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Abstract: Low-permeability sandstone reservoirs have been widely used as a gas storage medium
worldwide. Compared with the high porosity and high permeability of sandstone, low-permeability
sandstone may present different mechanical (deformation, damage or failure) and acoustic responses
under cyclic loading-unloading processes caused by the high-rate injection–production of under-
ground gas storage. In this paper, multistage triaxial loading–unloading tests with a continuously
increased upper limit of stress were carried out on low-permeability sandstone under six differ-
ent confining pressures. The results showed that the superposition of stress–strain curves become
much denser in the process of each level of stress. Based on the variation of the elastic modulus of
low-permeability sandstone under alternating loads, the mechanical behavior of low-permeability
sandstone under cyclic loading is divided into three stages: cyclic hardening, stability and cyclic
softening. According to the evolution of acoustic emission (AE) signal parameters, AE counts appear
intensively at the initial stage of each level of stress and then gradually stabilize. The peak frequency
presents the zonal distribution, which is divided into low-frequency, intermediate-frequency and
high-frequency zones. Low confining pressure leads to a small b-value. The RA–AF distribution
implies that the mixed tensile–shear cracks are continuously generated in low-permeability sandstone
during the cyclic loading process, and the shear cracks are more obviously developed.

Keywords: low-permeability sandstone; multilevel cyclic loading; confining stress; deformation;
acoustic emission; microscopic cracks

1. Introduction

Sandstone is the main lithology type of depleted natural gas reservoirs converted into
underground gas storage (UGSD), accounting for more than 60% of UGSDs [1–3]. The
operation of UGSDs is characterized by cyclic high-rate injection and production of natural
gas and frequent perturbation in the local stress state, which may strengthen the damage to
the sandstone structure and affect the operation efficiency of the storage [4–8]. Therefore,
it is important to study the effect of cyclic injection and extraction of gas in sandstone
reservoirs on the damage evolution and development of fractures [9–12].

In recent years, extensive work has been carried out to study the mechanical behavior
response of sandstone under complex stress paths [13–15]. Through a large number of
experiments, it was found that the loading frequency [16], amplitude [17], stress level [13]
and other factors of cyclic loading will affect the deformation behavior of sandstone. In
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addition, compared with simple cyclic loading, the current research pays more attention
to the influence of multifactor synergy on the rock response, including temperature [18],
crack angle [19], dry–wet cycles [20], confining pressure [21], permeability [22], etc. Many
researchers have studied the mechanical response of reservoir low-permeability sandstone
under complex stress paths [23–26]. However, research on cyclic loading under multi-
stage constant amplitude cyclic loading at different formation depths (different confining
pressures) is still limited.

The deformation characteristics of rocks during cyclic loading are difficult to monitor
in real time [27]. The essence of the rock deformation process is the evolution, development,
expansion and combination of microcracks [28,29]. In this process, the strain energy stored
in the rock will be rapidly released in the form of transient elastic waves to produce acoustic
emission (AE) [30]. Therefore, there is a close relationship regarding the deformation
mechanism between the rock and AE. As a nondestructive testing method, AE is widely
used to monitor the crack propagation and damage fracture process in real-time [31].
AE signals include a series of parameters, such as the number of AE events, energy,
frequency and amplitude [32]. At present, most studies have studied the acoustic evolution
mechanism in the process of rock deformation by analyzing the above parameters [33,34].
Most of them focus on the AE characteristics of rock failure under a single stress state, and
research on the AE characteristics of rock under a complex stress state is limited.

In this paper, a series of triaxial cyclic compression experiments were carried out on
low-permeability sandstone under different confining pressures. The loading path was a
combination of constant amplitude cyclic loading and increasing amplitude cyclic loading.
Macroscopically, the failure and deformation mechanism of low-permeability sandstone is
revealed by analyzing the variations in typical mechanical parameters. Microscopically,
the damage evolution process of internal cracks in rocks is analyzed based on real-time
acoustic emission detection.

2. Materials and Methods
2.1. Low-Permeability Sandstone Samples and Test Equipment

The low-permeability sandstone samples used in this experiment were obtained from
Shuanglong Town, ZiZhong County, Neijiang City, Sichuan Province, China. The bulk
density of the low-permeability sandstone was 2400 kg/m3. The porosity and permeability
were 9.3% and 2.7 mD, respectively. The sandstone was composed mainly of quartz (83%),
while clay minerals (e.g., chlorite, illite, kaolinite) accounted for 12.6% and carbonate
minerals (calcite and iron dolomite) accounted for 4.4%. The microstructure of the low-
permeability sandstone, observed by SEM imaging, is shown in Figure 1.
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Figure 1. Microstructure of low-permeability sandstone observed by scanning electron microscopy (a),
and partial enlarged view of clay minerals (b).



Energies 2023, 16, 6821 3 of 18

Fifteen cylindrical samples (50 mm in diameter and 100 mm in height) were used
in triaxial compression experiments that were performed on an electrohydraulic servo-
controlled rock mechanical rigidity tester (MTS815.04), as shown in Figure 2. It consists
of a control system, oil source, loading frame, confining pressure system and various test
fixtures and sensors. The cylindrical sample was enclosed in a heat-shrinkable tube, and
the top and bottom of the rock sample were clamped by pads. Axial and transverse strains
were obtained through strain sensors and extensometers fixed on the surface of the rock
sample with chains.
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Figure 2. MTS815 experimental equipment and low-permeability sandstone samples.

2.2. Experimental Schemes
2.2.1. Experimental Parameters

Low-permeability sandstone reservoirs can also be used to store natural gas in un-
derground gas storage (UGS) projects. Taking the Wen 23 UGS located in the Dongpu
depression in the Henan Province of China as an example, the average porosity and perme-
ability of low tertiary sandstone are 12.2% and 3.42 mD, respectively. It is designed as the
largest UGS in east-central China, with a storage capacity of 10.4 billion m3 [35].

The depths of UGSs in the world vary greatly. Most of the UGSs in Europe and the
United States are constructed at depths of 300–1500 m, while the depths of UGSs in China
are often in the range of 1000~5500 m, mostly at depths below 2000 m. It is meaningful to
study the mechanical characteristics of low-permeability sandstone at different depths (i.e.,
different stress states) considering the alternating loading conditions in UGSs [36]. In this
paper, confining pressures of 5 MPa, 10 MPa, 15 MPa, 20 MPa, 30 MPa and 40 MPa at a
loading rate of 0.05 MPa/min were applied to simulate different buried depths of UGSs.
Two types of triaxial compression tests were carried out. Conventional triaxial compression
experiments can obtain the peak strength of low-permeability sandstone under different
confining pressures. Cyclic loading experiments can be used to simulate the stress-path
variation of a low-permeability sandstone reservoir during the gas injection and extraction
process. The cyclic loading upper limits of 0.4, 0.6, 0.7, 0.8, 0.9 and 1.0 σm were designed
based on the results of Martin et al. [37], considering crack initiation and expansion.

2.2.2. Experimental Procedures

In the conventional triaxial compression tests, the confining pressure was loaded
to the desired value at a rate of 0.05 MPa/s, and then the axial stress was applied to
the top of the sample at a constant displacement loading rate of 0.06 mm/min until the
sample was completely damaged and the peak strength σ was obtained. In the triaxial
cyclic compression experiments, six levels of loading stress (defined as the ratio of loading
stress to static compressive strength) were set at 0.4, 0.6, 0.7, 0.8, 0.9 and 1.0. The lower
limit stress of the cycle was 10 MPa. Each stress level was repeated twenty times. The
specimen was loaded at a rate of 4 kN/s. If failure occured for the sample during the cyclic
loading-unloading process, the experiment was terminated. If failure did not occur after
the designed cyclic loading-unloading experiments, the conventional compression test
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was performed until the sample was destroyed. As shown in Figure 3, the stress path is a
combination of constant-amplitude and incremental-amplitude cyclic loading.
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Figure 3. Schematic diagram of multilevel and multicycle loading paths (I–VI represent six maximum
axial stress levels 0.4σc, 0.6σc, 0.7σc, 0.8σc, 0.9σc, σc).

3. Results and Discussion
3.1. Stress-Strain Curves under Different Confining Stresses
3.1.1. Stress-Strain Curves after Conventional Triaxial Compression Tests

Conventional triaxial compression tests were performed to obtain the peak strength of
the low-permeability sandstone. Figure 4 shows the deviatoric stress-strain curves under
confining pressures of 5 MPa, 10 MPa, 15 MPa, 20 MPa, 30 MPa and 40 MPa. According
to the experimental results, the triaxial compressive strength increases with the increase
in confining pressure. With the rise of confining pressure, the brittleness of the rock
decreases and the plasticity increases. The conventional triaxial compression test results
are summarized in Table 1. The elastic modulus of the rocks increases accordingly with the
confining pressure, but the Poisson’s ratio has no obvious fluctuation.
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Table 1. Basic geometric and mechanical parameters of low-permeability sandstone samples.

Confining
Pressure

(MPa)

Length
(mm)

Diameter
(mm)

Peak
Strength

(MPa)

Peak Strength
under Cyclic Load

(MPa)

Increment
(%)

Elastic Modulus
(GPa)

Poisson’s Ratio
(-)

5 100.44 49.77 83.14 87.51 5.26 16.39 0.29
10 100.45 49.80 104.51 108.27 3.64 18.31 0.32
15 100.65 49.86 116.99 125.38 7.17 17.86 0.29
20 100.56 49.80 132.24 138.31 4.59 19.74 0.24
30 100.57 49.83 155.87 163.63 4.98 19.63 0.24
40 100.42 49.97 173.43 178.16 2.73 22.07 0.29

3.1.2. Stress-Strain Curves after Cyclic Loading-Unloading Triaxial Compression Tests

The deviatoric stress-axial strain curves obtained by multistage cyclic loading-unloading
experiments are shown in Figure 5. Under cyclic loading-unloading processes, the stress-strain
curves of low-permeability sandstone do not overlap, and hysteresis loops appear [38,39].
The strain evolution under different confining pressures presents similar trends, and the
hysteresis loops of each level gradually become dense with the increase in the number of
loading-unloading cycles. At the beginning of the experiments, large plastic deformation
occurred due to the instantaneous increase in the stress, and more plastic strain energy was
absorbed due to the mutual friction between the crystals and the extension of microcracks,
and then the plastic deformation was limited [14]. The larger area of the plastic hysteresis
loop occurred at a high level of the stress state, indicating the accumulation of plastic
deformation related to the sprouting, expansion and merging of cracks in low-permeability
sandstone. In addition, the peak strength of the low-permeability sandstone after multistage
cyclic loading-unloading processes was greater than that of the conventional loading triaxial
compression experiments, which can be explained by the hardening phenomenon due to
the cyclic loading-unloading process [17].
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Figure 5. Deviatoric stress-axial strain curves after cyclic loading-unloading experiments with
different confining pressures. ((a–f): 5 MPa, 10 MPa, 15 MPa, 20 MPa, 30 MPa and 40 MPa).
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3.2. Evolution of Deformation Parameters after Cyclic Loading-Unloading Tests
3.2.1. Evolution of the Elastic Modulus

The linear part of the stress-strain curve at each cyclic loading phase was used to
calculate the dynamic elastic modulus of low-permeability sandstone [40]. Figure 6a shows
the trend of the elastic modulus of low-permeability sandstone samples under different
confining pressures with increasing cycles and stress levels. It can be seen that the evolution
of the elastic modulus has a strong consistency, presenting an obvious step-down trend
with increasing stress level and cycle number, and the decreasing rate is accelerated with
increasing confining pressure.
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Figure 6. Evolution of the elastic modulus: (a) under different confining pressures (I–VI represent six
maximum axial stress levels 0.4σc, 0.6σc, 0.7σc, 0.8σc, 0.9σc, σc); (b–d) under confining pressures of 5,
20 and 40 MPa, respectively.

The evolution of the elastic modulus during the cyclic loading-unloading processes
can be divided into three stages: (I) The growth stage (or the cyclic hardening stage) occurs
when the designed upper limit stress is low. During this stage, the deformation of low-
permeability sandstone caused by cyclic loading is small because the rock is compressed and
the connection between the particles is strengthened under high confining pressures, which
greatly restricts the damage extension [41,42]. (II) The equilibrium stage is represented by
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a near-stable elastic modulus at intermediate stress levels. The equilibrium section appears
earlier under high confining pressure, indicating that a high confining pressure plays a role
in suppressing damage. (III) The decline stage (or the cyclic softening stage) occurs when the
designed upper limit stress is high. After the equilibrium stage, the high stress level and the
increasing number of cycles lead to new cracks and pores, resulting in an obvious damage
effect, especially for rocks under high confining pressure, and the decline in the elastic
modulus is most obvious. Figure 6b–d, taking 5 MPa, 20 MPa and 40 MPa as examples,
shows the elastic modulus increments of the first 5 cycles, the last 15 cycles and each stress
level. The elastic modulus change at each stress level can be divided into two modes: (I) a
rapid increasing or decreasing trend of the elastic modulus at the beginning of cyclic loading
due to obvious deformation under the initiation, connection or closure of microcracks or
pores, and (II) gradual stabilization in subsequent cyclic loading-unloading processes.

3.2.2. Evolution of Irreversible Strain

The elastic deformation of rocks is recovered during unloading, but the irreversible
deformation, also called residual deformation, remains [42,43]. Figure 7a,b shows the
variation in the irreversible axial strain with the number of cycles under different confining
pressures. When the confining pressure is low (5 MPa, 10 MPa and 15 MPa), the irreversible
axial strain of the low-permeability sandstone decreases with an increase in confining
pressure, reflecting that a high confining pressure can inhibit the initiation and development
of cracks [14]. However, when the confining pressure is high (20 MPa, 30 MPa and 40 MPa),
the plastic strain increases with an increase in confining pressure.

Energies 2023, 16, x FOR PEER REVIEW 8 of 20 
 

 

 

Figure 7. Variation in the axial irreversible strain with the number of cycles under the cyclic loading 

process: (a) with confining pressures of 5, 10 and 15 MPa; (b) with confining pressures of 20, 30 and 

40 MPa. 

3.3. Acoustic Emission (AE) Characteristics during Cyclic Loading‒Unloading on Low-Permea-

bility Sandstone 

3.3.1. AE Count Characteristic Analysis 

Time domain features such as acoustic emission (AE) count, AE energy, RMS and 

information entropy can be used to analyze the deformation, damage and failure evolu-

tion of rocks [44–46]. AE count analysis can reveal the development of internal mi-

crocracks during the stress loading‒unloading process. Figure 8 shows the relationship 

between axial stress, AE counts (cumulative counts) and test time under different confin-

ing pressures. With increasing stress level, the accumulated AE counts showed a step in-

crease trend, and the increase rate of the accumulated AE counts gradually increased. This 

indicates that the development rate of cracks and microcracks in the rocks gradually in-

creases with increasing stress level. At the beginning of the loading phase, a large number 

of intensive AE count signals are generated, and then the count signals are sparse and 

remain constant. This is because the rock sample is instantaneously compressed in the 

axial direction at the beginning of each stress level, resulting in the variation in internal 

structure with the initiation and expansion of microcracks; thus, the AE activity increases 

accordingly [33]. Afterwards, the cracks develop slowly, and the internal structure does 

not change, stabilizing AE activity. Several jump points of AE counts occur during the 

steady deformation of one loading stage, as shown in Figure 8, indicating that the interior 

structure of the rock samples is damaged, causing the accumulated strain energy to be 

released and the sudden changes in the AE count.  

0 20 40 60 80 100 120
1.0

1.5

2.0

2.5

3.0

0 20 40 60 80 100 120
1

2

3

4

5

Cycles / n

  5 MPa

 10 MPa

 15 MPa

Ir
re

v
er

si
b

le
 s

tr
a
in

 (
1
0

-3
)

Ir
re

v
er

si
b

le
 s

tr
a
in

 (
1
0

-3
)

a

Cycles / n

 20 MPa

 30 MPa

 40 MPa

b

Figure 7. Variation in the axial irreversible strain with the number of cycles under the cyclic loading
process: (a) with confining pressures of 5, 10 and 15 MPa; (b) with confining pressures of 20, 30 and
40 MPa.

3.3. Acoustic Emission (AE) Characteristics during Cyclic Loading-Unloading on
Low-Permeability Sandstone
3.3.1. AE Count Characteristic Analysis

Time domain features such as acoustic emission (AE) count, AE energy, RMS and
information entropy can be used to analyze the deformation, damage and failure evolution
of rocks [44–46]. AE count analysis can reveal the development of internal microcracks
during the stress loading-unloading process. Figure 8 shows the relationship between axial
stress, AE counts (cumulative counts) and test time under different confining pressures.
With increasing stress level, the accumulated AE counts showed a step increase trend,
and the increase rate of the accumulated AE counts gradually increased. This indicates
that the development rate of cracks and microcracks in the rocks gradually increases with
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increasing stress level. At the beginning of the loading phase, a large number of intensive
AE count signals are generated, and then the count signals are sparse and remain constant.
This is because the rock sample is instantaneously compressed in the axial direction at
the beginning of each stress level, resulting in the variation in internal structure with the
initiation and expansion of microcracks; thus, the AE activity increases accordingly [33].
Afterwards, the cracks develop slowly, and the internal structure does not change, stabiliz-
ing AE activity. Several jump points of AE counts occur during the steady deformation of
one loading stage, as shown in Figure 8, indicating that the interior structure of the rock
samples is damaged, causing the accumulated strain energy to be released and the sudden
changes in the AE count.
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Figure 8. Relationship between axial stress, AE count (cumulative count) and time under different
confining pressures: (a–f) represent 5 MPa, 10 MPa, 15 MPa, 20 MPa, 30 MPa and 40 MPa, respectively.
(Red: AE count; Blue: AE Cumulative Count; Black: Axial Stress).

To further investigate the continuous development of cracks in low-permeability
sandstone in a single cycle at different stress levels, Figure 9a–f shows the relationship
between AE counts and time at the first five cycles of each stress level stage with a confining
pressure of 10 MPa. Frequent and intensive AE count signals appeared in the initial period
of each level, and then the activity of AE signals gradually decreases with the increase in
the number of cycles. This corresponds to the initial and stable deformation in the rock
samples at each level of stress. With increasing stress level (stages 1–6), the peak value
and activity of the AE signal gradually increase, indicating that the internal microcracks
in the rock sample continue to develop as the stress level increases. Compared with the
unloading stage, there are more AE count signals in the loading stage, which indicates that
the microcracks in the rock sample are obviously developed in the bearing stage.
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Figure 9. The evolution of AE counts with time in the first 5 cycles of axial stress loading and
unloading process under a confining pressure of 10 MPa. (stage 1~stage 6 represent six different
maximum axial stress levels 0.4σc, 0.6σc, 0.7σc, 0.8σc, 0.9σc, σc).

3.3.2. Frequency–Amplitude Characteristics Analysis

Frequency is a critical parameter for analyzing the rock failure mechanism and re-
vealing the internal stress state of rocks during loading. Different AE frequencies reflect
different source mechanisms and types of cracks. Low-frequency AE signals correspond to
large-scale cracks, whereas high-frequency AE signals correlate with small-scale cracks.

Figure 10 shows the variation in peak frequencies with time during the cyclic loading-
unloading process. The peak frequency of rocks under cyclic loading is mainly concentrated
in three frequency bands: low frequency, medium frequency and high frequency. Medium-
frequency signal events widely exist throughout the cycle, and low-frequency and high-
frequency signal events are few. Under low confining pressures (5 MPa, 10 MPa and
15 MPa), low-frequency signals only appear when the stress level increases, and their
number is small; a high-frequency signal is concentrated in the final monotonic loading
section. Under high confining pressures (20 MPa and 30 MPa), low-frequency signals
and high-frequency signals only appear at high stress levels and in the final monotonic
loading section; however, some lower-frequency (approximately 100 kHz) signals appear
in the intermediate-frequency signal range. When the confining pressure is 40 MPa, the
high-frequency signal is continuous and dense. This indicates that a higher stress level
and confining pressure tend to cause denser cracks. Under high confining pressure, the
intermediate-frequency signal of each stress level gradually decreases with the increase of
the number of cycles, which may be because the sudden increase in stress level leads to
the formation of cracks, and then the crack development gradually stabilizes. It is worth
mentioning that when the number of AE events of low, intermediate and high frequencies
increases simultaneously (simultaneous multifrequency response) due to the initiation of
cracks, the range of the peak frequency zone becomes wider [47], as shown in Figure 10.
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Figure 10. Variations in peak frequency with time during cyclic loading: (a–f) represent 5, 10, 15, 20,
30 and 40 MPa confining pressure. (Blue part is low frequency, green part is intermediate frequency
and yellow part is high frequency).

The amplitude signal is also a key factor in describing the damage and failure of
rocks [48]. Figure 11a–f show the relationship between the peak frequency and the normal-
ized peak amplitude of AE. The medians after the peak amplitudes were normalized are
0.518 at 5 MPa, 0.55 at 10 MPa, 0.479 at 15 MPa, 0.62 at 20 MPa, 0.56 at 30 MPa and 0.55 at
40 MPa, respectively. The peak amplitude is accordingly divided into low and high compo-
nents. AE signals with median and high-peak frequencies are generally characterized by
high-peak amplitude, and different confining pressures present similar trends. The higher
the confining pressure is, the denser the high-frequency signal is, which indicates that the
internal cracks of the high confining pressure rock sample develop actively.

To better analyze the spectral frequency characteristics, the AE signals are classified
into six types according to the peak frequency (low, intermediate and high) and amplitude
(low and high) [33], as shown in Figure 12, which shows the variation in peak frequency,
amplitude and stress with time under different confining pressures. Overall, the high-
amplitude medium-frequency (HAMF) signal and the low-amplitude medium-frequency
(LAMF) signal always existed throughout the experiment, and the initial appearance time of
the other signals are described in Table 2. High-amplitude high-frequency (HAHF) signals
appear sparsely when the low permeability sandstone is damaged under low confining
pressures (5, 10 and 15 MPa). HAHF signals appear densely when the cyclic stress is
close to peak strength and the sandstone samples are at failure under high confining
pressures (20, 30 and 40 MPa). This means that the appearance of HAHF signals represents
a drastic change in the upper limit of the cyclic stress on the sandstone or that the sandstone
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samples are damaged. The appearance of low-amplitude low-frequency (LALF) signals
and low-amplitude high-frequency (LAHF) signals indicates that samples have begun
to rupture.

Table 2. Statistics of the initial occurrence time of different signals.

Samples HAHF LAHF HALF LALF

TS-5 Failure -- Stage4-No.2 Stage6-No.1
TS-10 Stage1-No.1 -- -- Stage4-No.17
TS-15 Stage4-No.2 Failure Stage1-No.1 Stage1-No.1

TS-20 Stage2-No.1 Stage6-No.1
(More at Failure) Failure Stage1-No.3

(More at Failure)
TS-30 Stage5-No.1 Failure -- Failure
TS-40 Stage1-No.1 Stage1-No.1 -- Stage6-No.6
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Figure 11. Relationship between peak frequency and normalized amplitude under different confining
pressures ((a–f): 5 MPa, 10 MPa, 15 MPa, 20 MPa, 30 MPa and 40 MPa; the red line is the median
after normalization of the amplitude).
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Figure 12. Variations in peak frequency, amplitude and axial stress with time under different confining
pressures ((a–f): 5 MPa, 10 MPa, 15 MPa, 20 MPa, 30 MPa and 40 MPa).

3.3.3. b-Value Analysis

The b-value is widely used to describe the evolution of crack initiation and develop-
ment to distinguish between macroscopic and microscopic cracks [49]. The well-known
“G-R” law can describe the relationship between frequency and amplitude [50]:

M =
AdB
20

(1)

log10 N = a − bM (2)

where M denotes the AE magnitude, AdB is the peak amplitude of the AE event, N is the
number of AE signals with amplitudes greater than AdB, a is the fitting parameter and b is
the b-value. According to the acquisition frequency of the acoustic emission experiment,
every 5AdB is set as a calculation period to prevent a large error due to a small calculation
interval; that is, the magnitude M increases sequentially by 0.25.

The overall magnitude and variation trend of the b-value are closely related to the
development of cracks in the rocks. A high b-value indicates slow initiation and expansion
of microcracks and an increased proportion of small-amplitude AE events. Conversely,
a low b-value indicates rapid or unstable crack initiation and an increased proportion of
large-amplitude AE events [51,52].
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To quantitatively study the amplitude characteristics of the AE signal during cyclic
loading, Figure 13a–f show the statistical distribution of the peak amplitude of low-
permeability sandstone during cyclic loading under different confining pressures. With an
increase in confining pressure, the amplitude range of AE has no obvious change. The AE
amplitude of low-permeability sandstone under different confining pressures is mainly in
the range of 40–45 dB, the average value of AE amplitude is approximately 45 dB, and the
median value is 44–45 dB. With the increase in AE amplitude, the AE count and amplitude
under different confining pressures show similar variation trends. The AE counts in each
amplitude range gradually decrease. The relationship between AE count and amplitude
can be described by an exponential function, and the coefficients of determination (R2)
are 0.97, 0.85, 0.82, 0.96, 0.91 and 0.92 under confining pressures from 5 MPa to 40 MPa
(Figure 13).
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Figure 13. Statistical distribution of macroscopic AE counts under cyclic loading ((a–f) represent
the confining pressures of 5 MPa, 10 MPa, 15 MPa, 20 MPa, 30 MPa and 40 MPa; blue line is the
cumulative curve of macroscopic AE counts, and the red line is the fitting curve of amplitude and
macroscopic AE counts).

By fitting the straight-line part of the accumulated magnitude distribution curve, the
slope of the fitted line is b, and the intercept is a. Figure 14a shows the b-value of the AE
signal and the fitting curve used to determine the b-value. The fitting coefficient is high,
which shows that the b-value obtained by using the AE data is relatively accurate [53].
The b-values at confining pressures of 5, 10, 15, 20, 30 and 40 MPa are 1.976, 2.055, 2.069,
2.1746, 1.968 and 2.3273, respectively. This indicates that the b-value shows an increasing
trend with increasing confining pressure, indicating that crack initiation is faster and more
unstable at low confining pressure than under high confining pressure.
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Figure 14. Changes in the b-value in the process of cyclic loading: (a) equation fitting to obtain
the b-value; (b) the relationship between the b-value and loading stages. A–F refer to the first to
sixth stages, respectively, and G–J refer to 1/4, 1/2, 3/4 and 1 of the monotonous loading stage,
respectively.

To better reflect the damage mechanisms of low-permeability sandstone during cyclic
loading and unloading, Figure 14b shows the evolution of the b-value under different
confining pressures with increasing cycle number and stress level. It can be divided into
the fluctuation stage of cyclic loading (first to sixth stress level) and the decreasing stage
of monotonic loading. At the beginning of the cyclic phase, the b-value fluctuates slightly,
showing a decreasing trend at first, and gradually increasing as the stress level increases. In
the monotonic loading phase, the b-value is greater than that of the cyclic loading phase, and
it shows a declining trend. Larger b-values indicate relatively larger fractures in rocks [53],
and decreasing b-values indicate that the rocks are approaching the damage state [54,55].
Thus, a decreasing and then increasing b-value implies that internal damage gradually
occurs in rocks during the cyclic loading-unloading process, followed by unstable extension
and coalescence of fractures. Larger-scale cracks occurred in the monotonic loading process
compared with those of the cyclic phase. The b-value underwent a drastic fluctuation
throughout the loading process, which indicates that the damage behavior of the rocks is
more complex during the experiment and should be further analyzed.

3.3.4. RA–AF Distribution Analysis

The RA (ratio of the rise time to the amplitude)–AF (ratio of the number of hits to
the duration) distribution of AE events is widely used to determine the failure modes
of various materials [36,49–52]. Generally, AE signals due to tensile damage of rocks are
characterized by high AF and low RA, while AE signals obtained from shear damage
exhibit the opposite characteristics [34,56,57]. Therefore, the damage pattern and evolution
of damage in low-permeability sandstone under a complex stress state can be analyzed by
the RA–AF value.

Figure 15 shows the trend of the RA–AF distribution during cyclic loading and un-
loading of low-permeability sandstone under different confining pressures and the range of
distribution of RA and AF (90% of the values are within the general value range). The RA
and AF values of samples with different confining pressures (5–30 MPa) exhibited similar
variation trends. At a low stress level (stage 1–5), the RA–AF value only rises when the
stress level increases, and then the fluctuation gradually stabilizes. As the stress level grad-
ually reaches the peak strength of low-permeability sandstone, the RA–AF value gradually
increases. This indicates that the abrupt increase in stress causes obvious initiation and
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propagation of cracks in rocks. The AF value increases slightly at the beginning of each
stress level and then fluctuates steadily. The RA value not only increases significantly at
the initial stage of each stress level, but also has multiple jump points that increase sharply
by several times in the constant amplitude period. This may imply that the tensile and
shear cracks are continuously generated in rocks, and shear cracks develop distinctly. At
high stress levels (stage 6), the RA–AF values are continuous and intensive. In addition,
the RA–AF value under a high confining pressure (40 MPa) is generally larger than that
under other confining pressures.
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Figure 15. Variation in RA and AF during cyclic loading under different confining pressures (red and
blue lines represent RA and AF, respectively, and brown lines represent stress paths).

4. Conclusions

Low-permeability sandstone reservoirs of depleted gas fields can also be used to store
natural gas. In this paper, both conventional triaxial compression tests and multistage
constant and incremental amplitude cyclic loading-unloading experiments were carried
out on low-permeability sandstone specimens under different confining pressures. The me-
chanical properties of low-permeability sandstone were systematically studied considering
the impacts of confining pressure, number of cycles and cyclic stress level, and the analysis
of acoustic emission signals was used to indirectly reflect the initiation and propagation of
microcracks in rocks. Some main conclusions are drawn as follows:

1. Compared with conventional triaxial compression experiments, the peak strength of
the low-permeability sandstone increased slightly (less than 10%) after multi-stage
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constant-amplitude cyclic loading and unloading processes. Based on the variation
characteristics of the elastic modulus, the mechanical behavior of low-permeability
sandstone under cyclic loading is divided into three stages: the cyclic hardening stage,
the mechanical stability stage and the cyclic softening stage.

2. The evolution of AE counts implies that microcracks in rocks develop actively and
then gradually stabilize at the initial stage of each level of stress. The evolution of the
AE cumulative count shows that the internal cracks of low-permeability sandstone
develop obviously with an increase in confining pressure and stress level.

3. The AE frequency signals show a zonal distribution, and they present the same
trends under different confining pressures. The intermediate-frequency signals are
the dominant type, and the low-frequency and high-frequency signals only appear
under high stress, indicating that large cracks appeared under high-stress conditions.

4. The variation of the AE b-value reflects that the internal cracks of rocks initiate faster
under low confining pressure than under high confining pressure. The decrease in the
b-value in the cyclic loading and unloading stage indicates that damage occurs in the
rocks, while the increase in the b-value in the monotonic compression stage indicates
that larger cracks initiate in the rocks. The distribution of the RA–AF value shows
that the mixed tensile–shear cracks are continuously generated in low-permeability
sandstone during the cyclic loading process, and the development of shear cracks is
more obvious.
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