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Abstract: The US electric grid is facing operational, stability, and security challenges. Transmission
system operators need some measure of visibility into distribution system renewable generation.
Distribution system generation needs to support transmission system voltage. The grid is experi-
encing an expansion in measurement systems. How to take full advantage of this expansion and
defend against attacks, both cyber and physical, poses additional challenges. This paper introduces
software designed to meet these challenges. At the center of the software is an Integrated System
Model (ISM) that spans from transmission to secondary distribution. The ISM is employed in real-
time abnormality detection, voltage stability forecasting, and multi-mode control. The software
architecture along with selected analysis modules is presented. Testing results are presented for:
1—attacks on utility infrastructure; 2—energy savings from optimal control; 3—distribution system
control response during a low voltage transmission system event; 4—cyber-attacks on PV inverters,
where physical inverters are used in hardware-in-the-simulation-loop studies. Contributions of this
work include real-time analysis that spans from three-phase transmission through secondary distri-
bution; an approach for detecting abnormalities that employs measurements from three independent
measurement systems; and a multi-mode distribution system control that responds to cyber-attacks,
physical attacks, equipment failures, and transmission system needs.

Keywords: Integrated System Model (ISM); Graph Trace Analysis (GTA); Advanced Metering
Infrastructure (AMI); Supervisory Control And Data Acquisition (SCADA); coordinated control;
cyber-attack; smart inverter

1. Introduction

The US is transitioning to a renewable-based electric grid [1]. The growth of renewable
generation is posing problems. Transmission system operators need some measure of visi-
bility into distribution system generation and operations. Distribution system generation
must support transmission system voltage. This paper introduces real-time analysis soft-
ware designed to address emerging grid operational, stability, and security challenges. At
the center of the software is an Integrated System Model (ISM). An ISM integrates distinct
transmission, substation, primary distribution, and secondary distribution models from
different utility organizational silos into a memory-efficient, one-source-of-truth model.
The ISM maintains topology and offers the topology to generic algorithms that run on
the ISM. Graph Trace Analysis (GTA) is used by the algorithms to implement matrix-free
calculations [2].

In addition to the growth in renewable generation, utilities are experiencing a tsunami
of grid data from diverse systems. How to take full advantage of this expansion and defend
against attacks, both cyber and physical, poses challenges. A voltage regulator can fail
on its lowest tap, or a substation measurement can be set with a gain that is off by 50%,
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and today such problems are often not discovered until a customer’s refrigerator motor
becomes noisy. The ISM software includes algorithms that via power flow analysis correlate
data from diverse measurement systems, discovering abnormalities at the time they occur.
When multiple abnormalities are discovered, GTA traces are used to discover a common
source of the abnormalities.

The ISM-based, real-time analysis software includes a multi-mode, coordinated control
that employs an optimal power flow. Operational problems resulting from abnormalities
can be mitigated with multi-mode control [3–5], where different control strategies are used
for different abnormalities and/or objectives. Maximizing energy savings while controlling
voltage can be achieved by using different modes of control for different conditions, for
example, one control mode for blue-sky day (no solar fluctuations) conditions, and one
for high solar PhotoVoltaic (PV) variability conditions. This allows utilities to choose
condition-appropriate, time-series voltage profiles for the control system to target. In
the multi-mode control, the setpoints of control devices, including smart inverters, are
coordinated along a feeder according to an optimal, time-series, power flow solution.
This coordination increases voltage stability margins, helps to avoid oscillations among
inverters, and improves energy savings.

In the ISM software, the same GTA power flow algorithm is used for transmission,
radial distribution, lightly meshed distribution, and heavily meshed distribution [6–9].
The GTA power flow has been demonstrated to be faster than traditional power flow
algorithms. In some time-series analysis cases, the GTA power flow has run as much as 24
times faster than traditional power flow analysis [10]. In comparing with traditional power
flow practice, two enhancements in fidelity employed here are:

• Transmission is modeled as three-phase [11];
• Distribution secondary circuit conductors are modeled [12].

The GTA power flow can compute maximum loading limits for lines and busses [2,13].
This ability, together with forecasted load and renewable generation, is used by the ISM
software to forecast voltage stability.

The work presented here makes three contributions. First, the ISM used in real-time
analysis, monitoring, and control, models transmission as three-phase, and the model
spans from transmission through secondary distribution. Previous works have used bal-
anced transmission system models and have not modeled secondary distribution conduc-
tors [14–19]. Second, the abnormality detection presented uses statistical analysis of the ISM
together with measurements from three independent measurement systems to detect cyber-
attacks, physical attacks, equipment failures, and instrument failures. Previous works have
not used three independent measurement systems, nor have they addressed detecting such
a broad range of attacks [14–19]. It may be noted that the abnormality detection presented
here was inspired by utilities using the GTA power flow with SCADA and customer load
measurements, where the correlation of the two independent measurement sets through
the power flow analysis led to the discovery of failed substation instrumentation, large
kWhr meters that were connected backwards, and voltage regulators that had failed on the
low tap [7,20–22]. Third, the multi-mode distribution system control presented controls the
voltage profile to realize maximum economic benefits while responding to cyber-attacks,
physical attacks, equipment failures, instrumentation failures, and transmission system
voltage support needs. Previous works have not addressed this broad range of control
modes for mitigating detected abnormalities [14–19].

Section 2 introduces the architecture of the ISM software system. Section 3 describes
three of the analysis modules. Results from selected studies are presented in Section 4, where
studies considered include attacks on the utility system, energy savings, and a transmission
system low voltage event with concurrent attacks on PV inverters. Physical inverters in a
hardware-in-the-simulation-loop are employed. Section 5 presents conclusions.
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2. ISM Real-Time Software

The ISM real-time software takes in weather forecasts, PV generation forecasts, Su-
pervisory Control And Data Acquisition (SCADA) measurements, bellwether Advanced
Metering Infrastructure (AMI) voltage measurements, and PV inverter measurements,
and time synchronizes the measurement sets. An overview of the software architecture is
shown in Figure 1. There are four core analysis modules:

1. Faster-Than-Real-Time Simulator (FTRT): Performs time-series, power flow analysis
employing the following four forecasts, where the load forecast is generated in the
Data Engine of Figure 1 [23].

a. One-minute step-size, 30 min native load forecast;
b. One-minute step-size, 30 min PV generation forecast;
c. One-hour step-size, 24 h native load forecast;
d. One-hour step-size, 24 h PV generation forecast.

2. Abnormality Detection: Detects abnormalities that are affecting the operation of the
power system. Abnormalities include cyber-attacks, physical attacks, failed instru-
mentation, failed controllers, and unknown system operations.

3. Voltage Stability Analysis: Forecasts voltage stability of lines and busses, alarming on
low voltage stability margins or events that could lead to voltage collapse, such as
loss of renewable generation below a load bus that creates an instability.

4. Coordinated Control: For each controllable device, provides time-series, voltage
setpoints based on a multi-mode, coordinated control strategy, where control considers
voltage control, energy savings, voltage stability, and abnormal operations. For each
control mode, a desired feeder voltage profile range (i.e., lower and upper bounding
curves) is specified.
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Figure 1. ISM Real-Time Software Architecture Overview.

Three features to be noted about the ISM real-time software architecture of Figure 1 are:

1. Event-driven microservices implement each analysis module (e.g., Stability Analysis
of Figure 1) as a self-hosting service. That is, the execution of each analysis module
is triggered by events that are generated from other services in the software system
(e.g., forecast ready, anomalies detected, etc.). The data bus (represented by the
Measurement and Event busses of Figure 1) provides a consistent interface across
all analysis modules. The data bus processes all the inter-module communications,
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including synchronous and asynchronous requests. Using predefined interfaces
exposed by the data bus, all the modules obtain measurements and forecasts as data
service clients and exchange analysis results. This flexible design allows adding
or removing software modules without impacting the rest of the system. Multiple
modules of the same type can be added to scale to larger systems.

2. Data Engine provides a single-entry point for input data. The data engine encapsulates
data gathering, filtering, and time synchronization into one self-hosting unit. This
insulates the analysis modules from impacts of data interface updates. Embedded
in the Data Engine is a weather-dependent, native load forecast. There are two
native load forecasts, a 30 min load forecast with a one-minute step size and a 24 h
forecast with a one-hour step size. The load forecast is based on stochastic, weather-
dependent load models derived from customer AMI load and/or SCADA data [23].
Using the input PV forecasts, the Data Engine contains a statistical analysis of the PV
variability of each PV generator. PV variability statistics for aggregates of generators
being controlled together (i.e., generators grouped into an aggregate receive the same
control strategy) are derived and used to determine if there is a level of PV variability
at which the inverters under ISM software control cannot control the system voltage
within desired limits. The desired voltage limits are by default set to the voltage
control deadbands on nearby voltage regulators or switched capacitor banks. That is,
the inverters should control the voltage variations during high PV variability such
that utility control devices do not move.

3. Field Emulator is used for use case testing. The emulator applies the control settings
from the multi-mode, Coordinated Control to the control devices simulated in the
emulator ISM (note, the control settings can also be applied to physical control devices
if hardware-in-the-simulation-loop is being employed, as discussed below). That is,
the emulator performs power flow analysis, where the analysis results are used to
emulate real-time measurements. The emulator also simulates threat scenarios by
reading in a script that specifies changes to the power flow results being passed to
the Data Engine, thus simulating measurements being corrupted or failed. A threat
scenario script can also change the control commands from the Coordinated Control,
simulating cyber-attacks, control equipment failures, or unknown operations.

3. Overview of Core Analysis Modules

As illustrated in Figure 1, four analysis modules in the ISM software are: Stability
Analysis, Faster-Than-Real-Time (FTRT) simulator, Abnormality Detection (AD), and Coor-
dinated Control (CC). GTA is used in all modules. The FTRT module is a time-series, GTA
power flow analysis employing the load and PV generation forecasts. This section focuses
on the other three analysis modules.

3.1. Stability Analysis

The voltage Stability Analysis employs the GTA power flow. The GTA power flow
can solve loading conditions up to and beyond the tip of the steady-state voltage stability
curve [2,13]. The Stability Analysis uses this capability to determine the additional load
that can be added to each bus or line beyond which voltage instability arises. Lines or
busses approaching their unstable load condition are alarmed. Using the forecasted loading
and renewable generation for the day, a voltage stability forecast with one-hour step sizes
is performed. The total amount of renewable generation below each load bus is also
forecasted. Voltage stability margins at each bus are then evaluated for the contingency
of losing all PV generation below the bus. When the Stability Analysis raises a voltage
stability event, the CC switches to the stability mode, providing support to the transmission
system. This will be illustrated with a low voltage event in Study 3 below.
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3.2. Abnormality Detection

Error statistics between time-series, power flow analysis, and field measurements
can provide intelligence for detecting abnormalities, where error statistics for SCADA
measurements, AMI voltage measurements, and smart inverter voltage measurements are
employed. Having error statistics based on historical measurements, the results of the FTRT
simulator can be compared against field measurements and statistically unexpected errors
that exist for a few measurement samples can be flagged as abnormalities. Abnormalities
can be due to cyber-attacks, failed controllers, failed instruments, physical attacks, unknown
operations of field devices, and others.

The Abnormality Detection (AD) runs periodically, adapting to the measurement
interval of the field data. Figure 2 illustrates the AD program flow. Once a new set
of measurements are available from the Data Engine, AD starts by first screening the
measurement set, looking for measurements that fall outside of the historically expected
statistical range. First consider the path in Figure 2 where there are no out-of-range
measurements. In this case, AD compares the real-time simulation results to the voltage
measurements at bellwether AMI meter locations. If one or more outliers are found, then
feeder path circuit traces [1] are performed from the outlier locations to try to find a common
source of the anomaly, such as a malfunctioned voltage control device.
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Now consider the path in Figure 2 where one or more measurement comparisons falls
outside of the expected statistical range. Again, in this case feeder path traces are used to
try to identify a common source for the anomalies.
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3.3. Coordinated Control

The multi-mode, Coordinated Control (CC) algorithm determines two voltage control
schedules, a 30 min schedule for smart inverters, and a 24 h, hourly schedule for utility
control devices. The 30 min schedule is updated approximately every 30 min, whereas
the 24 h schedule runs at midnight and is only updated when forecasts change and/or
when certain events occur, such as switching operations. The objective of CC is to achieve a
desired feeder voltage profile range as measured at AMI bellwether meter locations, where
the desired voltage profile consists of voltage ranges for each hour. For instance, at 10:00
the desired voltage range may be [118 V, 119 V]. The desired feeder voltage profile is a
function of [24]:

• Amount of renewable generation variability;
• Voltage stability event;
• Abnormality event.

Thus, in determining the 24 h control schedule, CC seeks to minimize

n

∑
t=1

N

∑
m=1
|vbm(t)− vpm(t)| (1)

where

t = hour index
n = 24
m = bellwether meter index
vbm(t) = power flow voltage at bellwether meter m for hour t
vL = lower limit for desired voltage profile for hour t
vH = upper limit for desired voltage profile for hour t
vpm(t) = desired voltage for hour t, where

vpm(t) = vbm(t) if vL < vbm(t) < vH, else (2)

vpm(t) = vL if vbm(t) < vL, else (3)

vpm(t) = vH if vbm(t) > vH. (4)

Thus, Equation (1) minimizes over time the absolute values of the difference between
bellwether meter voltages and desired values for bellwether meter voltages. If a power flow
bellwether voltage falls within the desired range for an hour, it does not add to the cost.

All existing voltage control devices, such as Substation Load Tap Changers (LTCs),
voltage regulators, switched capacitor banks, and inverters that are available for control,
are used by CC to achieve the desired voltage profile. This gives CC the highest possible
controllability, constrained by the size and location of these assets. Ideally, each distribution
feeder would have optimally placed and sized control assets that CC uses, but the control
algorithm is designed to work with whatever control assets are made available to it. An
optimal power flow employing a Discrete Ascent Optimal Programming search [25] is used
to determine the voltage setpoints for the control devices. Each control device receives a
voltage setpoint corresponding to the voltage from the optimal power flow solution. The
voltage setpoints vary across control devices throughout the feeder, and for each control
device the voltage setpoints vary throughout the day.

CC runs when

• A new 24 h native load and/or renewable generation forecast becomes available;
• A new 30 min native load and renewable generation forecast becomes available;
• There is a change in circuit configuration;
• There is a voltage stability event;
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• There is an abnormality event.

For the 24 h forecast, if utility control device motion is deemed too high, then the
control device moves in the planned 24 h control schedule are reduced such that the loss in
energy savings is minimized. That is, limiting the motion of the utility control devices can
increase energy usage. In performing the reduction in control device motion, a Discrete
Ascent Optimal Programming search is used for selected control device types. That is, LTC
motion may be limited while not limiting motion of voltage regulators or switched capacitor
banks. Conversely, LTC and voltage regulator motion may be limited while not limiting
motion of switched capacitor banks. Or, motion of all utility control devices may be limited,
where the maximum number of moves of an LTC may be different than the maximum
number of moves of a voltage regulator, and likewise for switched capacitor banks.

For the 30 min forecast, CC updates control modes and voltage settings for inverters,
where the intent is to have the inverters control voltage variations due to significant renew-
able generation variations. When high renewable generation variations are anticipated, CC
changes the control modes of inverters from maximum real power generation (unity power
factor) to voltage control (volt-var curve), where the voltage control setpoints of inverters
located at different locations along the circuit take on different values.

In the absence of voltage stability and abnormality events, and for low levels of
renewable generation variability (e.g., less than 5% variability), CC seeks to maximize
energy savings. The desired voltage profile range is configurable, where the default desired
voltage range is the same at all points along the feeder. With PV generation present, the
voltage profile used to maximize energy savings varies from daytime to nighttime and may
vary throughout the day. Along with implementing CVR savings, this control maximizes
power production from inverters while controlling voltage. Furthermore, controlling to a
lower voltage profile will allow greater levels of PV generation to operate on the feeder.

If CC forecasts that high generation variations will result in utility control device
deadbands being exceeded, CC widens the utility device control deadbands during the
period of high variations. This widening of the deadbands reduces the motion of the utility
control devices.

For a transmission system voltage stability event, CC seeks to maximize reactive
power support for the transmission system by raising the voltage profile across the feeder
to a high voltage level. For an abnormality event where the cause of the abnormality is
not known, CC seeks to keep the voltage midway between high and low voltage limit
violations. If the cause of the abnormality is predicted and confirmed by the operator, then
CC can act to offset the cause. For instance, if a voltage regulator is identified as being failed
on its low voltage tap, then the power flow analysis sets the voltage regulator to failed on
the low voltage tap, and CC neglects the voltage regulator in control calculations. In this
case, CC can run in the maximum energy savings mode while the abnormality exists.

4. Abnormality Detection (AD) and Coordinated Control (CC) Studies

Three studies are presented in this section. The first study focuses on testing the
ability of AD to detect attacks on utility system infrastructure and PV inverters. The
second study evaluates the energy savings of CC over the existing control. The third
study evaluates the response of CC to a transmission system low voltage event while
simultaneous cyber-attacks are occurring on PV inverters. The third study incorporates
two physical inverters in hardware-in-the-simulation-loop experiments, and three types of
cyber-attacks are considered.

Figure 3 illustrates the ISM used in the studies here, consisting of a transmission
system and two distribution feeders. The transmission model has three voltage levels:
69 kV, 138 kV, and 230 kV. The total transmission load is approximately 1500 MW. There
are 37 three-phase loops in the transmission system model. Figure 4 shows one of the
feeder secondary circuits, along with a plot comparing AMI voltage measurements with
time-series, power flow results at a customer meter on that distribution secondary. The
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voltage plot shows a close match between actual, measured, time-series voltages, and those
calculated using power flow on a detailed grid model.
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The gray and pink distribution feeders shown in Figure 3 were selected based on the
following criteria:

• Multiple PV customers including at least one large PV generator (over 1 MW);
• Multiple voltage control devices;
• AMI meter measurements available on more than 95% of the customers;
• Information about the feeders is provided in Table 1.

Table 1. Information on distribution feeders shown in Figure 3.

Description Item Feeder 1 (Gray) Feeder 2 (Pink)

Substation Configuration 2 XFMR Open Bus Single Feeder 3 XFMR Bus Tie
Feeder Type Mixed Residential

Number of Customers 2040 1627
Primary Voltage 24.94 kV, Y-G 13.2 kV, Y-G
Feeder Length 143 miles 16.52 miles

Distance from Sub to Farthest Load 15.5 miles 3.79 miles
Peak Load 17.39 MVA 6.7 MVA

Minimum Daytime Load (SCADA) 2.85 MVA 1.4 MVA
Number of Distribution Transformers 1009 194

Connected KVA 54,780 16,836
Number of Capacitor Banks 5 1

Number of Voltage Regulator Banks 1 1
Total Active PV Generation (kW) 1908 3106

4.1. Study 1. Detection of Cyber-Attacks on Utility Equipment and Inverters

In evaluating the ability of AD to detect cyber-attacks on utility equipment and
inverters, 25 scenarios were selected based on a risk and impact analysis [26]. Scenarios
investigated attacks on DER and inverter controls, SCADA controls (e.g., switches, reclosers,
breakers), and meters (e.g., smart meters). These attack scenarios were injected into the Field
Emulator of Figure 1 by third-party attackers who could change any set of measurement
and/or control signals. The cyber-attack scenarios are grouped into three categories:
modify, block, and delay. Table 2 presents a sample of AD detection results covering the
three categories of cyber-attacks. Of the 25 scenarios, AD detected 22 attacks and partially
detected three attacks, giving a success rate of 88%, where partially detected cases are not
considered a success. In the partially detected cases, AD caught the major events, such
as customer loss of power, but failed to recognize subtleties, such as measurements being
delayed. For instance, the partially detected case shown in Table 2 resulted in all customers
on the feeder losing power. In this attack, the feeder MW flow from SCADA showed a zero
reading which reflected the event, so the AD program deemed the measurement valid but
did not recognize that the sample rate of the meter had been reduced.

Unlike missing measurements, manipulation of the measurement sampling rate was
difficult to detect. However, if changing the measurement sampling rate impacts con-
trol decisions that cause the performance of the system to deteriorate from the expected
performance, then AD can detect the presence of the abnormality.

In addition to the software simulations of cyber-attacks, two physical inverters were
connected in a hardware-in-the-simulation-loop (HIL) and used in cyber-attack testing.
The grid-tied Primo 3.8-1 Fronius and SB3.8-US SMA inverters were chosen for the lab
experiments. The HIL interconnection is illustrated in Figure 5. The two physical inverters,
driven by PV simulators, replaced two secondary circuit interfaced inverters on a secondary
circuit in the ISM.
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Table 2. Sample of Abnormality Detection Results.

Category Start Time End Time Device
Type/UID Manipulation Detected? Warning Messages Detection

Time

blocking

1 September
2020 15:30

1 September
2020 18:30

switch/recloser
A Status, open recloser Yes

inverter INV1 in feeder
1 offline (invert rating:

1584.0 kW)

1 September
2020 16:00

2 September
2020 17:30

2 September
2020 18:30

switch/recloser
B Status, open recloser Yes

Loss of power detected
on feeder 1, all

customers downstream
of recloser B

2 September
2020 18:00

delay

12
September
2020 12:00

12
September
2020 13:00

meter/M1,
switch/breaker

A

Status, sampling rate,
delay block amount,
coordinated attack
between a breaker

and its SACDA meter

Yes

Loss of power detected
on feeder 2, NO

POWER ON
ENTIRE FEEDER!!

Y feeder flow SCADA
measurement invalid!

12
September
2020 12:00

15
September
2020 13:00

15
September
2020 15:00

meter/M2,
switch/breaker

B

Status, SCADA meter
sampling rate Partial

Loss of power detected
on feeder 2, NO

POWER ON
ENTIRE FEEDER!!

Zero MW flow
measurement on feeder

Y

15
September
2020 13:00

modify

17
September
2020 13:00

17
September
2020 15:00

inverter/INV1 Status, power factor Yes
inverter INV1 in feeder
1 offline (invert rating:

1584.0 kW)

17
September
2020 13:00

18
September
2020 13:00

18
September
2020 15:00

inverter/INV2 Status, power factor Yes
inverter INV2 in feeder
1 offline (invert rating:

69.8 kW)

18
September
2020 13:00

Twenty-three HIL attack cases, attacking either both or one of the physical inverters,
were performed. These cases ranged from denial of service to intermittent power attacks
to modification of the inverter controller. The AD program successfully detected 21 of
the attacks. In the two undetected cases, one had a very small impact on the kW flow.
The other case was an intermittent attack where the inverter output cycled between 100%
and 5%. At the time when the inverter flow measurements were sampled, the inverter
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output happened to be near 100%, so the attack went undetected. When all 48 attacks are
considered, 25 attacks analyzed with simulation and 23 HIL attack experiments, AD had a
success rate of 89.6% in detecting attacks.

4.2. Study 2. Energy Savings with Coordinated Control

For the energy savings study, Feeder 1 of Table 1 was analyzed for each of the four
seasons. Using AMI load measurements and PV generation estimates, time-series power
flow analysis was run twice, first using the existing control strategy, and second with CC.
Table 3 presents results of the comparison.

Table 3. Seasonal and annual energy savings, carbon reduction, feeder savings, and per-customer
annual dollar savings comparisons of existing control with Coordinated Control for Feeder 1.

Time Period Energy Savings
with CC (%)

Energy Savings
with CC (GWh)

Carbon Reduction
with CC (US Tons)

Feeder Savings
with CC (USD)

Savings per
Customer (USD)

Winter 3.09 0.39 166 $41,228 20.21
Spring 4.63 0.57 242 $60,155 29.49

Summer 2.60 0.37 157 $39,051 19.14
Fall 3.42 0.425 181 $44,982 22.02

Annual 3.43 1.76 746 $185,416 90.86

For calculating carbon reduction, an average carbon emission of 0.85 pounds per kWh
was assumed. For calculating the per-customer dollar savings shown in Table 3, an average
retail cost of electricity of 10.46 cents per kWh was used [27].

From Table 3, the economic benefits of coordinated control are seen to have the
highest percentage of energy savings during Spring and Fall, 4.63% and 3.42%, respectively.
Relatively lighter loading, leading to higher bellwether voltages and subsequently greater
room to lower feeder voltages, can explain this observation. Summer and winter, with
heavier feeder loading, are observed to have lower percentage energy savings, 2.6% and
3.1%, respectively. Table 3 shows that the total annual savings predicted for Feeder 1 is
$185,416, where the annual savings for each customer is $90.86. It should be noted that
there are other value streams not considered here, such as savings to the utility at peak due
to high generation costs.

CC was also compared with the existing control for high PV variability and storm
scenarios. To simulate high PV variability and storm conditions, clear sky, summer day, PV
generation conditions were altered. For ‘high PV variability’, twenty dips in PV generation,
going from 100% of measured generation to 10% and back to 100%, were created uniformly
across two hours from 3 to 5 pm. For the storm simulation, clear sky PV generation was
used for the first hour from noon to 1 pm, followed by PV generation being lowered to
20% of the rating of each PV generator for the next two hours. Table 4 summarizes the
energy savings comparison between the existing control and CC. As seen from Table 4, CC
still yields energy savings.

Table 4. Energy savings comparison of existing control with Coordinated Control for high PV
variability and storm scenarios for Feeder 1.

Test Case Existing Control kWh CC kWh Energy Savings (%)

High PV Variability (3–5 p.m.) 24,447.38 23,990.38 1.87
Storm (Noon–3 p.m.) 44,225.36 42,859.45 3.09

In the energy savings analysis presented here, the number of controllers, the size of the
controllers, and the locations of the controllers were not designed for optimum operations
over the time-varying load and generation. Thus, the improvements shown with CC here
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are suboptimal [24,28]. Previous work has indicated that energy savings may be doubled
by redesigning the feeder control devices for optimal performance [28].

4.3. Study 3. CC Response to Transmission System Low Voltage with Cyber Attacks on PV
Inverters Employing Hardware-in-the-Simulation-Loop

In this study, a transmission system low voltage event is evaluated while simulta-
neously cyber-attacks are occurring on PV inverters, where two physical inverters are
used in hardware-in-the-simulation-loop experiments. First, the performance of CC is
considered without cyber-attacks, and then the performance of AD is considered for three
different cyber-attacks.

Between the hours of 13:00 and 15:00 in the afternoon, the transmission system voltage
falls by approximately 10% of its nominal level. In response to the low voltage, CC switches
to stability mode, controlling for a desired high feeder voltage profile of 123.5 volts, and
the control mode of all PV inverters is switched from unity power factor to volt-var control
for supporting the feeder and transmission system voltage. An example volt-var control
curve used for the inverter control is shown in Figure 6. Note that for the given inverter of
Figure 6, the volt-var control center point voltage is in per unit (i.e., 1.07 per unit for voltage
event in Figure 6), being determined from an optimal power flow solution. The volt-var
control curve used for a specific inverter depends upon where the inverter is located along
the feeder. In comparing the performance of CC with the existing control, CC caused
3.4 times more reactive power to be injected into the transmission system than the existing
control, providing support to the transmission system voltage.
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Figure 6. Example inverter control curve used during transmission system voltage event.

Employing the same transmission low voltage event (i.e., 11.6% voltage drop from
13:00 to 15:00), three types of cyber-attacks on the inverters were evaluated, where each
attack targeted different inverter control variables—a real power attack, a reactive power
(power factor) attack, and a standby mode attack. Details of the three cyber-attacks are
provided in Table 5.

The intermittent real power attack was launched at the beginning of the transmission
system voltage event. Due to the transmission system voltage event, at the start of the
attack, the inverters are set to volt-var control. From Figure 7, it may be seen that the real
power measurement generally trailed the expected inverter output, except at the time of
attack (13:00). However, the reactive power measurements were exactly as expected; thus,
the inverter was still able to provide voltage support during this attack.
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Table 5. Low Voltage Grid Cyber-Attack Case Descriptions.

Case Name Description Start Time End Time

Intermittent real power attack
Change the maximum power

output from 100–5–100% with 1-s
interval (60 cycles, 1 min)

25 August 2020 13:00 25 August 2020 13:59

Intermittent reactive attack
Change power factor excitation
from under-over-under excited

with 3-s interval (30 cycles, 1.5 min)
26 August 2020 13:00 26 August 2020 13:59

Standby mode attack Disconnect inverter from the grid 27 August 2020 14:00 27 August 2020 14:59
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Figure 7. With low voltage grid from 13:00 to 15:00, inverter expected kW (blue), measured kW
(orange), expected kVAR (grey), and measured kVAR (yellow) flows for intermittent real power
attack on inverters, where expected and measured kVAR values are the same.

As explained in Section 3.2, the expected inverter real power output (used by AD as a
comparison reference) is from the PV generation forecast. The kW flow measurement is read
from the inverters. The physical inverters are powered by a PV simulation instead of actual
PV panels, and the PV simulator output is driven by a set of predefined PV measurements.
To create more realistic variations in the PV outputs, some noise was masked onto the
predefined PV measurements, and the noise-modified PV measurement fed to AD as the
expected PV generation. This kind of measurement masking was used in all cyber-attack
cases to train AD to recognize cyber-attack signatures among noise. Therefore, the expected
and measured kW flows shown in Figure 7 and in Figures 8 and 9 (to be considered below)
do not match, even at the time points when there is no attack.

The intermittent reactive power factor attack resulted in the inverter acting against the
expected control (i.e., absorbing vars instead of injecting vars) during the time of attack.
Figure 8 shows that the attack only affected the reactive power and did not change the
real power significantly. The absorbing of reactive power by the inverters drew the feeder
voltage further down when the feeder voltage was already low.

Via the inverter modbus control, a hacker can remotely switch a smart inverter into
standby mode. This would be a cyber-attack where a hacker breaches the modbus com-
munications. If the PV inverter is operating under CC, the attack can be detected from the
abnormal inverter measurements. Figure 9 shows that both the measured real and reactive
power flows dropped to zero when the attack happened, and that they are drastically
different than the expected real and reactive power outputs.

In summary, the AD program was able to detect all three cyber-attacks during the low
voltage grid condition. Except for the attack on real power output, CC lost inverter voltage
control capability. During the low voltage event, the attack on the reactive power control
may be argued to be the worst, since the attack resulted in the feeder absorbing vars from
the transmission system.
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5. Conclusions

In reaching for more clean and distributed energy, the electric grid is becoming more
complex. Complexity is managed with models, especially in situations never experienced
before. In an energy-independent grid, the number of generators and storage devices
is going to be orders of magnitude larger than today. The models used to manage the
increased complexity will also be orders of magnitude larger than the models used today.
The ISM-based work presented here is a step toward this future.

The real-time ISM software architecture, based on event-driven microservices and
time synchronization of diverse measurement streams, provides extensibility. With this
architecture, new abnormality detection modules can be added without touching existing
code. Likewise, new control modules for mitigating abnormalities can be added while
maintaining the existing control modules, such as coordinated control.

The Abnormality Detection is a last-ditch effort in defending against cyber-attacks,
physical attacks, failed infrastructure, and unknown system operations that significantly
affect operations. For the 51 cases considered, AD had an overall success rate of 90.2%.

To mitigate equipment failures and attacks, to coordinate transmission and distribu-
tion system control, to optimize energy usage, and to provide for the highest levels of
renewable penetration that can be achieved, a multi-mode control strategy is needed. With
Coordinated Control, voltages are controlled to agree with the results of an optimum power
flow solution. Comparisons of Coordinated Control with an existing control have been
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presented for seasonal energy savings, storm energy savings, high PV variability energy
savings, and distribution system support of transmission system voltage. Other control
modes described include abnormalities and confirmed abnormalities.

The test results presented here predict that the ISM-centric, real-time software can
improve grid situational awareness, help discover and mitigate abnormal operations,
reduce costs, and improve voltage stability margins. The ISM real-time software is to be
field tested at a U.S. utility. One area of improvement identified by the authors includes
using cloud technology to run grid simulations at scale, in a performant and cost-effective
manner. Another area of further improvement includes using data to automate the build
and near-real-time tuning of grid models to enhance model accuracy.
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