km per liter (equivalent to 1.125 miles per gallon). Train 1, Train 2, Train 3, and
Train 4 had measured efficiency rates of 0.380 km/L (0.893 mpg), 0.427 km/L (1.005 mpg),
0.438 km/L (1.029 mpg), and 0.448 km/L (1.055 mpg), respectively. These figures represent
a difference of 21%, 11%, 8%, and 6% compared to the average efficiency of US trains.
The results indicate that the test trains consumed up to 21% more fuel than the average
US train.
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Table 1. Trip data characteristics.

Train Locomotive ID Direction Number of
One-Way Trips

Measured
Distance (km)

Fuel Consumption
(ton)

Fuel Rate
(kg/km)

1 NC1797
All 5 1386 3.34 2.41

Eastbound 2 554 1.33 2.39
Westbound 3 832 2.02 2.43

2 NC1810
All 6 1452 3.11 2.14

Eastbound 3 669 1.40 2.09
Westbound 3 783 1.71 2.18

3 NC1859
All 6 1620 3.39 2.09

Eastbound 3 806 1.74 2.16
Westbound 3 814 1.65 2.03

4 NC1893
All 6 1395 2.85 2.04

Eastbound 3 680 1.51 2.21
Westbound 3 715 1.35 1.88

Figure 1 illustrates the speed profile, roadway grade, and fuel consumption data of
a sample trip; this is a westbound Train 1 trip, which travelled from Raleigh, NC, USA,
to Charlotte, NC, USA. The trip includes seven stops at the Cary, Durham, Burlington,
Greensboro, High Point, Salisbury, Kannapolis rail stations. The total distance was 278.6 km
(173.1 mile) for a 3.17 h trip. The average speed of the trip was 87.9 km/h (54.6 mph) with a
maximum speed of 132.3 km/h (82.2 mph). The westbound trip involved moderate uphill
travel with a maximum slope of 1.91% and a minimum slope of −1.73%. The respective
altitudes of the Raleigh and Charlotte stations are 93 and 215 m above sea level. The
total fuel consumption of the sample trip was 565.7 kg, or 7072 kWh, and the energy
consumption rate was 25.4 kWh/km (40.9 kWh/mi). Figure 2 illustrates the locations of
railway stations.

We converted fuel consumption data to energy consumption in this study since energy
consumption is a broader term that involves all types of energy uses, including fuel,
electricity, and other forms of energy. We converted one gram of diesel fuel to 0.00031 gallon
and converted 1 gallon of diesel to 40.7 kWh.

Table 2 summarizes the field-collected energy consumption data. The table explains
that Train 1 consumed more energy per distance compared to other trains. The energy con-
sumption rates of Train 1 were 29.9 and 30.3 kWh/km for eastbound and westbound trips,
respectively. For eastbound trips, Train 2 consumed the lowest energy with 26.1 kWh/km
and for westbound trips, Train 4 had the most energy efficient trips with 23.5 kWh/km.
Train 1 consumed 13% and 22% more energy than Train 2 and Train 4 for the eastbound
and westbound trips, respectively. The field data contains more westbound trips than
eastbound trips. Therefore, the average distance and the travel time of westbound trips
were longer than those of eastbound trips.

Table 3 shows energy consumption by each segment between various stations. Seg-
ments 3 and 4 (Durham to Burlington) and segments 6 and 7 (High Point to Salisbury) were
the longest sections, at 53.5 and 55.2 km, and consumed more energy than other sections
for both eastbound and westbound trips. However, the table shows that for eastbound
trips, segments 3–2 and 9–8 consumed the most energy at 30.0 and 30.1 kWh/km, and that
segment 4–3 was the most energy efficient section at 23.7 kWh/km. For westbound trips,
segment 1–2 was the least energy efficient section at 40.2 kWh/km, and segment 6–7 was
the most energy efficient section at 23.5 kWh/km. The average speed was estimated based
on the measured trips.
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Figure 2. Map of train stations (source: 2023 Google Maps).

Table 2. Energy consumption summary.

Direction Train Travel Time (s) Energy Used
(kWh)

Average Speed
(km/h) Distance (km) Energy Rate

(kWh/km)

Eastbound

1 23,835 16,563 83.7 554 29.9
2 28,754 17,473 83.8 669 26.1
3 36,673 21,747 79.1 806 27.0
4 27,920 18,814 87.6 680 27.7

Avg. 29,296 18,649 83.6 677 27.7

Westbound

1 34,929 25,238 85.7 832 30.3
2 32,011 21,365 88.1 783 27.3
3 35,545 20,664 82.4 814 25.4
4 27,436 16,819 93.8 715 23.5

Avg. 32,480 21,022 87.5 786 26.6

Table 3. Energy consumption by station trips.

Direction Segment Travel Time
(s)

Energy Used
(kWh)

Avg. Speed
(km/h)

Positive Elevation
Distance (m/100 km)

Net Elevation
Gain (m/100 km)

Energy Rate
(kWh/km)

Eastbound

All 117,182 7007 81.0 517 −40 27.6
2–1 5542 299 79.5 370 −333 24.6
3–2 12,350 814 87.4 610 116 30.0
4–3 23,008 1135 82.7 478 −154 23.7
5–4 12,283 696 93.7 605 −136 24.8
6–5 8177 610 92.0 459 −102 29.2
7–6 18,750 1565 101.8 498 81 29.7
8–7 9665 567 97.2 390 −97 24.2
9–8 17,171 1261 97.2 496 72 30.1

Westbound

All 129,921 7007 83.3 557 40 26.7
1–2 7257 527 78.4 703 333 40.2
2–3 13,529 708 90.2 494 −116 25.3
3–4 26,068 1408 84.6 633 154 27.6
4–5 13,878 880 100.2 741 136 27.4
5–6 10,636 659 95.2 561 102 28.7
6–7 22,139 1199 99.7 417 −81 23.5
7–8 10,385 580 99.5 487 97 24.5
8–9 16,989 996 102.2 425 −72 24.8

Station 1: Raleigh, 2: Cary, 3: Durham, 4: Burlington, 5: Greensboro, 6: High Point, 7: Salisbury, 8: Kannapolis,
9: Charlotte.
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3. Energy Consumption Modeling

It is difficult to estimate a trains’ energy consumption due to the complexity of the
train dynamics and the lack of real-world field fuel consumption data. This study utilizes
train dynamics based on the 1992 Canadian National resistance method in [24]. The tractive
effort of the locomotive should overcome the resistance forces, including the rolling friction,
bearing resistance, train dynamic losses, and air resistance. Rolling friction between wheel
and rail is a constant for a given quality of track. Bearing resistance varies based on the
weight on each axle and the characteristics of the bearing used. Train dynamic losses vary
with train speed, rail alignment, track quality, the surface conditions of the rail under load,
the horizontal contour of the railhead, contour and condition of the wheel tread, and the
tracking effect of the train. Air resistance is a function of the cross-sectional area of the
vehicle, its length and shape, and the speed. The study utilized the modified Davis equation
coefficients [24] to consider new train characteristics, as expressed in Equation (1).

Rr = 1.5 +
18N
ml,c

+ 0.03u(t) +
kc,l Ac,lu2

10000ml,c
(1)

The gradient resistance force and curve resistance forces are added in Equation (2).
Curve resistance is converted to an equivalent grade resistance by assuming that the unit
resistance of a 1◦ curve is the same as the resistance of a 0.04% grade [25]. Given that the
Davis equation generates the resistance force in lbs, the unit conversion (4.4482) is used to
convert from units of lbs to Newtons. Hence, the final resistance for each locomotive (l) or
car (c) is expressed in Equation (2).

Rr =
4.44822× 1.10231

1000 ∑
c,l

mc,l

(
1.5 +

16329.34
ma

c,l
+ 0.0671u(t) +

48862.37Ac,lKc,lu(t)
2

mc,l
+ 20

(
Gc,l(t) + 0.04

∣∣Cc,l(t)
∣∣)) (2)

FW(t) = ma(t) + Rr(t) (3)

PW(t) = (ma(t) + Rr(t))× u(t) (4)

PT(t) =

{
PW (t)
ηW−T

+ PA, ∀PW(t) > 0
PA ∀PW(t) ≤ 0

(5)

EC(t) =
PT(t)

1000× 3600
× ∆t (6)

The tractive force at the wheel is estimated using Equation (3) and the power at the
wheel (instantaneous energy use) to move the train forward is computed using Equation
(4). To compute the power at the tank, we add the auxiliary power PA to calculate the final
power consumption using Equation (5). The auxiliary power was estimated using the field
data ( PA = 241.2 kW).

The energy consumed by the train can then be computed using Equation (6). Various
efficiency factors are considered to estimate the energy consumption of diesel locomotives.
Some studies utilize fixed diesel engine efficiency after data calibration and some studies uti-
lize variable efficiency factors. This study utilizes the train driveline efficiency, ηW−T , which
combines a wheel-to-DC-bus efficiency, ηW−DC and DC-bus-to-tank efficiency, ηDC−T . The
wheel-to-DC-bus efficiency is a function of the train speed, as shown in Figure 3 [26].

ηDC−T =
PW(t)

ηW−DC
(
EC(t)× 1000× 3600

∆t − PA
) (7)
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Figure 3. Wheel-to-DC-bus efficiency.

The DC-bus-to-tank efficiency is a function of throttle notch position (the rate at which
the locomotive’s diesel power is being applied) and locomotive fuel type (e.g., diesel,
electric, hydrogen). We estimated the DC-bus-to-tank efficiency using the collected field
data by applying Equation (7), as illustrated in Figures 4 and 5. We utilized all trip data
and categorized by notch position or the proportion of the power to the maximum power
to estimate DC-bus-to-tank efficiency compared to the field-collected fuel consumption
data. The proposed functional form is a polynomial function, as demonstrated in Equation
(8), where the variable x is either the notch position or the proportion of the instantaneous
power to the maximum power.

ηDC−T = co+c1 × x + c2 × x2 (8)

The optimum coefficients were found to be c0 = 0.21, c1 = 0.0649, c2 = −0.0045 with
a coefficient of determination of 0.952 for the notch function, as illustrated in Figure 4.

Another model was developed, in which the DC-bus-to-tank efficiency was computed
as a function of the vehicle power at the wheels (computed using Equation (4)) relative
to the maximum power of all locomotives (as reported by the locomotive manufacturer).
The optimum coefficients were found to be c0 = 0.29, c1 = 0.3859, and c2 = −0.24 with a
coefficient of determination of 0.9104, as illustrated in Figure 5. Users can apply this model
when notch data are not provided and this model provides continuous efficiency values.
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Using the proposed efficiencies, the final energy consumption in kWh can be computed
for each time step ∆t (in seconds) by using Equation (9).

EC(t) =
PT(t)

ηDC−T × ηW−DC
× ∆t

1000× 3600
(9)

4. Model Evaluation

The model evaluation results demonstrate that the proposed model estimated a diesel
train’s consumption with reasonable accuracy. Table 4 shows the measured fuel con-
sumption for all trip data and the estimated energy consumption based on two methods:
DC-bus-to-tank efficiencies as a function of the notch position and DC-bus-to-tank effi-
ciencies as a function of the proportion of power to the maximum power. The model
estimated the energy consumption with an error of −2.0% for all data and with errors
ranging from −13.2% to 7.3% for Train 1 to Train 4 data, when the notch position method
was used. Similarly, the estimated energy consumption based on the proportion of power
to the maximum power had an error of −1.3% for all data and errors ranging from −12.4%
to 8.0% for Train 1 to Train 4 data. Both methods provide good estimations based on the
field-collected data. However, we recommend using the ηDC−T notch position method
when notch data are available since it can reduce a step in generating the proportion of
power to the maximum power.

Table 4. Energy consumption model evaluation for individual trains.

All Train 1 Train 2 Train 3 Train 4

Measured Energy (kWh) 157,493 36,822 38,656 43,261 38,754
Estimated Energy (kWh)
(ηDC−T notch position) 155,435 36,304 38,184 42,729 38,219

Error −2.0% −13.2% −1.7% 0.7% 7.3%
Estimated Energy (kWh)

(ηDC−T the proportion of power
to the max. power)

156,580 36,616 38,441 43,035 38,487

Error −1.3% −12.4% −1.0% 1.5% 8.0%

Figure 6 illustrates the field-collected instantaneous energy consumption rate of a
sample Train 1 trip traveling from Raleigh, NC, to Charlotte, NC compared to the estimated
instantaneous energy consumption rate. We estimated the energy consumption using
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the DC-bus-to-tank efficiency as a function of the proportion of power to the maximum
power. Superimposed on the figures are the proposed model’s estimates of vehicle energy
consumption rates based on train speed, grade, and curvature data. The total length of the
westbound trip was 279 km (173 mile) and the average speed was 87.9 km/h (or 54.64 mph).
The measured energy consumption was 7073 kWh (or 25.4 kWh/km) and the estimated
energy consumption was 7441 kWh (or 26.7 kWh/km), which is a 5.2% error.
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Figure 6. Model estimation: (a) energy estimation for a sample Train 1 trip, (b) speed profile of
a section between two stations (Cary to Durham), (c) energy estimation of a section between two
stations (Cary to Durham).
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As shown in the figure, the model prediction closely matched the field collected energy
consumption. The results show a strong correlation between the estimated energy consump-
tion and the actual field measurements. The model may overestimate or underestimate
some energy consumption levels for specific sections, but overall, the figure demonstrates
that the model’s predictions aligned with the fuel measurements. This indicates that the
model can effectively be used for evaluating the impact of transportation projects, including
ecofriendly driving and real-time train operations.

Figure 6b illustrates the detailed speed view of the sample trip going from the Cary
station to the Durham station. Figure 6c compares the measured energy consumption of
the section and the estimated energy consumption. The figure illustrates that the model
accurately estimated the overall energy consumption patterns but showed oscillations
when the speed of the train increased. Since the speed and acceleration levels are major
input variables of the energy model, the model estimate was substantially responsive
when the train increased its speed. For the first 270 s when the train decelerated and was
idling, the energy consumption rate was mostly consistent with an idling rate. However,
when the train accelerated, energy consumption rates were significantly increased. We
utilized an exponential smoothing method with alpha 0.5 to reduce excessive oscillations.
The exponential smoothing method is discussed in [27]. The figure shows the estimated
values moderately followed the patterns of the measured energy consumption. For the
800 s period, the predicted energy consumption was 350 kWh and the measured energy
consumption was 344 kWh, which is a 1.75% error.

Table 5 summarizes the estimated energy consumption results by station trips. We
used the DC-bus-to-tank efficiency that is a function of the proportion of power to the
maximum power to estimate the energy consumption. The results include average station
trip data from all collected data. Overall results show that the trains consumed 6947 and
6958 kWh for eastbound and westbound trips. The model estimated 6529 and 7144 kWh
for eastbound and westbound trips; these are −6.0 and 2.7% errors for eastbound and
westbound trips, respectively. The table includes the standard deviation (STDEV) data and
shows the STDEV results for the estimated energy consumption were considerably lower
than the measured data. The results indicate that the estimated energy consumption results
were narrowly distributed compared to the measured data and the model estimated reliable
energy consumption results with input variables. The table shows that the highest error
rate was observed at −13.5% during the eastbound trip from High Point to Greensboro.
However, the error rate of the westbound trip from Greensboro to High Point was only
0.9%. The table shows that the model predicts the energy consumption within a reasonable
error range.

Table 5. Model evaluation for station trips.

Direction Stations
Avg

Measured
(kWh)

Avg
Estimated

(kWh)

STDEV *
Measured

STDEV
Estimated

Measured
Rate

(kWh/km)

Estimated
Rate

(kWh/km)
Error

Eastbound

All 6947 6529 430 384 27.3 25.7 −6.0%
2–1 299 288 60 30 24.6 23.7 −3.5%
3–2 814 783 159 80 30.0 28.8 −3.9%
4–3 1135 1147 282 192 23.7 24.0 1.1%
5–4 696 640 284 226 24.8 22.8 −8.0%
6–5 610 528 202 156 29.2 25.3 −13.5%
7–6 1565 1446 197 125 29.7 27.4 −7.6%
8–7 567 559 101 67 24.2 23.9 −1.5%
9–8 1261 1140 151 52 30.1 27.2 −9.6%
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Table 5. Cont.

Direction Stations
Avg

Measured
(kWh)

Avg
Estimated

(kWh)

STDEV *
Measured

STDEV
Estimated

Measured
Rate

(kWh/km)

Estimated
Rate

(kWh/km)
Error

Westbound

All 6958 7144 351 323 26.6 27.3 2.7%
1–2 527 480 63 20 40.2 36.6 −8.9%
2–3 708 722 114 34 25.3 25.7 1.9%
3–4 1408 1475 287 79 27.6 29.0 4.8%
4–5 880 904 239 43 27.4 28.1 2.7%
5–6 659 665 171 107 28.7 29.0 0.9%
6–7 1199 1226 268 133 23.5 24.1 2.2%
7–8 581 641 155 57 24.5 27.0 10.4%
8–9 996 1031 187 64 24.8 25.7 3.5%

* STDEV: standard deviation. Station 1: Raleigh, 2: Cary, 3: Durham, 4: Burlington, 5: Greensboro, 6: High Point,
7: Salisbury, 8: Kannapolis, 9: Charlotte.

5. Model Validation

This study also validated the proposed model against an independent dataset. The
model was validated using commuter service train data collected between Valencia and
Cuenca, Spain, which had a total length of 198 km, and a time of 3 h 20 min. The data were
collected from a series 592.200 train with three coach cars, weighing 130 tons, and having
a maximum speed of 140 km/h. We used the DC-bus-to-tank efficiency, which uses the
proportion of power to the maximum power to estimate the energy consumption.

Figure 7 illustrates the model validation results for the first 28.2 km section. For the
35 min trip, the train consumed 697 kWh and the model estimated 688 kWh, which is
a −1.4% error. Figure 7a shows the speed profile of the sample trip that included three
intermediate stops and a maximum speed of 123 km/h. Figure 7b indicates that the train
traveled to an uphill section from 17 to 310 m above sea level. Figure 7c illustrates that
the model’s predictions generally followed the fuel measurement patterns and accurately
followed the field-collected data for both low- and high-speed sections. The results clearly
demonstrate good agreement between the instantaneous energy consumption estimates
and field measurements.

We also estimated the total energy consumption for the entire 198 km trip. We found
that that the proposed model estimated 3579 kWh while the train consumed 3635 kWh
during the trip, representing a−1.55% error rate. The results demonstrate that the proposed
model can effectively estimate the train’s energy consumption in a variety of trip scenarios.
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6. Conclusions

This research developed a simple model that computes the energy consumption of
diesel trains in real-time, which can be used in railway ecodriving and train simulation
software. Although previous studies have examined the real-time energy consumption
of diesel trains, only a few have focused on models that can be applied in ecodriving
train applications. The energy model uses the current speed of the train, its acceleration,
the slope, and the curvature of the railroad as input variables to determine the energy
consumption at that moment and the total energy consumption rate. The results showed
that the model’s predictions were in line with real data, with an error of only −1.33%
compared to the data collected from trips totaling 5854 km. The study also tested the model
with additional independent data and found that it was accurate, producing a relative error
of −1.55% compared to the 198 km trip field data collected between Valencia and Cuenca,
Spain. This model can be valuable for railway engineers, policymakers, train operators,
and environmental engineers to assess the energy impact of railway projects, ecodriving
applications, and in microscopic train simulations. Future research should examine the
energy consumption of hybrid trains that utilize an onboard rechargeable energy storage
system, which can be charged during surplus energy production or regenerative braking,
similar to hybrid electric vehicles.
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Nomenclature

an(t) Acceleration of train n at instant t (m/s2)
Fn(t) Tractive force of train n at instant t (N)
Rr Rolling resistance of vehicle (lb/ton)
Rn(t) Resistive force of train n at instant t (N)
Pn(t) Power of train n at instant t (W)
PA(t) Auxiliary power of train n at instant t (W)
ECn(t) Energy consumption of train n at instant t (kWh)
un(t) Velocity of train n at instant t (m/s)
ml,c Total mass of locomotive l or car c (kg)
ma

l Mass on single axle of locomotive l (kg)
ma

c Mass on single axle of car c (kg)
m Train total mass m = ∑c,l mc,l (sum of locomotive and car masses) (kg)
ηW−T Train driveline efficiency (ηW−DC × ηB−T)
ηW−DC Wheel-to-DC-bus efficiency
ηDC−T DC-bus-to-tank efficiency
µ Coefficient of friction between the wheel and the track
g Gravitational acceleration (9.8066 m/s2)
N Number of axles per railcar
Kc,l Canadian National streamlining coefficient of car c or locomotive l
Al Frontal area of locomotive l (m2)
Ac Frontal area of car c (m2)
Gc,l Track gradient of car c or locomotive l (%)
Cc,l Track curvature of car c or locomotive l (degrees)
G(t) Grade of track at instant t (percent)
|c + l| Number of cars and locomotives
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