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Abstract: Gasoline–water mixed injections are of great interest because of their advantages for
reduced manufacturing costs and improved atomization, with the potential to alleviate engine
detonation and reduce emissions. In this work, based on the principle of impinging flow, a real-time
gasoline–water mixture preparation system for internal combustion engines was designed and the
preparation system performance was compared with the standard swirl mixing technique. An image
processing method was established to quantify the uniformity of the prepared mixture. Based on
the flash-boiling spray flash-boiling spray experiment, the spray characteristics of different gasoline–
water mixtures were analyzed under different injection temperatures (30–160 ◦C) and pressures
(5–15 MPa). The experiments showed that the impinging pressure was the main factor affecting the
emulsification performance of the real-time gasoline–water mixture, and that the proposed real-time
mixing system could produce a stable gasoline–water emulsion. For temperatures in the 30–160 ◦C
range, the flash-boiling spray flash-boiling spray experiments showed that the spray penetration
distance first decreases and then increases with the injection temperature, while the spray angle shows
an opposite trend. The turning point corresponded to the flash-boiling point of each gasoline–water
mixture.

Keywords: impingement preparation method; gasoline–water mixture fuel; flash-boiling spray

1. Introduction

The increasing energy demand, which is due to the vigorous development of the
world economy, has brought about a tougher energy issue. According to the world energy
outlook released by British Petroleum, even under the background of electrification, oil
will continue to occupy the largest share of the energy structure (31.2%) in the 2020s. By
2050, oil is expected to account for a significant part of the transportation energy demand,
and the demand of oil in highway transportation will be still large. In particular, China’s
energy demand will continue to grow, and the extent of China’s energy crisis is severe [1,2].
A new engine technology, which could simultaneously enhance engine thermal efficiency
and meet the stringent future emission policy for transportation, is urgently required.

Researchers, employing either experimental or numerical approaches [3,4], are fo-
cusing on many aspects of the gasoline engine to improve its performance, by means
of the development of new control strategies [5–8], or by improving the engine hard-
ware, including the fuel injection system [9], the turbocharging/supercharging system, or
by means of design strategies like downsizing or downspeeding. Combining turbocharg-
ing/supercharging technology with downsizing guarantees that an engine has better power
and fuel-economy properties [10]. However, with the rise in the boost level, the knock
tendency [11–13] and even super knock tendency can also occur, which have an irreversible

Energies 2023, 16, 6026. https://doi.org/10.3390/en16166026 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16166026
https://doi.org/10.3390/en16166026
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-6793-7082
https://orcid.org/0000-0002-7751-3272
https://doi.org/10.3390/en16166026
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16166026?type=check_update&version=1


Energies 2023, 16, 6026 2 of 16

impact on engine reliability [14,15]. Compared to the normal knock, super knock has
a higher in-cylinder pressure amplitude (in-cylinder pressures are beyond 10 MPa). In
view of its destructive power, super knock is the main obstacle for gasoline engines to
continue to increase power and reduce fuel consumption. Because of the transient nature
and contingency of super knock, it is very difficult to deepen its mechanism and to develop
a robust control method [16,17]. Effective measures to control the super knock intensity
should be designed starting from these two perspectives: to reduce the conditions of its
generation as much as possible and to decrease its intensity by controlling the kinetics of
ignition and by accelerating the flame propagation speed after ignition. The traditional
control methods of suppressing knock and super knock are the increasing equivalence
ratio and delaying the spark advance, but these means sacrifice thermal efficiency. Thus, a
new engine technology, which could suppress knock or super knock and improve engine
thermal efficiency, would be valuable.

Water is a substance with a large latent heat of evaporation and stable chemical reaction
characteristics. Introducing water into the combustion chamber as a working medium
and using the characteristics of water evaporation and heat absorption to significantly
reduce the temperature in the cylinder flow can effectively optimize the combustion phase
and reduce the knock tendency [18–23]. Water injection technology, therefore, has great
potential in improving thermal efficiency and in reducing emissions.

A gasoline–water mixed injection is considered to be a special water injection tech-
nology for internal combustion engines, which can not only improve thermal efficiency,
but also reduce emissions. Compared with separate water port or direct injection, on the
one hand, a gasoline–water mixed injection can be realized without major modification
of the engine [24], which can alleviate the problem of cylinder wall wetting caused by a
pure water spray [25]; on the other hand, the flash-boiling spray of the high temperature
gasoline–water mixture can also be used to improve the atomization quality of the fuel,
accelerate the formation of the air–fuel–water mixture and improve combustion. Xie [26]
used the constant volume bomb to measure the atomization of a gasoline–water mixture
in a flash–boiling state: the experiments showed that, under flash–boiling conditions,
the gasoline–water mixture has an enlarged spray cone angle and reduced particle sizes.
Zhou [27] studied the flash–boiling mechanism of multi-component fuels: the experimental
results showed that the components with the highest saturated vapor pressure primarily af-
fected the spray quality. Yan [28], by analyzing the flash-boiling spray of a two-component
mixture, found that the spray quality could be improved dramatically by adjusting the
latent heat of vaporization of the liquid constituents and by changing the mixture compo-
sition. Senda [29,30] conducted different research on flash-boiling spray: the influence of
fuel superheat on the spray characteristics of the spray had a decisive effect. When the fuel
superheat was the same, the spray parameters, such as spray penetration and cone angle,
pertaining to distinct fuels became very similar.

The traditional preparation method of a gasoline–water mixture consists of emul-
sifying substances using emulsifier and emulsifying equipment [31,32]. Although this
method can easily improve the emulsifying effect and mixture stability time by changing
the emulsifier, it still cannot meet the needs of long-distance transportation, and the impact
of the emulsifier on the engine component life or on engine emissions is difficult to evaluate.
The gasoline–water mixing mode without emulsifier mainly relies on high-speed colloid
mill, ultrasonic emulsification, high-pressure homogenizer, high-shear homogenizer or
other equipment for mechanical mixing, which cannot be installed on the vehicle [33]. At
present, there is an urgent need for a small and efficient real-time gasoline–water mixing
equipment to meet the requirements of vehicle applications.

In the present work, an innovative real-time gasoline–water mixing method, based
on the high-pressure impinging flow, is presented, and the spray characteristics of the
generated mixture are explored for different injection pressure values, and a wide range of
fuel temperatures, even beyond the flash-boiling temperature.
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2. The Real Time Gasoline–Water Preparation Principle and Test

The principle of the impinging flow between liquids is shown in Figure 1. Each liquid
flow forms a narrow high-speed jet, and a high-pressure turbulent region is formed in
the central impact region, where large enough collision and shear forces are generated.
In this process, the fluid particles continuously penetrate from one liquid to the other
along opposite directions and, after several oscillations, the axial velocity disappears, and
the impact area forms a collision mixed liquid [34]. The collision preparation process no
longer needs emulsifier, which reduces the manufacturing costs, eliminates the effects of
the emulsifier on the engine and can remove the experimental uncertainty caused by the
emulsifier in the engine tests. Furthermore, a real-time mixing system designed by the
impinging stream technology solves the problem of the gasoline–water stratification caused
by long-time placement.
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In Figure 2a, the bench for the mixture preparation is represented. The pressure supply
system consists of two nitrogen cylinders (items 1), two pressure reducing valves (2), two
pressure gauges (3) and two gas–liquid booster pumps (4), which compress gasoline (12)
and water (11). The function of the pressure supply system is to provide a sufficiently
high pressure level for gasoline–water collision, so that gasoline and water can fully collide
and mix. The injection control system is composed of a time-relay (10), solenoid valves (5),
which allow for injection, and a switch (14). The function is to control the timing and
duration of the gasoline–water injection and collision through the actuation of the solenoid
valves.

A real-time filled gasoline–water parallelepipedal tank (13) was designed, with a
length, width and height of 62 mm, 40 mm and 20 mm, respectively, in order to collect
the mixture. In Figure 2b, a detailed scheme of the collision system (item 9 in Figure 2a)
is reported: the gasoline and water inlets both adopt a two-stage section design. The first
section, featuring a diameter equal to 6.4 mm, is that of the external high-pressure pipe
and is commanded by solenoid valve (5) for either gasoline and water; the diameter of the
second section is reduced to 0.2–0.3 mm in order to provide a sufficiently high injection
speed of gasoline and water. Downstream of the collision zone between water and gasoline,
a mixing pipe with a diameter of 2 mm conveys the mixture to a tank (13 in Figure 2a).

In order to analyze the influence of the pressure on the gasoline–water mixture prepara-
tion, five impinging pressure levels (Pimp) were analyzed, namely, 5 MPa, 10 MPa, 15 MPa,
20 MPa and 25 MPa. These pressure levels were obtained at the delivery of the gas–liquid
booster pumps (4) by exploiting the delivery pressure (PN) of the N2 bottles, which was
measured by means of sensors (3). The pressurization ratio R of the gas–liquid booster
pumps was equal to 64:1; therefore, one has Pimp = PN·R and PN was regulated by means
of pressure-reducing valves (2).

The proportion of gasoline and water was controlled by regulating the size of the
gasoline and water second sections. The diameter of the second section of the gasoline
pipe (metering diameter) could be either 0.2 or 0.3 mm, whereas that of the second section
of the water pipe was fixed at 0.2 mm. If the gasoline-to-water metering-to-diameter
ratio is 1:1, the outlet flow volumetric ratio is nearly 1:1. Instead, if the gasoline-to-water
metering-to-diameter ratio is 3:2, the corresponding outlet flow volumetric ratio is 9:4.
If the gasoline–water volumetric ratio is 1:1, the gasoline accounts for 50% of the whole



Energies 2023, 16, 6026 4 of 16

mixture volume, identified by G50; instead, if the gasoline–water volumetric ratio is 9:4,
the gasoline accounts for about 70% of the whole mixture volume, which is indicated by
acronym G70.
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In the classic emulsions obtained with a mechanical device, the mixture color ap-
proaches to milky white [26]. Figure 3a shows the gasoline–water blend, obtained with a
gasoline-to-water metering-to-diameter ratio 1:1 by means of the impingement method
for Pimp = 25 MPa: the gasoline–water mixed emulsion is uniform and milky white. As a
microscope cannot observe and analyze the mixture in real-time, a new method that can
quickly judge the mixing state is needed. In order to better quantify the mixing difference
between the collision mixing device (impingement method) and a traditional mechanical
stirring/mixing device (also referred to as swirl method), an image method was used in this
paper. It analyzes the stable time and homogeneity of the gasoline–water mixture and has
the advantages of being able to quantify the mixing degree, requiring a simple observation
and low manufacturing costs. The contoured red area in Figure 3a is the image-processing
area: Red, Green and Blue are the basic colors used in the method to generate all the others.
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The larger the values of R, G and B (the maximum value for each basic color is 255), the
closer the liquid mixture is to the white.
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Figure 3. (a) Gasoline–water impingement mixture (ratio 1:1, Pimp = 25 MPa) and the image-
processing area; (b) microgram of gasoline–water mixture fuel using the swirl method [26]; and
(c) the stratification of the G70 mixture (5 h of settling, Pimp = 25 MPa).

In Table 1, the calculated relative standard deviation is shown, based on the values of
R, G and B, for the mixture obtained using the impingement method. The relative standard
deviation, expressed as a percentage, is given by the ratio of the standard deviation to the
average value of the considered quantity. In particular, by choosing 10 sub-areas inside
the image-processing area, the R, G, B standard deviations, which were assumed as an
index of the mixture homogeneity, can be evaluated. In particular, the overall RGB relative
standard deviation is given by the average of relative standard deviations for the single R,
G, and B color channels. A microscope photo of G70 using the swirl method, reported in
Figure 3b, shows a satisfactory mixing quality of the swirl technique; such a mixture was
assumed as a benchmark to assess the image-processing technique for different mixture
methods. Table 1 reports R, G, B and RGB relative standard deviations for a G50 swirl
mixture, the G70 swirl mixture (benchmark) and a G70 impingement mixture. All the
mixture methods present satisfactory values of the relative standard deviation; in particular,
the G50 and G70 swirl mixtures, which were obtained with a traditional mixing technique,
presented comparable relative standard deviation values that are in line with those of
the G70 mixture obtained by means of the impingement technique. Therefore, the image
processing technique is consistent, and the impingement-based method has a good potential
to replace the swirl-based one.

Table 1. The RGB relative standard deviation values pertaining to different mixing methods.

G50 (Swirl) G70 (Swirl) G70 (Impingement)

RGB standard
deviation 2.28% 2.05% 1.65%

R standard deviation 2.96% 2.13% 1.69%
G standard deviation 2.37% 2.04% 1.75%
B standard deviation 1.51% 1.69% 1.53%

For the emulsions obtained using the impingement method, the settleability was
also evaluated. The R, G and B mean values of the gasoline–water mixture in the image
processing area are reported in Table 2 with reference to a volumetric ratio 9:4 (G70) and to
Pimp = 25 MPa for the unsettled and settled conditions (after standing for 5 h).
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Table 2. R, G, and B and relative standard deviation values of settled and unsettled impinging
gasoline–water mixture (ratio 9:4, Pimp = 25 MPa).

Unsettled Mixture Settled Mixture (5 h)

R mean value 235.7 134.6
G mean value 240.2 143.2
B mean value 242.3 142.9

R standard deviation 1.70% 6.46%
G standard deviation 1.75% 5.73%
B standard deviation 1.53% 5.67%

RGB standard deviation 1.66% 5.95%

The mean values pertaining to the gasoline–water mixture after a 5 h settling were
R = 134, G = 143 and B = 143, respectively. Compared with the newly mixed liquid
(unsettled gasoline–water), the R, G and B mean values were strongly reduced; therefore,
an obvious stratification occurred, as is also shown in Figure 3c for the G70 mixture. As the
color of the mixed liquid became more and more uneven and the gasoline and water were
stratified, an evident increase in the standard deviations of R, G and B can be noticed in
Table 2.

Figure 4a reports the standard deviations, calculated with the RGB technique, as
functions of Pimp, for the mixture ratio 1:1. As can be seen, the standard deviations decline
with an increase in the pressure; that is, the gasoline–water mixture becomes more and
more uniform with an increase in Pimp. Referring to Figure 4b, between 20 MPa and 25 MPa
of impingement pressure, the total RGB deviation of the mixture with the gasoline–water
mixing ratio at 1:1 was generally better than that with the gasoline–water mixing ratio at
9:4; this means that the former had a more uniform mixing and, hence, was more suitable
for impinging mixing devices at high pressures.
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Figure 4. The impact of the impingement pressure on standard deviation for gasoline–water mixtures:
(a) R, G, and B standard deviation for a 1:1 mixing ratio at different injection pressures; and (b) RGB
standard deviation with respect to the injection pressure, for different mixing ratios.

Table 3 reports the stability time of the two gasoline–water mixtures, obtained at
different impingement pressures. The stability time is defined as the hours after which a
clear layer becomes evident, i.e., when the water and gasoline start to be separated. As can
be inferred from Table 3, the stability time increases with the impingement pressure up
to 5 h when Pimp = 20 MPa; however, any further pressure increment does not lead to an
augmentation in the stability time.
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Table 3. The stability time of different gasoline–water mixtures.

Pressure [MPa] The Stability Time (Ratio 1:1) [h] The Stability Time (Ratio 9:4) [h]

5 2 2
10 3 3
15 3 3
20 5 5
25 5 5

3. The Experimental System for Spray Analysis

The spray experimental equipment is shown in Figure 5. A synchronous measuring
system for high-speed Schlieren was realized. The gasoline–water-mixture-spray test bench
consisted of a constant-volume vessel (at atmospheric pressure), an optical system, a fuel
injection system, a high-speed camera (phantom V7.3) and a computer. The high-speed
camera has a shooting speed of 11,000 frames per second and a maximum resolution of
800 × 600 dpi. The fuel injection system consists of a nitrogen cylinder, a booster pump that
compresses the gasoline–water mixture by using high-pressure N2, a 5-hole GDI injector
and a fixture equipped with a heating rod. The injector is surrounded by the heating rod
to elevate the injector temperature and, consequently, the fuel one. Therefore, the mixture
injection temperature can be elevated from 30 ◦C to 160 ◦C. The injector and the high-
speed camera were triggered simultaneously, and the spray process was recorded. The
gasoline–water mixture was prepared according to the proposed gasoline–water mixing
equipment described in Figure 2, with Pimp = 25 MPa. Both G50 and G70 were considered
and the pure gasoline and the pure water were labeled with G100 and G0, respectively. The
test conditions are detailed in Table 4.
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Table 4. Test conditions.

Parameter

Injection pressure Pj [MPa] 5, 10, 15
Gasoline–water volumetric ratio G0, G50, G70, G100

Injection temperature [◦C] 30–160

Figure 6 shows the method used for processing the data from the original images.
It is based on Open CV, which is an open-source image-processing library containing a
variety of algorithms in the field of computer vision and image processing. Background
subtraction was used to obtain Figure 6b from the original picture represented in Figure 6a.
The basic idea of background subtraction is to detect moving objects by using the grey
difference between the current frame image and the corresponding pixels of the background
image. If the grey value difference between the pixel of the current frame image and the
corresponding pixel of the background image is small, this pixel is considered as the
background pixel; instead, if the grey value difference between the pixel of the current
frame image and the pixel of the background image is large, this pixel is considered as
detectable. Using a suitable threshold value is very important to distinguish the background
and the spray structure data. This suitable value was selected with an iterative procedure.
For a tentative threshold value, contours were extracted and compared with the original
figures. If the matching was satisfactory, the tested value became the fixed one; otherwise,
the procedure started again with another tentative value [26]. The spray outer edge and
spray area could be correctly recognized, as shown in Figure 6c. Then, the contour of the
object was extracted, as shown in Figure 6d, and the macroscopic parameters of the spray
could be finally calculated.
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The spray penetration and cone angle were defined, as shown in Figure 7. The spray
penetration distance defines the vertical distance from the spray hole to the tip of the
gasoline–water mixture spray and was used to characterize the infiltration capacity of the
mixture. In the definition of the spray cone angle, the nozzle is taken as the apex and the
angle is formed with the two rays at the outermost maximum edges of the spray.
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4. The Spray Experimental Results and Discussion
4.1. Spray Morphology

The experimental optical results pertaining to different proportions of the gasoline–water
mixture sprays are shown in Figure 8, for different injection temperatures and at an in-
jection pressure of Pj = 5 MPa. The smoothness of the spray edge increases progressively,
moving from G100 to G0, up to 110 ◦C. In fact, the edge of the water spray is regular and
wrinkle-free at lower temperatures than 110 ◦C. As either the water content in the mixture
decreases or the temperature exceeds 110 ◦C, the edges of the spray gradually become more
marked and/or more irregular. The irregular edges are caused by the different evaporation
tendencies between water and gasoline. At a low temperature, i.e., 30 ◦C, both water and
gasoline do not reach boiling point. However, since the gasoline tends to evaporate easily,
its edges are more irregular than water. The reason for this is that the gasoline includes
some low boiling-temperature fuels like pentane (boiling temperature 36 ◦C) and hexane
(boiling temperature 70 ◦C).

Energies 2023, 16, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 8. Snapshots for various gasoline–water mixture sprays at Pj = 5 MPa and at different injection temperatures. Figure 8. Snapshots for various gasoline–water mixture sprays at Pj = 5 MPa and at different injection

temperatures.

In general, as the temperature increases, the injected emulsion of gasoline and water
generally gets closer to the axis and the spray width decreases. If one considers the pure
water injection (G0), the downstream sides of the spray keep the same smooth edges as
the upstream ones up to 110 ◦C with no evident deformation of the spray pattern (there
is poor air entrainment), but, as soon as the temperature reaches 120 ◦C, the edges of the
bottom part of the spray become irregular. Instead, referring to the pure gasoline spray, a
progressive reduction in the spray angle occurs starting from 80 ◦C: in fact, gasoline had
already started to evaporate adequately and the expanded volume of gasoline vapor leads
to a spray morphology change, which induces a larger entrainment of air into the spray.
The presence of water in the mixture allows a more stable spray structure up to a higher
temperature value. This can be inferred from the results pertaining to the G70 and G50
mixtures. In particular, if G70 is considered, at a temperature of 100 ◦C, the entrainment
phenomenon becomes obvious, and at 120 ◦C, the pure gasoline spray shape is strongly
deformed in its downstream part and the edges of both sides are not well defined. For the
G50 case, the spray shape was kept at 100 ◦C and 110 ◦C.

Figure 9 plots the spray penetration time history for the two different preparation
methods, at a temperature of 140 ◦C and for Pj = 5 MPa. The spray penetration of the
impinging emulsion was comparable with the one prepared by the traditional swirl-method
blend. It can be concluded that the gasoline–water emulsion prepared by the proposed
real-time method can replace the mixture prepared by traditional mechanical stirring.
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4.2. Effect of Injection Temperature on Penetration Distance

The left part of Figure 10 shows the effect of the injection temperature on the spray
penetration at Pj = 5 MPa. The reported spray penetrations refer to 1.5 ms after the injection
was carried out, because the plumes were fully developed and represented the spray
characteristics. The spray penetration, referring to G0, G50, G70 and G100, decreased up to
the flash-boiling point and then increased. The spray penetration of G0 was larger than
that of G100 below the flash-boiling temperatures, due to the higher density and viscosity
of water with respect to gasoline. In fact, a higher inertia and dynamic viscosity promoted
the spray axial evolution, since it could resist the gas–liquid relative movement more
without deformation and breakup [35], while the opposite occurred above the flash-boiling
temperatures. When the injection temperature of the mixture increases, the viscosity of
either a pure liquid flow or an emulsion decreases [26]; therefore, the spray penetration
decreases as the injection temperature rises [36]. If the mixture is close to the boiling point
of water, flash boiling occurs at the outlet of the nozzle: the water in the mixture starts to
evaporate, and the overall mass decreases quickly, leading to a reduction in the inertial
force and in the momentum, thus resulting in a sharp decrease in the spray penetration
distance. With a further temperature increment, the additional momentum caused by the
flash-boiling phenomenon accelerates again the spray along the axial direction, leading to
an increment in penetration [37]. In fact, when the flash-boiling condition is overwhelmed,
the spray’s distinct plumes collapse into a single one characterized by an enhanced axial
momentum [38]. These effects cause the spray to lose its regular cone shape.

Energies 2023, 16, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 9. The comparison of penetration lengths referring to different mixing methods (140 °C, Pj = 

5 MPa, G70). 

4.2. Effect of Injection Temperature on Penetration Distance 
The left part of Figure 10 shows the effect of the injection temperature on the spray 

penetration at Pj = 5 MPa. The reported spray penetrations refer to 1.5 ms after the injection 
was carried out, because the plumes were fully developed and represented the spray char-
acteristics. The spray penetration, referring to G0, G50, G70 and G100, decreased up to the 
flash-boiling point and then increased. The spray penetration of G0 was larger than that 
of G100 below the flash-boiling temperatures, due to the higher density and viscosity of 
water with respect to gasoline. In fact, a higher inertia and dynamic viscosity promoted 
the spray axial evolution, since it could resist the gas–liquid relative movement more with-
out deformation and breakup [35], while the opposite occurred above the flash-boiling 
temperatures. When the injection temperature of the mixture increases, the viscosity of 
either a pure liquid flow or an emulsion decreases [26]; therefore, the spray penetration 
decreases as the injection temperature rises [36]. If the mixture is close to the boiling point 
of water, flash boiling occurs at the outlet of the nozzle: the water in the mixture starts to 
evaporate, and the overall mass decreases quickly, leading to a reduction in the inertial 
force and in the momentum, thus resulting in a sharp decrease in the spray penetration 
distance. With a further temperature increment, the additional momentum caused by the 
flash-boiling phenomenon accelerates again the spray along the axial direction, leading to 
an increment in penetration [37]. In fact, when the flash-boiling condition is overwhelmed, 
the spray’s distinct plumes collapse into a single one characterized by an enhanced axial 
momentum [38]. These effects cause the spray to lose its regular cone shape. 

 
Figure 10. Effect of different injection temperatures on the penetration distance (Pj = 5 MPa). Figure 10. Effect of different injection temperatures on the penetration distance (Pj = 5 MPa).



Energies 2023, 16, 6026 11 of 16

Due to the higher volatility and lower flash-boiling temperature of gasoline compared
to water, the penetration distance of pure gasoline takes the lowest values, and reaches
the minimum earlier than pure water. The G0, G50 and G70 mixtures maintain a more
stable penetration in the lower temperature range than pure gasoline does. Nevertheless,
with a further increment in the temperature, water also starts to evaporate; therefore, the
mixture penetration reduces. Below the flash-boiling temperature, the spray penetration of
G50 is greater than that of G70, consistently with the patterns of G0 and G100. Therefore,
a decisive factor for the spray penetration of the mixture is the ratio of water to gasoline
content. The right part of Figure 10 reports the standard deviation of the spray penetration
distance for the pure water, the G50 and G70 mixtures, and the pure gasoline sprays. This
standard deviation represents an index of the variability of the spray penetration of a
certain mixture when the injection temperature changes from 30 ◦C to 160 ◦C. As can
be inferred, the presence of a water–gasoline mixture can help to reduce the variability
of the spray penetration distance with respect to the fuel temperature, even above the
flash-boiling condition.

4.3. Effect of Injection Temperature on Spray Angle

The effect of different injection temperatures on the spray cone angle at 1.5 ms after
the injection was carried out is shown in Figure 11 for Pj = 5 MPa. Referring to all the
mixtures, the spray angle was almost not influenced by the temperature up to the proximity
of the flash-boiling point. Nevertheless, if a water–gasoline mixture shows a reduced
dynamic viscosity (i.e., a low water content) the spray angle is generally larger than that of
a mixture with high water mixing ratios [35]. If G100 is considered, the spray angle features
a maximum at around 75 ◦C, while the G70, G50 and G0 patterns of the spray angle curves
generally increase in a comparable way up to 120 ◦C and local maximum points occur
around 130 ◦C. When the flash-boiling condition occurs, that is, around 75 ◦C for G100 and
around 120–130 ◦C for the other mixtures, a large amount of vapor is generated just after
the injection. Consequently, the flashing boiling leads to a large vapor bubble formation
inside the liquid spray [39]. The vapor bubbles suddenly explode, leading to an increment
in the radial momentum, which augments the spray angle and makes the spray shape more
irregular. In particular, the evaporation of the water and gasoline low-boiling components
leads to a sharp reduction in the global liquid mass, reducing the inertial force and the axial
momentum. Most of the remaining macroscopic energy is diverted to spray atomization
and radial spray development; hence, a significant reduction in spray penetration and
an increase in the spray angle take place (in the 100–130 ◦C fuel temperature range for
gasoline–water mixtures) [39].
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A further temperature increment of the gasoline–water mixture above the flash-boiling
condition, i.e., in the 140–160 ◦C range, leads to the abovementioned collapse of the spray
plumes to a single spray, which explains the reduction in the spray angle.
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Since the spray angle trends for G0, G50 and G70 are almost overlapped when the
temperature is below 120 ◦C, the spray angle of the gasoline–water mixture becomes mainly
governed by water. Since the flash-boiling temperature of water is higher than that of
gasoline, the surface tension and viscosity of water are greater than that of gasoline, and the
force that counteracts the spray breakup is, therefore, stronger. After gasoline has reached
its flash-boiling temperature, the spray angle of G100 begins to decrease, while the spray
edge of the gasoline–water mixtures, due to the presence of water, is still smooth without
any obvious deformation (cf. Figure 8).

4.4. Effect of Injection Pressure on Penetration Distance

Figure 12 proves that spray penetration generally grows with an increase in the
injection pressure, due to the higher initial velocity and initial kinetic energy. As can
be inferred, the spray penetration does not increase linearly with the injection pressure.
When the injection temperature increases and reaches the flash-boiling condition, the
mixture evaporation causes a drop in the fuel penetration because most of the macroscopic
kinetic energy is diverted to the radial spray development; the valleys of the penetration
length in Figure 12a–d correspond to the peaks of the spray angle in Figure 11. The
already-mentioned additional momentum, caused by flash boiling and the subsequent
collapse of the distinct gasoline–water plumes, promotes the axial spray propagation. This
effect is more remarkable at higher injection pressures because the aerodynamic drag
force increment acting on the spray under flash-boiling conditions becomes less important.
Conversely, if a low-pressure injection spray is considered, the pronounced reduction
in the mixture droplet dimensions, due to flash-boiling, leads to a stronger effect of the
aerodynamic drag force, which counterbalances the axial spray propagation tendency [37].
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4.5. Effect of Injection Pressure on Spray Angle

Figure 13 reports the spray cone angle as a function of the injection temperature at
three distinct Pj values for the G0, G50, G70 and G100 fuels. For G0, G50 and G70, the spray
angle first increases and then decreases with the rising injection temperature. Instead, the
spray angle reduces almost continuously with the injection temperature for G100, except in
the Pj = 5 MPa case (cf. also Figure 11). In Figure 13a–c, the spray cone angle increases with
Pj before the local maximum point with respect to the injection temperature was reached; on
the other hand, once such a maximum point has been surpassed, the spray angle at 5 MPa
is the largest and the spray angles referring to 10 MPa and 15 MPa take similar values. In
fact, below the flash-boiling temperature, an increase in Pj leads to a reduction in the fluid
particle diameter and to an enhanced spray diffusion. Therefore, the higher is the injection
pressure, the more expanded the spray on both sides and the larger the spray angle. When
the temperature is close to the flash-boiling one, the spray angle sharply increases for all
the examined injection pressure values. In fact, as the fuel temperature rises, the surface
tension diminishes, the nucleation rate accelerates and micro explosions of bubbles at the
nozzle outlet make the spray wider [36]. As soon as the temperature goes beyond the
flash boiling point, the collapse of the spray plumes promotes axial propagation, leading
to a reduction in the spray angle, for all the Pj values. However, as already mentioned in
Section 4.4, the spray featuring Pj = 5 MPa experiences a higher aerodynamic drag force
beyond the flash-boiling condition that counteracts the axial propagation, keeping the
spray width larger if compared with the sprays with higher Pj values.
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5. Conclusions

A real time gasoline–water mixing system was designed. The fuel mixture preparation
and its spray characteristics were studied. The main conclusions are listed in what follows.

• The RGB analysis (mean values and standard deviations) is used as a quantitative tool
for evaluation of the mixing characteristics of the obtained real-time gasoline–water
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mixture and of the performance of the new gasoline–water mixing technique based
on impingement. The RGB values and their standard deviations were determined by
selecting a particular image-processing area. When the injection pressure increases,
the uniformity and time stability of the gasoline–water fuel mixture improves: the
longest obtained stability is 5 h and a saturation for the impingement pressure (Pimp)
occurs at 20 MPa.

• As the temperature increases, the spray penetration referring to G0, G50, G70 and
G100 decreases and then increases: the local minimum point virtually coincides with
the flash boiling condition. A significant reduction in penetration length is due to the
momentum loss caused by the evaporation and the diminished inertial force. After
the flash-boiling condition, the spray plumes collapse in a single spray characterized
by an augmented axial momentum, that allow the penetration to rise again.

• The spray cone angles of G0, G50 and G70 increase slowly and similarly as the
injection temperature rises. The spray angle of the gasoline–water mixture is mainly
determined by the water. For the G100, when the injection temperature reaches the
flash boiling value (around 75 ◦C) of gasoline, the spray cone angle drops sharply.
Instead, for a gasoline–water mixture, when the flash-boiling point of water is reached
(around 130 ◦C), a large amount of steam is generated, which increases the spray
angle. However, when the temperature overwhelms the flash-boiling condition, in
the 140–160 ◦C range, the spray plume collapse leads to a dramatic drop in the spray
angle.

• By increasing the injection pressure (Pj), the penetration length of the spray generally
augments for a fixed injection temperature. Before the flash-boiling condition, the
angle increases with the injection pressure, due to a promoted nucleation and the
occurrence of micro explosions of bubbles near the nozzle, which make the spray wider.
Beyond the flash-boiling temperature, the spray plume collapse reduces the spray
angle and enhances the axial penetration. This effect is less evident for the lowest
injection pressure, since in this case the spray experiences a higher aerodynamic
drag force beyond the flash-boiling condition that counteracts the axial propagation,
keeping the spray width larger if compared with the sprays with higher Pj values.
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