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Abstract: Industrial oil and gas eruptions underwater have been found in the pyroclastic rocks
of the Huoshiling Formation in the continental lacustrine basin of the Changling fault depression,
Songliao Basin. This paper investigates the reservoir space characteristics, physical characteristics,
and pore structure differences of subaqueous pyroclastic reservoirs in the Huoshiling Formation,
and the causes of physical property differences of different types of reservoirs and their formation
and evolution processes are analyzed. (1) The content of volcanic glass in tuff is higher, the reservoir
space is dominated by devitrification pores and dissolution pores, and the coarser the grain size, the
more favorable the physical properties, with larger pore sizes and higher porosities. The content of
clay minerals in sedimentary tuff is high, the pores between clay minerals are the main pores, and the
physical properties of sedimentary tuff are poor. The content of soluble components such as feldspar,
debris, and laumontite is high in tuffaceous sandstone, which is dominated by dissolution pores.
(2) Primary pores are not developed in the pyroclastic reservoirs in the study area, and the reservoirs
are relatively dense, with an average porosity of 2.43% and an average permeability of 0.076 mD.
The coarse-grained tuff has the highest porosity, followed by tuffaceous sandstone and fine-grained
tuff, and the sedimentary tuff has the least favorable physical properties. (3) Devitrification was
an important cause of the high-porosity and ultralow permeability of tuff reservoirs. Two oil and
gas charges in the middle diagenetic stage led to the organic acid dissolution of rocks. In addition,
fractures can provide migration channels for organic acids and deep hydrothermal fluids, leading
to late dissolution, and can connect various scattered dissolution pores to improve the effectiveness
of the reservoir space. (4) Coarse-grained tuff reservoirs that developed in the proximal facies are
favorable targets for hydrocarbon exploration.

Keywords: Songliao Basin; Changling fault depression; continental lacustrine basin; subaqueous
eruption; pyroclastic rock reservoir; reservoir development pattern

1. Introduction

A gas reservoir was found in volcanic rocks of the Huoshiling Formation in the Cha-
ganhua subsag, Changling fault depression, Songliao Basin. The reservoir was developed in
the volcanic edifice of a tuff cone formed by subaqueous eruption in a continental lacustrine
basin. The pyroclastic reservoir in the study area yielded high industrial gas production,
with an average of 6.52 × 104 m3 of gas per day from a single well during test production,
proving that this subaqueous pyroclastic reservoir is promising for exploration and de-
velopment. Physical tests show that the average porosity of the subaqueous pyroclastic
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rocks in the study area is 2.43%, corresponding to a low-porosity and ultralow-permeability
reservoir. Therefore, there is an urgent need to characterize the micropores developed in
different lithological reservoirs to explore the development pattern of the reservoir. There
are few studies on subaqueous pyroclastic rock reservoirs formed by underwater eruptions
worldwide, and the differences in the reservoir spaces of different lithologies have not been
systematically studied.

Approximately 85% of global volcanic activity occurs underwater [1,2], but direct ob-
servation of modern explosive underwater volcanic eruptions is difficult due to the abrupt
and unpredictable nature of their occurrence, and thus, they are less understood [3–5].
Underwater explosive eruptions [6] form mainly pyroclastic rocks [7–13]. The eruptive se-
quences of modern underwater eruptions and the interaction between eruptions and water
have been studied in detail by previous authors, White [14], Mueller [15], and Kano [16], in
their studies of modern subaqueous pyroclastic rock, suggesting that underwater eruptions
in shallow water environments mainly produce explosive eruptions, while in deep water,
overflow eruptions predominate due to the influence of considerable water pressures. Oil
and gas exploration and development have been carried out in several tuff reservoirs, such
as the Georgia Samgori field [17], the Jatibarang field [18] in NW Java Basin, Indonesia; the
Yoshii–Dongbaisaki gas field [19] in Japan; and the Kora Volcano [20] in Taranaki Basin,
New Zealand. The reservoir spaces in tuff reservoirs are mainly secondary pores, which
are mainly at the micrometer–nano scale. There has also been some research on ancient
subaqueous eruption volcanoes in continental lacustrine basins in China, and subaque-
ous eruption-produced volcanic clasts have been found in the Yingcheng Formation of
the Songliao Basin [21–23], the carboniferous strata of the Santanghu Basin [24–26], the
carboniferous strata of the Junggar Basin [27,28], and Permian volcanic rocks in Southwest
Sichuan [29,30] in China. Previous studies on subaqueous pyroclastic rocks have mainly
focused on discerning the cause of volcanic eruptive sedimentary palaeogeography by
volcanic elemental geochemical methods [31–38]. Huang [39] and Tang [40] found that
subaqueous pyroclastic reservoirs have unique characteristics, including the changing
relationship between rock properties and petrographic zones, structural configuration,
alteration features, and pore and seam development characteristics. The microstructure of
subaqueous pyroclastic reservoirs in continental lacustrine basins and their formation and
evolution have not yet been systematically studied.

Insufficient understanding of the pore structure of subaqueous pyroclastic reservoirs
and the main control factors of the reservoirs has restricted the expansion of the exploration
area and the breakthrough of hydrocarbon reserves in the study area. To further clarify
the characteristics of volcanic rocks and reservoir control factors of underwater eruptions,
the pyroclastic rocks of the Huoshiling Formation in the Chaganhua subsag, Changling
fault depression, southern Songliao Basin, are studied in this paper. Based on drilling cores,
logging and seismic data, and systematic reservoir experimental analysis, the reservoir
types and reservoir microscopic characteristics of different lithologies are studied in relation
to the spreading of reservoirs and phase zones to explore the control of the underwater
eruption environment on the development of high-quality reservoirs of volcaniclastic rocks,
to study the process of reservoir formation and evolution, and to explore the pattern of
reservoir spatial development. This study can provide a theoretical basis for later research,
exploration, and development of subaqueous pyroclastic rock and provide a reference for
the study of tuff reservoirs in other similar areas.

2. Geological Setting

The Songliao Basin is located in northeastern China and is developed on top of the
Garridon-Haixi phase fold belt between the southern margin of the Siberian plate and the
northern margin of the North China plate [41] and is a hydrocarbon-bearing basin with a
double-layered structure of a Middle to Late Jurassic–Early Cretaceous fault and an Early
Cretaceous depression [42]. During the Late Jurassic–Early Cretaceous, the Palaeo–Pacific
plate subducted towards the NE land mass, producing NW–SE-oriented tensioning and
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forming numerous fault traps, which extended mostly in the NNE and NW directions [43].
The Changling fault depression is located in the southwestern part of the central depression
zone of the Songliao Basin, with a distribution area of approximately 7240 km2, which is
the largest depression in the southern part of the Songliao Basin [43,44]. The Changling
Depression can be divided into three secondary tectonic units: the Central Depression Zone,
the Western Steep Slope Zone, and the Eastern Gently Sloping Zone [45] (Figure 1a,b). The
Lower Cretaceous Huoshiling Formation (K1h), Shahezi Formation (K1sh), and Yingcheng
Formation (K1yc) were mainly developed during the faulting period of the Changling fault
depression, which is characterized by sedimentary filling, simultaneous superposition of
multiple eruptions of volcanic rocks, and late modification [46] (Figure 2).
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Figure 1. (a) Location map of the Songliao Basin; (b) map of the study area, Changling fault depression
in the Songliao Basin, modified after Chang et al. (2017) [46]; (c) Wells in the Chaganhua area;
(d) Typical geological section through C301 and adjacent areas (for the location of the section, see (c)).
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are from Chang et al. (2017) [46] and Liu et al. (2022) [47]. 
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ing Formation, Shahezi Formation, and Yingcheng Formation in the area basically distrib-
uted along its western depression-controlling fracture [48]. The Chaganhua subsag has 
undergone a transformation from fault to depression, with the Huoshiling stage being the 
initial tensional faulting stage and the basement fractures being more developed (Figure 
1d). The deposition process was accompanied by strong activity of controlling trap faults, 
which formed massive volcanic rocks; at the end of the deposition of the Huoshiling For-
mation, the study area was extensively uplifted and denuded, forming regional 

Figure 2. Stratigraphic column for the study area, modified after Wang et al. (2016) [41]. The ages are
from Chang et al. (2017) [46] and Liu et al. (2022) [47].

The study area is the Chaganhua subsag, which is located in the eastern gentle slope
zone of the Changling fault depression, with a near north-south strike, and the Huoshiling
Formation, Shahezi Formation, and Yingcheng Formation in the area basically distributed
along its western depression-controlling fracture [48]. The Chaganhua subsag has under-
gone a transformation from fault to depression, with the Huoshiling stage being the initial
tensional faulting stage and the basement fractures being more developed (Figure 1d). The
deposition process was accompanied by strong activity of controlling trap faults, which
formed massive volcanic rocks; at the end of the deposition of the Huoshiling Formation,
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the study area was extensively uplifted and denuded, forming regional unconformities [49].
Intense tectonic movement and multiple phases of volcanic eruptions during the Hu-
oshiling period resulted in frequent alternations of volcanic and sedimentary activity in the
study area [41]. The Chaganhua subsag has a complex volcanic eruption environment, with
the submerged eruption zone located in a depression zone (Figure 1c). The Chaganhua
subsag is one of the hydrocarbon source areas of the Changling fault depression, where the
volcanic rocks and hydrocarbon source rocks are directly aligned, which is conducive to
hydrocarbon formation [50]. In recent years, a major breakthrough has been made in the
exploration of deep gas in the Chaganhua subsag of the Changling fault depression, with
exploratory wells C2, C2-1, C3, and C301 obtaining high-yielding industrial gas flows in
the volcanic rocks of the Huoshiling Formation, thus revealing the rich resource type and
considerable exploration potential of the rifting strata.

3. Samples and Experimental Methods
3.1. Samples

To study the petrology and physical characteristics of underwater eruptive pyroclastic
reservoirs, 86 core plunger samples were collected from seven wells in the Huoshiling
Formation of the Chaganhua subsag for porosity and permeability testing, and another
76 samples were selected for X-ray diffraction analysis of mineral composition.

In this study, the surface ratios of 65 casting thin sections and 24 SEM samples were
calculated by the percentage of the pore area to the total area of the field of observation;
then, pore types were distinguished; and finally, the main pore size distributions of different
types of pores were calculated. Eight core samples were selected for high-pressure mercury
injection, and nitrogen adsorption to analyze the pore structure of the pyroclastic reservoir
in the study area.

3.2. Experimental Methods
3.2.1. Mercury Intrusion Porosimetry (MIP)

Corelab CMS300 and AutoPore IV 9500 mercury injection instruments were used. The
samples were dried to constant weight at 105 ◦C before the test. The mercury injection ex-
periment included mercury injection under pressure and mercury removal under pressure.
The maximum experimental pressure was 200 MPa. The test was conducted according to
the national standards of China: GB/T 29172-2012 [51] and GB/T 29171-2012 [52]. A high
pressure mercury injection test was used to obtain the pore size distribution and structural
parameters of the sample, and the pore structure parameters were calculated according
to Washburn formula, i.e., pc =

2σcosθ
r , where the interfacial tension σ and wetting angle θ

were set to 0.48 J/m2 and 140◦ [53].

3.2.2. Low-Temperature Nitrogen Adsorption (LTNA)

In accordance with GB/T 19587-2017 [54] and GB/T 21650.3-2011 [55], the fully au-
tomatic gas adsorption instrument ASAP 2460 was used to test the specific surface area
and pore size structure of the samples after heating at 90 ◦C for 1 h and 110 ◦C for 10 h.
The test method was the isothermal physical adsorption static volume method. The min-
imum distinguishable nitrogen relative pressure (P/P0, where P0 is nitrogen saturated
vapor pressure at a liquid nitrogen temperature of 77.35 K), was 2.60 × 10−7, and the
measurable specific surface area is no less than 0.5 × 10−3 m3/g. The pore size of nitrogen
adsorption can be measured in the range of (3.5~5000) × 10−4 nm. Only the adsorption
and desorption curves of low-temperature nitrogen adsorption data were measured, while
other parameters were calculated by the model. The specific surface area was calculated
using the BET (Brunauer, Emmett Teller) multimolecular layer adsorption formula [56].
The isothermal adsorption data with relative pressure (P/P0) between 0.05 and 0.35 were
analyzed to obtain the nitrogen monomolecular layer saturation adsorption capacity, and
then the specific surface area was calculated.
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3.2.3. X-ray Diffraction (XRD)

X-ray diffraction (XRD) is an important technique to analyze the mineral components
of rocks; the X-ray diffraction device was an Ultima IV X-ray diffractometer. According
to SY/T 5163-2018 [57], the total rock and clay mineral percentages of the rock samples
were calculated [58]. The study of the mineral composition, content, and combined char-
acteristics of pyroclastic rocks can provide a basis for the genetic research, quantitative
characterization, and evolution of the microcosmic reservoir space of pyroclastic rocks.

3.2.4. Analysis and Calculation of Surface Porosity

Using ImajeJ software, 65 cast thin section photographs and 24 SEM photographs
with different lithology were selected for surface porosity analysis. First, the volcanic
rock fractures in the photographs were calibrated to determine the types, lengths, widths,
and fillings of the fractures. The fracture surface density and linear density values were
obtained through software calculation. Then, the fractures were filled according to the grey
level to obtain the fracture face rate value, and the pores were directly filled with colorgrey.
The number of particles, cumulative frequency curve, frequency curve, normal cumulative
curve, and surface porosity were obtained.

4. Lithological Characteristics

The pyroclastic rocks of the Chaganhua subsag are of shallow water magmatic ejecta
origin, with strong explosions resulting in fine-grained volcanic clasts in the study area,
lacking volcanic breccias and volcanic agglomerates, and developing three types of rocks:
tuffs, sedimentary tuffs, and tuffaceous sandstones (The identification of subaqueous
pyroclastic rocks is described in another article). Table 1 shows that the volcanic samples
consist of larger quantities of quartz, feldspar, and clay minerals and small quantities of
calcite, dolomite, pyrite, and siderite minerals. The XRD analysis shows that the clay
minerals are mostly chlorite, illite, kaolinite, and mixed-layer illite/smectite (Table 2).
The tuff volcanic debris contains approximately 60% quartz and feldspar crystals, with
arc-shaped or chicken-bone shaped vitric fragments (Figure 3m), andesite debris, dacite
debris, and flint debris (Figure 3n,p). A high degree of matrix devitrification has resulted in
aggregates of cryptocrystalline felsic minerals (Figure 3i,k,l). The clay mineral content of the
tuff averages 20.87% (Figure 4). The core of the sedimentary tuff is grey-black, and bedding
developed due to its transport and sedimentation in water (Figure 3b). Well-rounded
terrigenous clastic sedimentary material and pelitic strips (Figure 3o) are visible under the
microscope. The sedimentary tuff has a much higher average clay mineral content of over
32% (Figure 4), with terrigenous clay minerals present, in addition to those produced by tuff
alteration (Figure 3o). The tuffaceous sandstone was formed during the interval between
subaqueous volcanic eruptions and is often interbedded with sedimentary tuff (Figure 3b).
The tuffaceous sandstone contains less than 50% volcaniclastic material (Figure 4), and the
volcaniclastic composition is dominated by fragments, with less detritus and volcanic ash.
The clastic particles are well rounded (Figure 3h,p). The fractures in the rock are mainly
low-angle tensile fractures (Figure 3a,b,d,g), with few shear fractures (Figure 3e) and high-
angle fractures (Figure 3f). Multiple stages of fracture development are evidenced in the
thin sections, and some fractures are filled with calcite and other minerals (Figure 3j–l).
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Table 1. Lithology and content of mineral components measured by XRD.

Lithology Well Depth (m)

Content from XRD (%)

Clay Laumontite Anhydrite Analcite Quartz K-
Feldspar Plagioclase Calcite Dolomite Siderite Pyrite

Tuff

C2 4416.50 2.3 44.3 1.9 50.7 0.4 0.4
C2 4417.70 3.3 43.1 1.7 50.5 1.4
C2 4418.00 4.3 47.3 47.4 1
C2 4418.30 3.1 48.4 2.3 45.3 0.9
C2 4419.30 29.8 28.8 4.1 31.2 1.8 1.8 2.5
C2 4419.50 10 59.9 1.3 24 4.8
C2 4423.05 95.2 1.9 2.9
C2 4568.60 13.9 0.6 41.8 3.3 36 4 0.4

C2-1 4668.10 11.6 39.5 7.2 39.8 0.3 1.6
C2-1 4668.45 12.5 35.1 10.8 39.2 0.3 2.1
C3 4527.13 13.8 0.8 36.8 3.5 40.6 2.6 1.5 0.4
C3 4527.82 12.4 13.8 6.5 49.4 16.6 0.8 0.5
C3 4529.00 5.1 1.2 42.8 4.8 41.7 2.4 1.5 0.5
C3 4625.80 26.6 0.8 17.8 10.8 35.6 0.3 5.9 1.2 1.0
C3 4624.80 5.7 37.1 7.9 26.1 21.0 2.2
C3 4626.50 7.7 50.7 7.4 30.7 3.5
C3 4916.00 10.8 12.7 20.1 7.2 42.3 3.5 2.1 0.8 0.5
C3 4918.60 11.7 1.1 16.2 6.2 55.4 7.5 1.5 0.4
C3 4915.35 7.8 25 0.8 19.9 3.6 41.6 1.3
YS3 4161.64 11.3 6.4 1 0.3 27.2 6.1 45.1 2.2 0.4
YS3 4162.97 16.6 12.3 0.6 49.6 6 9.4 1.5 3.6 0.4
YS3 4325.00 6.2 29.4 35.6 5.2 20.2 1.3 2.1
YS3 4327.58 6 1.1 0.3 39.1 5.9 40.5 5.5 1.6

C301 3971.07 25 0.4 55.7 4.4 12.5 2
C301 3971.37 20.3 19.2 4.4 55 0.7 0.4
C301 3973.77 21.6 1 51.8 2.7 19.5 0.3 2 1.1
C301 3974.17 16.1 61.5 4.9 15.5 2
C301 3979.67 19.9 54.8 5.0 17.5 2.8
C301 4038.35 29.7 39.5 7.8 22.6 0.4
C301 4039.28 23.4 61.6 3.2 10.8 1
C301 4042.72 20.6 61.6 3.2 12.3 2.3
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Table 1. Cont.

Lithology Well Depth (m)

Content from XRD (%)

Clay Laumontite Anhydrite Analcite Quartz K-
Feldspar Plagioclase Calcite Dolomite Siderite Pyrite

Tuff

C301 4045.06 16.9 46.7 10.6 25.4 0.4
C301 4047.58 7.2 14.2 20.9 7.7 49.2 0.2 0.6
C301 4083.45 10.5 0.8 51.5 5.1 28.6 0.3 3.2
C301 4084.18 13.8 0.4 51.7 6.5 27.6
C301 4431.60 14.3 36.1 8.8 40.8

Sedimentary
tuff

C2 4413.35 65.2 6.4 2.6 25.4 0.4
C2 4568.22 52.5 0.7 24.9 3.7 16.8 0.3 0.7 0.4
C2 4568.92 41 9.3 3.7 5.6 38.6 1 0.8
C2 4779.16 26.1 50.4 7.0 16.5

C2-1 4543.40 24.5 0.6 48.2 7.0 16.2 2.3 1.2
C2-1 4546.68 32.5 26.7 5.0 27.5 6.9 0.6 0.8
C2-3 4220.70 54.9 6.4 6.4 18.1 14.2
C2-3 4224.10 53.6 7.1 6.5 17.2 15.6
C2-3 4272.10 68.3 13.1 5.8 9.1 2.8 0.9
C2-3 4273.40 38.1 0.8 33.4 1.6 25.6 0.2 0.3
C2-3 4274.52 25.2 49.9 11.4 8.8 4.7
C3 4528.62 12 1 33.3 7.9 44.6 0.3 0.3 0.6
YS3 4024.81 19.9 55.6 5.7 17.4 0.9 0.5

C301 3964.05 47.4 21.6 8.1 22.3 0.6
C301 3964.77 36.2 48.7 3.7 8.9 0.4 2.1
C301 3964.97 25.5 60.3 6.2 5.7 2.3
C301 3965.31 60.5 0.4 25.6 3.9 7.1 2.5
C301 3966.4 59.6 27.4 3.4 6.5 1 2.1
C301 3967.07 40.7 43.0 3.7 8.7 1.4 2.5
C301 3967.33 52.3 1.4 0.4 27.9 4.7 10.6 2.7
C301 3967.5 35.4 45.9 9.0 7.4 2.3
C301 3972.17 29.9 42.6 7.8 17.9 1.8
C301 3972.84 14.9 39.1 6.2 38.5 1.3
C301 3973.52 18.1 43.9 5.7 27.7 4.6
C301 3974.52 23.5 0.4 34.5 12.6 24.7 4.3
C301 3975.1 12.9 51.9 14.7 19.6 0.9
C301 3975.5 26.3 1.9 50.1 6.6 11.6 3.5
C301 3976.33 14.2 0.7 0.4 44.7 10.7 26.9 1.8 0.6
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Table 1. Cont.

Lithology Well Depth (m)

Content from XRD (%)

Clay Laumontite Anhydrite Analcite Quartz K-
Feldspar Plagioclase Calcite Dolomite Siderite Pyrite

Sedimentary
tuff

C301 3976.83 13.7 61 11.7 12.6 0.3 0.7
C301 3978.07 24.3 48.6 4.3 19.7 3.1
C301 4036.55 30.4 42 5.3 18.9 3.4
C301 4039.78 18.5 57.6 13.1 7.6 0.3 2.9
C301 4041.58 22.3 54.7 5.3 13.9 0.5 2.8 0.5
C301 4157.7 22 0.4 63.1 7.5 3.7 3.3
C301 4159.27 18.2 1.1 57.2 13.8 8.2 1.5
C301 4429.6 41.1 1.5 26.2 3.0 24.1 0.8 2.6 0.7

Tuffaceous
sanfstone

C301 4043.12 18.6 1.2 59.2 5.3 12 3.2 0.5
C301 4047.85 5.5 5.6 33.4 1.0 47.4 0.6 6.5
C301 4086.54 4.0 0.9 26.5 1.5 53.9 12.9 0.3
C301 4086.7 4.8 1.0 1.5 22.9 3.6 63.4 2.1 0.7
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Table 2. Lithology and content of clay minerals components measured by XRD.

Lithology Well Depth (m)
Relative Content of Clay (%) Mixed-Layer Ratio

(S%)

K C I I/S I/S

Tuff

C2 4417.70 20.2 57.8 14.4 7.6 10
C2 4418.00 12 49.7 31.7 6.6 10
C2 4418.30 19.5 43.4 27.2 9.9 10
C2 4419.30 12.6 40.4 33.8 13.2 10
C2 4419.50 4.5 9.1 64.8 21.6 10
C2 4423.05 1.3 2.1 72.2 24.4 10

C2-1 4668.45 3.3 10.4 68.2 18.1 10
C3 4527.13 17.4 45.8 31.5 5.3 10
C3 4527.82 27.3 33.6 25.2 13.9 10
C3 4529.00 16.8 41.8 33.2 8.2 10
C3 4625.80 3.2 16.5 70.7 9.6 10
C3 4624.80 5.4 11.3 65.5 17.8 10
C3 4626.50 6.7 22.4 50.5 20.4 10
C3 4918.60 21.8 57.1 14 7.1 10
C3 4915.35 18.3 45.2 24.3 12.2 10
YS3 4161.64 17.3 48.9 24.1 9.7 10
YS3 4162.97 13.8 33.5 37 15.7 10
YS3 4325.00 12.6 74.5 8.6 4.3 10
YS3 4327.58 5.2 53 26.7 15.1 10

C301 3971.07 12.2 13.7 49.2 24.9 10
C301 3971.37 9.9 48.4 26.9 14.8 10
C301 3973.77 14.6 25.5 42.4 17.5 10
C301 3974.17 17.2 16.2 51.5 15.1 10
C301 3979.67 6.8 20.9 52.9 19.4 10
C301 4038.35 13.8 61.5 17.8 6.9 10
C301 4039.28 5.4 27 52.8 14.8 10
C301 4042.72 10 25.6 42.9 21.5 10
C301 4045.06 17.2 34.5 27.8 20.5 10
C301 4047.58 11.1 28.4 42.2 18.3 10
C301 4083.45 17 31.6 33.4 18 10
C301 4084.18 17.5 41.2 28.4 12.9 10
C301 4431.60 18 54.7 19.7 7.6 10

Sedimentary
tuff

C2 4413.35 2.8 10.6 69.2 17.4 10
C2 4568.22 3.1 10.9 63.8 22.2 10
C2 4568.92 0.3 0.5 61.4 37.8 15
C2 4779.16 6.2 15.4 60.7 17.7 10

C2-1 4543.40 12.4 43.4 33 11.2 10
C2-1 4546.68 12 31.7 39.6 16.7 10
C2-3 4220.70 12.5 32.8 39.8 14.9 10
C2-3 4224.10 11.9 31.2 34.8 22.1 10
C2-3 4272.10 2 5.4 68.3 24.3 10
C2-3 4273.40 20.7 63.8 10.2 5.3 10
C2-3 4274.52 2.3 5.7 71.8 20.2 10
C3 4528.62 16.1 56.4 19.4 8.1 10
YS3 4024.81 12.3 29.2 31.6 26.9 15

C301 3964.05 4 28.6 35.7 31.7 15
C301 3964.77 5.3 14.9 46.4 33.4 15
C301 3964.97 8.1 31.8 36.5 23.6 15
C301 3965.31 9.2 42.1 26 22.7 15
C301 3966.4 3.8 4.9 53.2 38.1 15
C301 3967.07 8.3 28.4 33.1 30.2 15
C301 3967.33 5.5 7.5 51.4 35.6 15
C301 3967.5 4 13.1 67.5 15.4 10
C301 3972.17 14.6 59.2 17.4 8.8 10
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Table 2. Cont.

Lithology Well Depth (m)
Relative Content of Clay (%) Mixed-Layer Ratio

(S%)

K C I I/S I/S

Sedimentary
tuff

C301 3972.84 12.1 58.7 17.2 12 10
C301 3973.52 11.7 23.9 45.6 18.8 10
C301 3974.52 7.4 27.5 46.5 18.6 10
C301 3975.1 11.2 26.3 45.8 16.7 10
C301 3975.5 9.1 15.6 57.5 17.8 10
C301 3976.33 4.7 22.2 55.4 17.7 10
C301 3976.83 8.9 28.2 43.3 19.6 10
C301 3978.07 8.5 27.2 43.9 20.4 10
C301 4036.55 20.9 43.3 24.8 11 10
C301 4039.78 14.1 47.2 20.5 18.2 10
C301 4041.58 1.6 5 76 17.4 10
C301 4157.7 15 28.9 33.9 22.2 15
C301 4159.27 9 20.1 41.3 29.6 15
C301 4429.6 11.9 25.1 31.7 31.3 15

Tuffaceous
sanfstone

C301 4043.12 11.6 33.5 36.8 18.1 10
C301 4047.85 15.2 60.3 20.4 4.1 10
C301 4086.54 11.3 68.6 14.1 6 10
C301 4086.7 9.7 62.7 18.9 8.7 10

Abbreviation: K = Kaolinite, C = Chlorite, I = Illite, I/S = Mixed-layer illite/smectite.
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with siliceous minerals, Well C2, 4417.70 m; (b) Fine-grained crystalline tuff, bedding, low-angle
fracture, Well C301, 4035.60 m; (c) Coarse-grained crystalline vitric tuff, accretionary lapilli, Well
C3, 4627.90 m; (d) Coarse-grained detritus crystalline tuff, low-angle fracture, Well C2, 4417.70 m;
(e) Tuffaceous sandstone, shear fracture, Well C301, 4047.00 m; (f) Fine-grained crystalline tuff, high-
angle fracture, Well C2, 4563.10 m; (g) Sedimentary tuff, accretionary lapilli, fractures filled with
calcite, Well C2-1, 4542.20 m; (h) Tuffaceous sandstone, Well C3, 4526.33 m; (i) Fine-grained crys-
talline tuff, Well C2, 4422.12 m; (j) Coarse-grained crystalline tuff, fractured Well C2, 4781.80 m;
(k) Fine-grained crystalline tuff, accretionary lapilli, two-stage fractures filled with calcite, Well C3,
4627.90 m; (l) Sedimentary tuff, two-stage fractures filled with calcite and siliceous minerals, Well
C2-3, 4226.35 m; (m) Coarse-grained crystal vitric tuff, Well C3, 4624.80 m; (n) Coarse-grained detritus
crystalline tuff, Well C2, 4417.70 m; (o) Sedimentary tuff, pelitic strips, Well C2, 4778.3 m; (p) Tuffa-
ceous sandstone, calcite cement, Well C3, 4526.3 m. Qtz = quartz, Kfs = K-feldspar, Pl = plagioclase.
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5. Reservoir Characteristics

Based on the core descriptions and cast thin section observations, the study area hosts
a dense reservoir of subaqueous pyroclastic rocks, with pores difficult to see in conventional
cast thin sections; however, microporosity is observed via SEM, mainly a considerable
number of micro- to nanoscale pores, and fractures have also developed, which can also
form a high-quality reservoir in the study area. The type of pyroclastic reservoir space
in the study area can be classified into primary pore space, secondary pore space, and
fractures according to their genesis.

5.1. Reservoir Space Characteristics
5.1.1. Primary Pores
Devitrification Pores

Tuff is formed by the consolidation and compaction of volcanic ash, and volcanic
glass is an extremely unstable component formed during rapid cooling of magma [59].
During the burial process, strong devitrification occurs with changes in time, temperature,
and pressure [60–65]. When there is an aqueous medium, after hydrolytic devitrification,
some of the components are lost with the pore water, and the remaining components are
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recrystallized and transformed into crystals or microcrystals. The formation process of
devitrification includes a series of geochemical effects, such as dissolution–precipitation of
volcanic glass, recrystallization, and migration and transformation of metal ions [66,67],
and the volume of the newly formed minerals are smaller, thus forming a large number
of micropores between different minerals [68–71]. Devitrification pores can account for
approximately 70% of all types of pores in tuffs [68]. The intergranular pores formed by
devitrification of pyroclastic rocks in the study area are mainly located between quartz
and feldspar grains and are clearly visible under SEM (Figure 5i). The devitrification pores
developed in continuous slices in the cast thin section in Figure 5e have a star shape.
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Figure 5. Reservoir space types of pyroclastic rocks in the Huoshiling Formation of the Chaganhua
subsag. (a) Matrix dissolution pore, Well C301, 4047.85 m; (b) Matrix dissolution pore, Well C3,
4627.40 m; (c) Dissolution fracture, Well YS3, 4,159.37 m; (d) A matrix dissolution pore strongly
dissolved along the fracture, Well C3, 4625.08 m; (e) Devitrification contiguous development, Well
YS3, 4327.58 m; (f) Dissolution fracture, Well C3, 4632.24 m; (g) Structural fracture, Well C2-1,
4543.85 m; (h) Feldspar intragranular dissolution pore, Well C2-1, 4543.85 m; (i) Devitrification pore,
Well C2-3, 4273.40 m; (j) Clay mineral intercrystalline pore, Well C3, 4624.80 m; (k) Dissolution pore,
Well C301, 4047.58 m; (l) Pyrite intercrystalline pore, Well C2-1, 4644.28 m. MDp = matrix dissolution
pore, IDp = intragranular dissolution pore, ICp = intercrystalline pore, DVp = devitrification pore,
SF = structural fractures, DF = dissolution fracture; Qtz = quartz, Ab = albite, Afs = alkaline feldspar,
Kfs = K-feldspar, Ill = illite, Chl = chlorite.
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5.1.2. Secondary Pores
Dissolved Pores

The pyroclastic rocks of the Huoshiling Formation in the Chaganhua subsag and
the source rocks of the Yingcheng Formation interlock laterally [50]. The organic acids
produced in the burial process and the unstable minerals produced by deep hydrothermal
circulation are the main reasons for the formation of dissolution pores in the study area.
Matrix dissolution pores are mainly developed in the matrix of the volcanic ash, and
micropores are formed by the dissolution of fine crystalline chips and detritus in the
volcanic ash. The dissolution pores developed in the pyroclastic rocks of the Huoshiling
Formation in the Chaganhua subsag are mainly feldspar dissolution pores (Figure 5h,k).
Minerals such as aluminosilicate formed by devitrification of volcanic glass dissolved in
the presence of acidic fluid, thus producing dissolution pores; for devitrification pores or
altered pores, further dissolution produces dissolution pores (Figure 5d,e). Therefore, the
pores observed in the study area are mostly the combination of devitrification pores and
dissolution pores.

Intercrystalline Micropores

Intergranular pores are mainly developed between clay minerals and to a lesser extent
between authigenic pyrite crystals. The pore size of these pores is very small, mostly at
the microporous scale. The clay minerals of pyroclastic rocks in the study area are mainly
chlorite. Chlorite is blade-like, with micropores between blades, ranging in length from
10s of nanometers to several micrometers (Figure 5j,k). The sedimentary tuffs have the
highest clay mineral content, and the clay minerals have developed intergranular pores.
The development of strawberry pyrite in the pyroclastic rocks of the study area indicates
that it formed in a reducing environment [72–75]. Strawberry pyrite includes many pyrite
crystals, and there are also many micropores between these crystals, which are generally
polygonal in shape and range from 20.00 to 2000.00 nm in diameter (Figure 5l), but the
pyrite content is low and does not correspond to considerable reservoir space.

5.1.3. Fracture

Fractures can greatly enhance hydrocarbon production, even though some fractures
are filled, and can influence the generation of induced joints [71–80]. There are many
types of fractures in the study area, most of which are tectonic joints formed by tectonic
stress after the diagenetic period (Figure 3c), and some are modified by dissolution to form
dissolution fractures (Figure 5c). Dissolution holes are commonly developed along the
fractures (Figure 5d). The fractures in the study area are generally between 5 and 40 µm
in diameter, and the total porosity they provide is less than 1%, constituting a very small
reservoir space, with little impact on porosity. However, microfractures connect isolated
pores and are an important channel for hydrocarbon migration.

Due to the limitations in the number of microfractures and the pore size, they have not
fundamentally changed the low permeability of the reservoir but have only improved the
permeability of the pyroclastic rocks in the study area to a certain extent, so the reservoir is
still characterized by pore type.

In this study, the surface porosity of 65 cast thin sections and 24 SEM samples were
studied, and the main pore size distributions of different types of pores were calculated, as
shown in Figure 6. Devitrification pores and intergranular pores could be observed by only
SEM, and the diameters of most devitrification pores and intergranular pores are less than
50 nm. The pore size distribution range is very wide, and the sizes of the dissolution pores
are mainly distributed between approximately 100 and 1000 nm, showing intragranular
and matrix dissolution. The reservoir space of tuff mainly consists of dissolution pores,
devitrification pores, and clay mineral pores. The reservoir space of sedimentary tuff is
mainly composed of intergranular pores with clay minerals and a few dissolution pores.
The reservoir space of tuffaceous sandstone mainly consists of dissolution pores and a few
clay mineral pores.
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5.2. Reservoir Physical Properties

In this study, 86 rock samples were selected for porosity and permeability tests, and
the analysis results showed that the porosity ranged from 0.15% to 6.71%, with an average
value of 2.43%, and that the permeability distribution ranged from 0.0011 to 0.646 mD, with
an average value of 0.076 mD (Figure 7). The physical properties of the reservoir are closely
related to the lithology. Coarse-grained tuffs and tuffaceous sandstones generally have
porosities greater than 2%, while the majority of sedimentary tuffs have porosities less than
2%, and there is little difference in permeability between reservoirs of various lithologies.
The physical properties of volcanic reservoirs vary greatly with different lithologies, and the
main types of reservoir space are also different. Moreover, the distribution range of physical
properties of the same lithology is relatively wide, indicating that lithology is an important
factor controlling reservoir distribution. In addition to the lithology, the reservoir physical
properties are affected by other factors. According to the reservoir classification standard of
SY/T 6285-2011 [81] “Oil and Gas Reservoir Evaluation Method”, the pyroclastic reservoir
of the Huoshiling Formation is a low-porosity and low-permeability reservoir.

5.3. Reservoir Microscopic Pore Structure Characteristics

The reservoir spaces of the tuff reservoir samples (C2-3-4224.10, C2-4418.00, C3-
4625.80) are mainly dissolution pores and devitrification pores. Graphically, the capillary
pressure is curved and almost platform-free and sloping, indicating a complex pore struc-
ture and poor sorting in the core (Figure 8). The pore size distribution is concentrated in
the range of approximately 100 nm to 20 µm, with a median pore throat radius of 0.013
µm, and the pores are predominantly coarse pores, with an overall micro- to nanoscale.
The expulsion pressure is 8.259–13.772 MPa, the median mercury saturation pressure is
54.58–170.83 MPa, the maximum incoming mercury saturation is high, and the average
mercury removal efficiency of the core is 29.57%, which is due to the complex pore struc-
ture of the reservoir and the significant differences in the distribution of pores and throats.
The large amount of mercury retained in the pores is caused by the shielding effect of
small pores. The hysteresis loop shapes mainly fall between the H2 type and H3 type
(Figure 9a–c), indicating that both microspherical pores and some narrow pores or fractures
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exist in the nanoscale pore space of these samples. Tuffs with high volcanic glass content
are prone to form nanoscale devitrification pores with a shape similar to spherical pores
under devitrification action, and slit pores can be formed due to the dissolution of minerals
and as intergranular pores of clay minerals. The pore volume of the coarse-grained tuff
is large, but the number of pores is relatively small, since there are dissolution pores and
intergranular pores with large pore sizes. The formation of clay minerals divides the large
intergranular pores into multiple micropores, the pore size decreases abruptly in the part
of the rock enriched with clay minerals, and an “ink bottle”-shaped pore combination can
be formed.
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Figure 9. N2 adsorption and desorption isotherms obtained from the LTNA experiments.
(a) Well C2-3, 4224.10 m, coarse-grained brecciated crystalline tuff; (b) Well C2, 4418.00 m, coarse-
grained detritus crystalline tuff; (c) Well C3, 4625.80 m, coarse-grained vitric crystalline tuff; (d) Well
C301, 4431.60 m, fine-grained crystalline tuff; (e) Well C2, 4568.52 m, sedimentary tuff; (f) Well C2,
4777.56 m, sedimentary tuff; (g) Well C3, 4527.82 m, tuffaceous sandstone; (h) Well C301, 4086.70 m,
tuffaceous sandstone.

Due to the high vitric fragment content of the coarse-grained tuff, the vitric fragments
are unstable and prone to dissolution, which is manifested by a larger porosity contributed
by dissolution pores than micropores, such as devitrification pores and intergranular pores
of clay minerals. In contrast, the fine-grained tuff samples (C301-4431.60, C3-4625.80) have
denser but relatively good homogeneity in the core, with a more concentrated distribution
of pores, a small pore diameter, and a low porosity.

The capillary pressure curves of the sedimentary tuff samples (C2-4568.52, C2-4777.56)
are steeply sloped, finely skewed, and poorly sorted. This indicates that the reservoir space
is dominated by fine pore–very fine pore space, with a pore size distribution concentrated
between 4 nm and 40 nm and an average connectivity (Figure 8). The pore type is mainly
between type H3 and type H4 (Figure 9e,f), partly attributable to type H4. The content of
clay minerals is high, up to 43.5% on average, and easily forms intergranular pores of clay
minerals, which exhibit a slit type.

The tuffaceous sandstone (C3-4527.45, C301-4086.70) samples have high-pressure
mercury injection curve characteristics similar to those of the sedimentary tuff, with fine
skewness and poor sorting (Figure 8). The hysteresis loop characteristics of tuffaceous
sandstones are similar to those of tuffs and are of the H3 type, with steeper adsorption
curves, but the desorption curves are parallel to the adsorption curves, and the hysteresis
loop area is relatively small, indicating the development of crack-like narrow pore structures
(Figure 9g,h), such as those between chlorite crystal layers.

6. Discussion
6.1. The Reason for Different Types of Reservoir Physical Property Differences

Through the analysis of the cast thin sections and SEM surface porosity, combined with
the measurement of porosity and permeability, it was found that tuff is the most favorable
type of reservoir, and the coarser the granularity of the pyroclastic particles, the more
favorable the reservoir the physical properties, and the larger the pore size, and the higher
the porosity (Figure 10). Tuffaceous sandstone is the next most favorable type of reservoir,
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and the physical properties of sedimentary tuff reservoirs are the least favorable (Figure 7).
The mineral composition of volcanic rock is closely related to its porosity. In general,
porosity is negatively correlated with clay mineral content and positively correlated with
feldspar content (Figure 11).
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The tuff has high surface porosity, and the pore type is dominated by devitrified and
dissolved pores (Figure 10). Secondary dissolution pores easily form under the condi-
tion of dissolution by acidic formation water after devitrification of volcanic ash, and its
recrystallization will also lead to the development of intergranular pores and improve
the porosity of reservoirs [68–71]. The coarse-grained tuff has a higher feldspar content
and lower clay mineral content than the fine-grained tuff (Figure 3), which provides a
good material basis for dissolution, and the effective support of the coarse-grained tuff
clastic particle framework is conducive to the formation of more effective pore space, so
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the coarse-grained tuff reservoir has more favorable physical properties. The sedimentary
tuff has a low feldspar content and an average clay mineral content of 32.27% (Table 1).
In addition to clay minerals produced by tuff alteration, there are also terrigenous clay
minerals. The reservoir space is dominated by intergranular pores of clay minerals, and
argillaceous components fill the pores, reducing the reservoir porosity and permeability, so
the corresponding reservoir properties are the least favorable. The tuffaceous sandstone
has high feldspar content and low clay mineral content and develops approximately 3%
laumontite (Table 1), with secondary dissolution pores formed by dissolution of feldspar,
rock debris, and laumontite. The reservoir properties are good, but the physical properties
are not as good as those of tuff because the tuff content is low and devitrification pores are
not developed.

6.2. Formation Mechanism of Different Types of Reservoirs

Subaqueous pyroclastic rocks have certain peculiarities due to their large number of
unstable components, short transport distances, and rapid consolidation into rock, com-
bined with regional tectonic movements and the influence of stratigraphic fluids, resulting
in pyroclastic reservoirs that are different from normal volcanic rocks and normal sedi-
mentary rocks [40]. The pyroclastic reservoirs have undergone formation, modification,
destruction, and remodeling. The most important mechanisms affecting the formation of
pyroclastic reservoirs in the Huoshiling Formation of the Chaganhua subsag are devitrifica-
tion, dissolution, and tectonic movement.

6.2.1. Devitrification of Volcanic Ash

The pyroclastic rocks of the Huoshiling Formation in the study area are mainly com-
posed of crystal fragments and vitric fragments. The composition of the crystal fragments is
mainly quartz and albite, without pyroxene, olivine, and other dark minerals. The composi-
tion of vitric fragments is mainly felsic, and their thermodynamic properties are extremely
unstable and prone to devitrification [66,67]. The process of devitrification involves a series
of geochemical actions, including the recrystallization, dissolution, precipitation, migration,
and transformation of metal ions. The vitric fragments undergo crystallization and shrink
in volume, micropores will be formed in this series of processes, and then devitrification
pores will be developed [68–71]. The pore size of the micropores formed by devitrification
is small, but the number of micropores is large, resulting in a larger overall porosity. Thin
crystal materials produced by devitrification can be observed under an optical microscope
in the rock section of Well C3 in the study area (Figure 5e). Fine quartz crystals resulting
from devitrification can be observed from SEM (Figure 5i).

6.2.2. Dissolution

The pyroclastic rocks of the Huoshiling Formation in the study area have high contents
of feldspar and tuff, which provide a material basis for dissolution. The rocks are formed
by underwater eruption and accumulation and are not leached by atmospheric fresh water
in a reducing environment. The fluids causing dissolution in this area are mainly organic
acids. The deep hydrothermal fluids mainly played a destructive role in the reservoir, and
mineral filling caused by hydrothermal alteration can be seen. The results of carbon and
oxygen isotope testing analysis of calcite cement in pyroclastic reservoirs in the study area
are shown in Table 2. The δ13CPDB values of calcite carbon isotopes range from −13.2‰ to
−1.8‰, with an average of −8.4‰. The δ18OPDB values ranged from −23.5‰ to −16.1‰,
with an average value of −21.3‰ (Table 3). According to the characteristics of carbon and
oxygen isotopes, the pyroclastic rock samples in the Chaganhua subsag all plot in area
III (Figure 12), indicating that the diagenetic process was affected by the oxidation and
decomposition of organic matter.
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Table 3. Carbon and oxygen isotopic compositions of calcite cement of the Huoshiling Formation
pyroclastic rocks.

Well Depth (m) δ13CPDB (‰) δ18OPDB (‰)

C1

4466.50 −9.2 −22.6

4473.90 −8.7 −21.4

4474.00 −8.7 −22.4

4473.00 −9.6 −22.5

C2

4717.20 −9.9 −20.1

4716.00 −6.0 −20.9

4716.90 −6.4 −20.9

C3

4630.90 −4.9 −22.3

4446.90 −10.0 −21.0

4447.00 −8.6 −23.4

4443.40 −12.3 −19.8

4444.20 −8.4 −20.3

4448.80 −14.2 −20.2

4532.40 −7.8 −24.2

4626.90 −7.9 −22.0

4915.10 −7.4 −23.3

4445.90 −9.5 −20.9

4446.72 −8.7 −18.2

4446.80 −8.3 −19.0

4449.35 −8.2 −16.6

C5

4450.13 −2.3 −11.9

4452.46 −1.8 −16.1

4526.00 −4.5 −27.6

4526.80 −5.8 −23.1

4527.94 −7.0 −23.5

YS3

4026.30 −6.5 −22.1

4023.77 −7.0 −25.1

4024.41 −6.7 −18.2

4026.30 −9.2 −19.0

4022.87 −12.4 −22.9

4025.66 −15.5 −27.6

4027.15 −13.2 −24.8

4159.97 −10.6 −21.5

4160.64 −7.7 −22.4

4162.95 −7.1 −23.5

4324.60 −10.3 −25.8

4324.90 −8.7 −17.7

4329.30 −9.1 −17.9

The calcite associated with decarboxylation of organic acids is characterized by coarse
crystalline grains and metasomatism of other minerals [82], which is also consistent with the



Energies 2023, 16, 4968 21 of 31

characteristics of the study area (Figure 3p). The volcanic rocks in the Huoshiling Formation
of the Chaganhua subsag are adjacent to the hydrocarbon source rocks, and organic acids
produced by the hydrocarbon source rocks enter volcanic rocks along unconformities and
fractures. The burial depth of the Huoshiling Formation in the study area is generally
between 3900 and 5000 m. X-ray diffraction results of clay minerals show that the I/S
mixed layer minerals in the study area are mainly high-order illite, and the ratio of I/S
interlayer is 10% (Table 2). In addition, the I/S interlayer and chlorite are visible under
SEM. Therefore, the recrystallization and evolution of the clay minerals in the study area
were relatively active, and the diagenesis stage had entered the deep burial stage. With
the evolution of the clay minerals, they release pore water and interlayer water, and fatty
acids form long-chain alkanes and then form petroleum hydrocarbons. In the process of
hydrocarbon generation, organic acids and CO2 are produced in large quantities. The
presence of large amounts of organic acids and CO2 makes the formation water acidic.

In this area, organic acid dissolution mainly occurs in the deep burial diagenetic stage,
and the targets of organic acid dissolution are soluble components such as feldspar, debris
and laumontite. Under SEM, the thin sections show that dissolution occurred in feldspar
grains and along cleavage joints (Figure 6d). Because cementation occurs mainly in the
middle and late diagenesis stages, the dissolution of carbonate cements is not obvious. The
aluminosilicate minerals formed by the devitrification of volcanic glass can be dissolved
in acidic fluids, and the organic acids can effectively complex the metal cations to adsorb
them to the mineral surface and promote the dissolution rate of minerals. The reason for
the formation of secondary pores by tuff dissolution is that organic acids can increase the
activity of aluminum and combine with aluminum to form organic complexes that are
carried away by the fluid, thus producing secondary pores. In the tuffaceous sandstone of
wells C3 and C301 in the study area, the laumontite content is relatively high (Table 1). Due
to the instability of volcanic materials, a large amount of K+, Na+, Ca2+, and Mg2+ plasma
can be released after rapid decomposition under hydrolysis, which makes the solution
highly alkaline and increases the salinity, which is conducive to the formation of laumontite
minerals [83]. Strong alkalinity (pH > 9), high Ca2+ activity, sufficient, and highly active
SiO2, and certain temperature and pressure conditions are conducive to the formation of
laumontite [84,85]. Under acidic conditions, element migration easily occurs in laumontite,
leading to dissolution and the formation of dissolution pores.

6.2.3. Tectonism

Tectonic movements provide the driving force for the formation and evolution of
basins, lead to the formation and development of faults and tectonic fractures, and con-
trol the interaction between fluids and rocks, thus affecting the physical properties of
reservoirs [83]. The period of deposition of the Huoshiling Formation corresponds to
the rapid extension stage of fault depression [41]. The Changling fault depression fea-
tures faults trending NNE, NNW, SN, and other directions, along which fracture zones are
formed [41,43,44]. The pyroclastic reservoirs of the Huoshiling Formation in the Chaganhua
subsag have undergone transformations and processes such as dissolution and structural
failure over a long geological period, forming complex and heterogeneous reservoir spaces.
The physical properties of pyroclastic reservoirs in the study area vary greatly, with porosity
mainly between 1% and 7% and permeability between 0.0011 and 0.646 mD (Figure 7).
The pores are mainly devitrification pores, and the connectivity of pores is the key factor
restricting the physical properties of volcanic reservoirs in the study area.

The impact of fractures on the reservoir was analyzed with the imaging logging data
of five pyroclastic core wells in the study area, which showed that the greater the density
of fractures in pyroclastic rocks of the same lithology, the more favorable the physical
properties of the reservoir(Figure 13a). This shows that fractures contribute greatly to the
physical properties of reservoirs. In the case of Well C301, fracture density correlates well
with porosity and permeability, as shown in Figure 13a, and the fracture density of the
three stages with porosity and permeability development is also higher. The imaging log
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sine curve shows fracture development (Figure 13a), and fractures are also visible in the
corresponding cores (Figure 13b–d). In addition, the thin sections show that most of the
dissolution pores are not isolated but connected by fractures (Figure 14), which contribute
to the formation of effective reservoir space and enhance the reservoir physical properties.
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pore develops near the fracture, Well C3, 4527.42 m; (b) Dissolution pores are distributed along the
fracture, Well YS3, 4329.30 m. DF = dissolution fractures, MDp = matrix dissolved pore.

Well C301 is located near a deep and large fault and has developed structural fractures
(Figure 13g) with well-developed tectonic fractures (Figure 13e) and generally has more
favorable reservoir properties than wells C2-1 and C2-3. There are almost no primary pores
in the subaqueous pyroclastic rocks, whose porosity is mainly controlled by late dissolution.
Faults connect reservoirs and source rocks, affecting oil and gas migration and formation
fluid migration [87–89]. In the vicinity of tectonic fractures, the more favorable fluidity of
formation fluids provides migration channels for erosive fluids (organic acids and deep
hydrothermal fluids) and other fluids to interact with rocks, resulting in more dissolution
of unstable components in pyroclastic rocks and leading to the development of secondary
pores and dissolution fractures, the distribution of dissolution pores along the fractures
(Figures 5d and 14), and improving the reservoir performance. Therefore, the influence
of fractures on rock porosity is indirectly controlled, and the formation of highly porous
rocks is related to the source and migration path configuration of erosive fluids such as
unconformities, source rocks, and deep and large faults. These results suggest that the
degree of fracture development determines the physical properties of the reservoir.

6.3. Process of the Formation and Evolution of Different Types of Reservoirs

The porosity evolution of pyroclastic rocks in the study area can be divided into three
stages: the porosity decreasing stage caused by normal compaction, the porosity increasing
stage caused by devitrification and dissolution, and the porosity stability stage after tectonic
uplift. From the perspective of burial history and thermal evolution history, the three stages
occurred before the deposition of the Denglouku Formation, between the deposition of the
Denglouku Formation and Sifangtai Formation, and after the deposition of the Sifangtai
Formation (Figure 15).

Before oil and gas charging, under the load of the overlying water and sediment, the
compaction of pyroclastic rocks in the Huoshiling Formation released pore fluid, and the
primary porosity of the reservoir gradually decreased [90,91]. However, due to devitrifica-
tion and dissolution, the total porosity increased. After entering the burial diagenesis stage,
the porosity increase caused by devitrification and dissolution was similar to that caused
by compaction. The porosity of tuff does not change with depth.

Increasing temperature and pressure in underwater sedimentary environments are
conducive to devitrification [60–65]. The subaqueous volcanic rocks are buried under-
ground after ejection and are influenced by the static pressure and tectonic stress of the
overlying strata, which is conducive to the occurrence of devitrification. Under the influ-
ence of volcanic heat, water is an active component that can increase particle movement
in the vitreous [68]. Water can easily accumulate and migrate where tectonic fractures
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develop, which is also conducive to devitrification. Devitrification lasted for a long time
and continued to occur from the cooling diagenetic stage to the late diagenetic stage.
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With increasing burial depth, the palaeotemperature increased to 100–180 ◦C, and the
Huoshiling Formation entered the middle petrogenesis stage (Figure 15). There were two
stages of hydrocarbon charging in the middle petrogenesis stage [92]. At 103.6 Ma, the
first oil and gas charging occurred at the beginning of the third member of the Quantou
Formation, which was of low intensity and resulted in a weakly acidic reservoir fluid
environment. Weakly acidic hydrocarbon-bearing fluids caused feldspar and tuff to dis-
solve. At 70.9 Ma, the second hydrocarbon charging occurred at the end of the Nenjiang
Formation. The widely distributed mixed layer consumed a large amount of K+ in the
process of the transformation from smectite to illite, leading to an increasing concentration
ratio of Na+ to K+ in the formation water, which promoted the selective dissolution of
K-feldspar and the occurrence of albitization [93–95]. With the charging of oil–gas bearing
fluid in the hydrocarbon source rocks of the study area, a large amount of acidic substances
migrated, the pH of the formation water was significantly reduced, and the dissolution of
tuffaceous composition and feldspar was greatly accelerated, which promoted illitization
of montmorillonite and was associated with Fe-rich chlorite (Figure 6j,k).

The middle diagenetic stage and late diagenetic stage correspond to the tectonic
movement stage of the depression–reversion stage [41], and the effective fractures formed
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relatively late, which played a guiding role in hydrocarbon accumulation and a dynamic
adjustment role after oil and gas charging. The fault side of the well continued to be active
for a long time until the end of the Mingshui Formation.

From the difference in pore structure characteristics of different lithologies, the lithol-
ogy determined the basic petrological characteristics of the rock, such as particle size
distribution, sorting, rounding, and mineral content, thus laying the foundation for the
evolution of the pore structure of pyroclastic rocks. The depth-porosity map shows that
the tuffaceous sandstone had the strongest influence on compaction, followed by coarse-
grained tuff, with fine-grained tuff and sedimentary tuff being dense in the diagenetic stage
and less affected by compaction. The dissolution of feldspar minerals lags behind that
of tuff, and the dissolution rate was lower than that of tuff [96], with a high clay mineral
content and low soluble material content in sedimentary tuff. Therefore, the dissolution of
tuff in the study area was stronger than that of tuffaceous sandstone and sedimentary tuff,
the dissolution pores and fractures were more developed in the tuff, making its physical
properties more favorable. In addition, coarse-grained tuff has a coarse grain size and
primary intergranular pores, and mineral filling in the intergranular pores could offset part
of the compaction effect; later dissolution led to the dissolution of the filling minerals and
the formation of secondary pores (Figure 16). Strong tectonic activities in the middle and
late diagenesis produced a large number of fractures, which are one of the main controlling
factors for forming favorable reservoir space, as reservoir space and seepage channels can
promote the interaction between fluid and rock.
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6.4. Reservoir Development Pattern

Studies have shown that the distribution of volcanic reservoirs is controlled by the
volcanic edifice and facies, and favorable reservoirs are usually located in the proximal
facies of the volcanic edifice [97–99]. The proximal facies is characterized by coarse grains,
poor sorting, disordered accumulation, and high volcanic debris content; the distal facies
is characterized by fine grains, good sorting, bedding development, and high content of
retransported volcanic debris particles [40]. In the tuff cone volcanic edifice of the study
area, coarse-grained tuff is a representative of the proximal facies, while sedimentary
tuff and tuffaceous sandstone are often representatives of the mesodistal facies (Figure 5).
Facies control the distribution range of favorable reservoirs. Different facies have different
lithologies and different degrees of interaction with water, resulting in great differences in
different facies. The porosity and permeability values of the proximal facies are higher than
those of the distal facies. The tuff reservoir in the proximal facies is the most important
reservoir space, with a high content of volcanic glass and the development of devitrification
pores. In addition to favorable facies and lithology, dissolution is also one of the important
effects on reservoir development. Since the primary pores of underwater volcanic rocks
are poorly developed, the organic acid dissolution pores formed by the dissolution of
volcanic materials by the organic acid discharged from the source rocks in the process
of evolutionary burial are very important reservoir spaces and can form relatively large
abundant effective pores. Fractures that developed close to the fault connect isolated pores
and enhance the effectiveness of the reservoir space (Figure 17).
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as devitrification pores, dissolution pores, and clay mineral intergranular pores. Tuff
has a high content of volcanic ash and glass chips, and a large number of devitrifi-
cation pores constitute the main reservoir space. Under the influence of dissolution
and alteration, dissolution pores and clay mineral intergranular pores also develop.
Fractures created by tectonic processes can mainfest these pores. The sedimentary
tuff has the least favorable physical properties and high clay mineral content. The
reservoir space is mainly micropores between clay minerals, and the pore connectivity
is poor, so it is difficult to form favorable reservoirs in this rock type. The content of
soluble components such as feldspar, debris, and turbidite in tuffaceous sandstone is
high, and a certain scale of dissolution pores can be formed. However, due to the low
content of volcanic ash, devitrification pores are hardly developed, and the physical
properties of tuffaceous sandstone are less favorable than those of tuff.

(2) Devitrification and dissolution are the main mechanisms of micropore formation
in pyroclastic reservoirs. The underwater eruptive accumulation environment is
conducive to continuous devitrification. The organic acid dissolution caused by two
oil–gas charging events in the middle petrogenesis stage is an important cause of the
formation of reservoir pores. Tectonic activity is intense and fractures develop. As both
reservoir spaces and fluid migration channels, fractures promote the development
of reservoirs.

(3) The coarse-grained tuff reservoir developed in the proximal facies of the tuff cone
volcanic edifice formed by underwater eruption is the highest-quality pyroclastic
reservoir in the study area. A large number of devitrification pores are present due to
the high content of volcanic ash. In the later stage of diagenesis, dissolution pores were
generated under the transformation of organic acids, and deep hydrothermal fluids,
and fractures were generated by tectonic activities to communicate reservoir space.
The superior lithology superimposed dissolution and tectonic action are favorable
target areas for exploration and development.
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