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Abstract: This article presents an approach to locating wind farms based on open-source data, GIS
software (QGiS v.3.32 Lima), and multicriteria decision-making methods such as AHP, TOPSIS and
Borda. The article aims to check the availability of the most suitable sites for wind farms in Podlaskie
Voivodeship, Poland. After the site-selection process, 704 plots were selected after three stages of
exclusion (technical–natural, social, and economic). These plots cover a total area of 32.50 km2, about
0.16% of the region’s area. The results show that Podlaskie Voivodeship has the most considerable
clustering of suitable sites for wind farm construction in three districts, with a total area of 21.53 km2.
The first district is in the southwestern part of the region, with an area of 14.84 km2; the second district
is in the southeastern part of the region, with an area of 5.59 km2; and the third district is in the
northern part of the region, with an area of 1.1 km2. A selected area of 32.50 km2 for wind farms and
single turbines could increase the power capacity by 62% with 131.5 MW. The GIS and multicriteria
decision analysis (MCDA) methodology is repeatable and can be used for further research in other
voivodeships in Poland and other countries. International and Polish investors and renewable energy
sources (RESs) developers can use the research results to select new locations for investments that fit
their strategy in the local market.

Keywords: site-selection process; onshore wind farms; GIS; MCDA; AHP; TOPSIS; Poland

1. Introduction

The world is shifting towards sustainable energy sources, and wind energy signifi-
cantly contributes to reducing greenhouse gas emissions and combating climate change [1].
This is indicated in research by Chaurasiya and Kuo, emphasising the importance of re-
ducing greenhouse gas emissions. Wind farms are installed rapidly, e.g., by 33% in the
EU in 2022 [2]. More than 38,000 large offshore wind turbines will be installed across the
globe by 2036, significantly adding to the world’s renewable energy capacity. By the end
of 2023, the industry will reach a historic milestone—1 terawatt of wind energy installed
worldwide [3,4]. However, the question of where to place new wind farms has become a
topic of intense scientific research and public discussion due to the increasing demand for
clean energy [5,6].

As we work towards a sustainable energy future, it is crucial to identify suitable
locations for wind farms. Factors such as wind resource potential (wind speed) [7,8], land
availability (land cover classification) [9], impacts on nature and humans (the aesthetic of
the landscape, acoustic environment, shadow flickering, and wind turbines electromag-
netic interference) [10], social acceptance (survey with the use of the questionnaire and
the analysis of the content of strategic documents of the voivodeships) [11,12], and grid
integration (distance to the power grid and roads) [13,14] all play an essential role in the
successful development and operation of wind power projects.
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Studies have been conducted on different aspects of this topic to overcome the difficul-
ties related to wind farm localisation. One area of research has focused on finding more
accurate ways to assess wind resources, which has helped pinpoint the best locations for
wind farm development. Łaska [15] analysed nine multicriteria analyses based on nine
criteria (environmental, social, and economic) for siting 15 turbines in Northeastern Poland.
Santos-Alamillos et al. [16] utilised the principal component analysis (PCA) to examine the
spatiotemporal balancing of wind energy resources and evaluated the ideal wind farm loca-
tion to minimise fluctuations in wind power. Additionally, advanced computer modelling
and geospatial analysis tools have been utilised to analyse the potential effects of wind
farms on wildlife, habitats, and visual landscapes, making it easier to choose sustainable
locations that minimise environmental impacts [17,18].

Apart from environmental protection, local communities’ approval of wind farms is
crucial. Some communities welcome wind energy as a chance for economic growth [19,20]
and decreasing greenhouse gas emissions [21]. A 2 MW wind turbine with a hub height
from 80 m to 120 m and a 20-year lifespan will reduce greenhouse gas emissions from
3.1 × 106 kg CO2 to 3.57 × 106 kg CO2, respectively, compared with traditional fossil
fuel [1]. Meanwhile, others analysed visual beauty [22,23] and potential effects on property
values [24,25]. Also, an important factor is an acoustic environment with an acoustic noise
level of 50 dB at nighttime and 55 dB during the day [26]. To reach this goal, the acousticians
and the power engineers are looking for the best wind turbine model with a low acoustic
emission [27]. Based on the simulations conducted by Ruggiero et al. [28], the noise levels
near the turbines are around 55 dBA with average wind speed conditions, while the noise
levels in the surrounding area are lower. It is considered compatible with daily human
agricultural activity.

Experts are evaluating how changes in Polish law regarding renewables in 2023 will
impact the Polish market [29]. The capacity of onshore wind power has been steadily
increasing over the years, with a growth of 10.6% recorded in 2022, rising from 6.61 GW
to 7.31 GW [30]. In addition, energy production also significantly increased by 28%, from
14,234 GWh to 18,305 GWh, according to the Polish Energy Regulatory Office [31]. By the
end of March 2023, the capacity of onshore wind power increased by 17.9% to 8.57 GW [32],
now representing 10% of the total energy produced in Poland [29].

Another critical factor is the distance to the urban areas, where, after changes in the
ACT on investments in wind power plants of 9 March 2023, liberalisation from the 10H
rule to 700 m was made [33]. Experts say that reducing the limits from 700 m to 500 m to
the urban areas could give 7–8% of the area with a theoretical power capacity of 6 GW [34].
They consider that it gives an extra 4–5% of new areas for further investments with a
theoretical power capacity of 4–5 GW [35].

While there is a growing demand for clean energy and the rapid expansion of wind
farms globally, the specific process of selecting optimal sites in the Podlaskie Voivodeship
using GIS and multicriteria decision-making methods has not been thoroughly explored.

Finding locations that balance clean energy production with environmental protec-
tion [36,37], economic feasibility [38], and social acceptance [39] is crucial as the demand
for renewable energy like wind power grows [40].

The novelty of the research is a holistic approach to site selection by integrating a set of
criteria and using GIS and multicriteria decision analysis (MCDA) methods. This approach
allows for spatial analysis and data-driven decision making, enhancing the accuracy and
objectivity of the site selection process. The research focuses on a specific region, Podlaskie
Voivodeship, providing localised insights into the potential for wind farm development.
The study offers practical implications for international and Polish investors, renewable
energy developers, and local authorities. Identifying 704 potential plots and three specific
districts with high suitability for wind farm construction provides actionable information
for stakeholders looking to invest in clean energy projects.
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Mathematical modelling was conducted using a set of 11 criteria and three multicriteria
decision methods: AHP, TOPSIS, and Borda. The article also presents a map of appropriate
sites for further investigation created in the QGiS program.

2. Materials and Methods
2.1. Materials

In the analysis of potential wind farm locations, we utilised data from various databases:

• The National Database of Topographic Objects with a resolution of 1:10,000 (BDO-
T10k) [41–43];

• A digital elevation model (DEM) [44,45];
• Surface forms of nature protection in Poland managed by the General Directorate for

Environmental Protection (GDOŚ) [46];
• The land cover classification gridded map managed by the European Space Agency

and Copernicus Services (the Earth observation component of the European Union’s
space programme) [47];

• The land cover table used for the land cover classification gridded map [48];
• The flood hazard areas map (ISOK project), powered by the Institute of Meteorology

and Water Management (IMGW) [49,50];
• Maps of mean wind speed and power density of air at 100 m managed by Global Wind

Atlas [51];
• Locations of currently built wind farms in the region from OpenStreetMap [52].

In the analysis of wind farm locations, the BDOT10k layers were used with data about
communication networks, water networks, land development, land cover, etc (Table 1).
Various factors were taken into account in the study, such as distances to water bodies and
wetlands, protected nature areas and forests due to ecological, distances to urban areas
due to legal, distances to roads, power grids, and the minimal area for one wind turbine
due to technical and economic restrictions. To eliminate hilly terrain, mountains, and areas
with extensive earthworks, a slopes map was generated using DEM data. The analysis also
excludes areas of natural hazard related to floods.

Table 1. GIS layers from BDOT10k were used in the analysis of potential wind farm locations.

Name of the Category Xcode Class’s Name Xcode Description

Water network

SWRS Rivers and springs
SWRS01 Rivers

SWRS02 Springs

SWKN Channels SWKN01 Channels

SWRM Drainage ditch SWRM01 Collective drainage ditch

OIMK Wetland
OIMK01 Swamp

OIMK02 Wetland

PTWP Surface water
PTWP02 Running water

PTWP03 Standing water

Urban area

PTZB Buildings

PTZB01 Multifamily housing

PTZB02 Single-family housing

PTZB04 Commercial and service buildings

BUBD Buildings

BUBD01 Single-family housing

BUBD02 Two-flat buildings

BUBD03 Buildings of three or more flats

BUBD04 Collective residence buildings

BUBD05 Hotels

BUBD06 Tourist accommodation buildings, others

BUBD07 offices

BUBD08 Commercial and service buildings
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Table 1. Cont.

Name of the Category Xcode Class’s Name Xcode Description

Power grid SULN Overhead power lines

SULN01 Extra-high-voltage power line

SULN02 High-voltage power line

SULN03 Medium-voltage power line

Roads SKDR Type of road

SKDR02 Expressway

SKDR03 Accelerated main road

SKDR04 Main road

SKDR05 Collector road

SKDR06 Local road

SKDR07 Access road

SKDR08 Other roads

Forests PTLZ Forest PTLZ01 Forest

Permanent crops PTUT Type of permanent crops

PTUT01 Allotment garden

PTUT02 Plantation

PTUT03 Garden

PTUT04 forest nursery

PTUT05 plant nursery

Land use complexes

KUSC Sacral complex and
cemetery

KUSC01 cemetery

KUSC02 sacral or monastic complex

KUZA Historic and historical
complexes

KUZA01 national memorial

KUZA02 museum

KUZA03 fortress or stronghold

KUZA04 Museum complex

KUZA05 Palace complex

KUZA06 Castle complex

Territorial divisions ADMS City
ADMS01 City

ADMS02 Part of city

Land cover PTWZ Excavations and heaps PTWZ01 Open pit

PTWZ02 Heap

2.2. Methods

The multicriteria decision analysis (MCDA) allows for a set of admissible solutions
to be determined and, based on a defined set of criteria for evaluating individual results,
allows for the optimal solution to be found. These methods are among the multicriteria
optimisation methods in which the domain of the decision variables is a finite set of values.
Decision variables are to be understood as quantities that influence the value of the synthetic
evaluation index of individual solutions [53,54]. The result of conducting a multicriteria
analysis is the selection of the best solution from among a number of alternatives. The
selection is based on various criteria that significantly impact the solution’s implementation
and performance. The criteria are like factors designed to increase or decrease the suit-
ability of a particular decision option. Different criteria are assigned different preferences,
thus effecting the final outcome of the multicriteria analysis. The criteria that form the
basis of decision making are measured or evaluated. Individual options are qualified or
excluded during the decision-making process due to the requirement to consider specific
constraints [53].

In solving decision-making problems, consideration is given to the following:

• A set of options from which the best one is chosen;
• A set of decision criteria;
• The set of weights assigned to the decision criteria;
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• A decision matrix containing the values obtained by the variants in light of each criterion.

The criteria in multicriteria analyses are either “hard” or “soft” in nature [53,55]. The
analysis of the problem in the case of “hard” criteria leads to a solution that is the sum
or product of events. The “hard” criteria allow for a map to be created showing the areas
that match or do not match the accepted conditions. The combination of “hard” criteria
makes it possible to find a common part. The “soft” criteria make it possible to determine
the degree of suitability of the areas in question for the stated purpose of the analysis. Soft
criteria are used when the decision criteria are very heterogeneous in nature. The results
with “soft” criteria are less clear-cut than with “hard” criteria [53].

MCDA methods are applied in many fields; they are used, among others, in the cre-
ation of structural and spatial classifications of specific areas, in the valorisation of areas, in
the development of optimal strategies for the development of territorial units, in determin-
ing the suitability of land for specific functions (mixed, service, industrial, protective, and
natural), in the management of environmental resources, in the assessment of the impact of
planned investments and activities on the environment, and in the resolution of conflict
situations in spatial management [53,56,57].

We divide multicriteria decision support into utility functions, relationship outranking,
distances, and decision support methods (Figure 1).
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2.2.1. The AHP Method

The AHP method is a versatile tool for solving many decision-making problems. In
the analysed method, the evaluations of the options or criteria are generally subjective in
nature, as they indicate the different preferences of the decision-maker. The final result
of the multicriteria analysis often depends on the stated objectives and preferences of the
decision-maker. The advantage of the AHP method is the ease of combining evaluations
of criteria of a quantitative and qualitative nature. It is used, among other things, in
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marketing research and management decision support, in product attractiveness rankings,
in the analysis of market competitiveness factors, in supporting the selection of bidders or
suppliers, or in supporting the selection of the best alternative [53,58,59].

The AHP method allows users to determine the mutual importance of criteria or
decision alternatives in relation to individual criteria by comparing criteria in pairs and
comparing decision alternatives in pairs in light of the criteria adopted for their evaluation.
The method uses a relative rating scale defined by Saaty [60] (pp. 5–7).

The AHP method is characterised by not assigning weights to the adopted criteria and
decision options directly. The method operates only on the relative ratings determined in
pairwise comparisons; as a result, this procedure allows the weights to be determined [53].
The calculation procedure in the AHP method is based on three principles [61]:

• The principle of “constructing a hierarchy”;
• The “prioritisation” principle;
• The principle of “logical” consistency [60].

The AHP method is implemented in five steps [53]:

1. The construction of a hierarchical model, including decomposition into components
and determining the hierarchy of criteria.

2. A pairwise comparison evaluation involves creating quadratic matrices for each
hierarchy level. These matrices, known as preference matrices, exhibit pairwise
consistency (1):

pi,j = 1
pi,j = 1/pi,j

(1)

The creation of the comparison matrix is performed by initially determining the ratings
according to the Saaty scale [60] (the pi,j value determining the degree of dominance of
one element over the other in each pair of elements being compared (i) and (j)) and then
completing the comparison matrix:

• When (i) = (j), then pi,j = 1 is assumed;
• When (i) 6= (j), then pi,j = 1/pi,j is taken;
• When there is no evaluation, then pi,j = pi,j is taken.

3. Global and local preferences are determined by the components of the eigenvector (w)
of the comparison matrix, P, which is associated with the maximum eigenvalue, λmax.
The determination of preferences from the pairwise comparison matrix is performed
by various methods, including the following:

• The column averaging method of the evaluation matrix (the so-called Saaty method);
• The power method;
• The right-hand eigenmatrix method.

The method of averaging the columns of the rating matrix (P) consists of two steps: the
normalisation of the rating matrix (P
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P̂) and the determination of preferences based on
the elements of the normalised matrix. The normalisation of the matrix consists of summing
the elements contained in each column and dividing by the resulting sum the subsequent
elements of the column [53]. Subsequently, preferences are determined as values that are
the arithmetic mean of the elements, p̂i,j, in the individual rows ((i) = 1, 2, . . ., (m)) of the
normalised matrix (2):

wi =
1
m∑m

j=1 p̂i,j. (2)

The power method involves raising the rating matrix (P) to successive powers and
determining, in each successive step, the arithmetic averages of the individual rows of
the resulting matrix, which is a successive power of the initial matrix. The normalised
values are obtained by dividing the values of these averages by their sum, creating a
potential vector of weights/preferences (w) of the individual attributes whose pairwise
comparison formed the basis for the creation of the matrix, P. The process of normalising the
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components of the vector of weights makes it possible to obtain successive approximations
that are comparable with each other [53].

The right-hand eigenmatrix method is recommended by Saaty [62] for determining
preferences. It is one of the complex methods for which it is necessary to use appropriate
numerical computing systems [53].

4. Verify the rating consistency from pairwise comparisons and calculate the consistency
index (CI) to assess the quality of subjective assessments (3). The (CI) determines
transitivity in dominance assessment. The consistency ratio (CR) is then computed by
dividing the (CI) by the (RI) value (4):

CI =
λmax − n

n− 1
(3)

where n is the dimension of the comparison matrix, and λmax is the maximum eigenvalue
of the comparison matrix.

CR =
CI
RI

, (4)

where (RI) is a reflection of the disagreement ratio of the evaluations, being the mean (CI)
for a large number of randomly generated comparison matrices ((RI) values according
to [62]).

5. Decision options are classified by calculating the aggregate utility function value for
each option, resulting in a final ranking.

2.2.2. The Borda Method

The Borda method involves applying the adopted ordinal scale to all criteria and
considering the options in light of successive criteria numbered from 1 to n in order from
best to worst. When several variants rank equally in a particular ranking, it is permissible
to apply a score averaging for them [53,63–65]. The best variant has the highest value of
the so-called Borda number (5):

bi =
n

∑
j=1

(
m−mi,j

)
(5)

where mi,j is the order of option (i) in light of criterion (j), with (i) = 1, 2, . . ., (m),
(j) = 1, 2, . . ., (n).

In order to take into account the importance of each criterion, the Borda number can
be modified by using a weighted SAR summation index, which, in the case of the Borda
number, has the following form (6):

Ui =
1
m

n

∑
j=1

(
m−mi,j

)
(6)

with restrictions (7):
n
∑

j=1
wj = 1,

wj ≥ 0.
(7)

2.2.3. Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

TOPSIS is a user-friendly method, thus making it easy to comprehend and utilise [66,67].
Another major advantage of TOPSIS is its capacity to incorporate both quantitative and
qualitative factors, making it a versatile solution for various decision-making scenarios.
However, it is worth noting that this method may not be the most suitable choice for
all situations, as it can be sensitive to changes in criteria weights and relies on certain



Energies 2023, 16, 7107 8 of 24

assumptions about linear relationships. Despite these limitations, TOPSIS has proven to
be an effective solution in many fields, including project selection, supplier evaluation,
product design, environmental management, and healthcare.

The TOPSIS method is implemented in seven steps:

1. Create a decision matrix with alternatives and criteria. It is an m x n matrix, where
m is the alternatives and n is the criteria, showing each alternative’s performance on
specific criteria.

2. Normalise the decision matrix to equalise criteria weights. This step eliminates scale
differences between criteria. Normalise each element using Equation (8), as specified:

x∗ij =
xij√

∑m
i=1 x2

ij

(8)

where xij is the element in the (i)-th row and (j)-th column of the decision matrix, and x∗ij is
the normalised value.

3. Determine the weighted normalised decision matrix by assigning weights to criteria
based on their relative importance (summing up to 1). Multiply each element of
the normalised decision matrix by its corresponding weight to obtain the weighted
normalised decision matrix (9):

vij = wj · x∗ij (9)

where vij is the element in the (i)-th row and (j)-th column of the weighted normalised
decision matrix, and wj is the weight assigned to the (j)-th criterion.

4. Calculate the ideal and negative–Ideal solutions to represent the best and worst
performances on each criterion. Identify the maximum and minimum values among
all alternatives for each criterion. Ideal solution (10):

A+ =
[
max

(
v1j
)
, max

(
v2j
)
, . . . , max

(
vmj
)]

(10)

Negative–ideal solution (11):

A− =
[
min

(
v1j
)
, min

(
v2j
)
, . . . , min

(
vmj
)]

(11)

5. Calculate the Euclidean distances between each alternative and the ideal and negative–
ideal solutions. This measures the similarity between an alternative and the ideal or
negative–ideal solutions. Ideal solution (12):

S+
i =

√
∑n

j=1

(
vij − A+

j

)2
(12)

Negative–ideal solution (13):

S−i =

√
∑n

j=1

(
vij − A−j

)2
(13)

where S+
i and S−i are the Euclidean distances of the (i)-th alternative from the ideal and

negative–ideal solutions, respectively.

6. Calculate the relative closeness to the ideal solution by finding the ratio of the Eu-
clidean distance from the negative–ideal solution to the sum of the distances from
both the ideal and negative–ideal solutions for each alternative (14):
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Ci =
S−i

S+
i + S−i

(14)

where Ci represents the relative closeness of the (i)-th alternative.

7. Rank the alternatives based on their relative closeness values. The alternative with
the highest relative closeness is considered the best choice.

3. Results
3.1. Area of Potential Investments

Poland experiences constant changes in territorial division. Compared to 2021, the
area of Poland has increased by 15.05 km2 (from 312,705.25 km2 to 312,720.30 km2), of
which 12.04 km2 concerns the Pomorskie Voivodeship. It is the result of adjusting the
borders of territorial units to the baseline of the territorial sea [68]. The total area of the
Podlaskie Voivodeship decreased by 0.17 km2 [69]. Poland has 16 voivodeships. Podlaskie
Voivodeship is the East region of Poland, with a population of 1.143 mln and a total area
of 20,180 km2 [69,70]. This region has the 14th position according to population, the 6th
position according to the total area, and the 10th position by the level of urbanisation [71].
The Podlaskie Voivodeship presents an excellent opportunity for additional investment
in renewable energy thanks to its optimal combination of urbanisation, population, and
region size (Figure 2).
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3.2. Mathematical Modelling

Before the spatial analysis, mathematical modelling was performed. The mathematical
models use a group of 11 criteria for the six variants. These variants represent potential
setups of criteria that RES developers could use as a template under the first phase of
investment (Table 2). The criteria were chosen and adapted to Polish conditions because
of the previous work of authors [72] and Szurek [13]. Three criteria, such as protected
nature areas, urban areas, and water bodies, are groups and contain sub-criteria. Each
sub-criterion has the same value as the main criterion of the group (urban areas and water
network). Sub-criteria of the protected nature areas group have different values because of
legal restrictions in Poland. The value for the protected nature areas in Table 2 represents
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the distances to Natura 2000 areas. All the criteria and sub-criteria values used in the
analysis are presented in Section 3.3.

Table 2. Variants with criteria and their values for mathematical modelling.

Criteria Variant 1 Variant 2 Variant 3 Variant 4 Variant 5 Variant 6

Protected nature
areas, m 1000 1000 1250 1500 1750 2000

Protected monuments
of nature, m 100 600 500 400 300 200

Distance from
urban areas, m 1000 900 800 700 700 700

Distance from
power grid, m 100 750 500 400 300 200

Distance from roads, m 50 500 400 300 200 100

Distance from forests, m 50 500 400 300 200 100

Distance from
water network, m 50 500 400 300 200 100

Slope, ◦ 10 10 7.5–10 5–7.5 2.5–5 0–3

Roughness class 3 3 3 2 2 2

Mean wind speed, m/s 5 5 6 7 8 8

Power density
of air, W/m2 200 300 350 400 450 500

The article uses three MCDA methods (AHP, Borda, and TOPSIS). It is necessary to
avoid mistakes during the calculation process and for comparing results. If the results of all
three methods are the same or consistent, the result (i.e., variant from 1 to 6) will be used in
the spatial planning.

3.2.1. AHP Method Results

In this research, the AHP method was used because the hierarchy of evaluation criteria
and most criteria for evaluating the considered options are subjective, and a small part
of the criteria is quantitative options. A hierarchical model was created for the decision
problem under consideration, and then a comparison matrix was built to determine global
and local preferences. Subsequently, a synthetic score was determined for each decision
option, ranking the considered variety. For pairwise comparison, the preference matrix
was created (Supplementary Table S1). After pairwise comparison, the preference matrix
was normalised. The weights and the λ were calculated (Table 3).

Based on the 11 criteria, the (RI) value is 1.51. If the maximum eigenvalue (λmax)
is 11.23, the consistency index (CI) is 0.023, and the consistency ratio (CR) is 0.016 < 0.1,
then the matrix is considered consistent. By calculating the value of the aggregate utility
function for each option, a final ranking is produced (Table 4). Table 4 shows that Variant 6
is the best for further spatial analysis. Variant 6 implicates the location of wind farms with
a 200 m distance from monuments of nature and 2000 m to Natura 2000; 100 m distance to
the forests, water surfaces, and roads; 200 m distance to the power grid; and 700 m distance
to the urban areas.
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Table 3. Criteria weights and λ values for the AHP method.

Criteria Weights λ

Protected
nature areas 0.148 11.23

Protected monuments
of nature 0.026 11.25

Distance from
urban areas 0.148 11.23

Distance from
power grid 0.053 11.18

Distance
from roads 0.053 11.18

Distance
from forests 0.053 11.18

Distance from
water network 0.053 11.18

Slope 0.066 11.18
Roughness class 0.071 11.20

Mean wind
speed 0.149 11.26

Power density
of air 0.182 11.51

Table 4. Ranking of variants according to scores, using the AHP method.

Variants Variant 1 Variant 2 Variant 3 Variant 4 Variant 5 Variant 6

Final scores 350.26 477.80 476.29 482.53 503.60 524.65

Rank 6 5 4 3 2 1

3.2.2. Borda Method Results

The Borda number and SAR summation index show that Variant 6 is the best for further
spatial analysis because of the highest value of the Borda number and the weighted SAR
summation index (Table 5). The weights for calculating the weighted SAR summation index
were taken from the AHP method. Variant 6 is the same as the result in the AHP method.

Table 5. The Borda number and the weighted SAR summation index, using the Borda method.

Variants Variant 1 Variant 2 Variant 3 Variant 4 Variant 5 Variant 6

The Borda number 55 66 77 88 99 110

The weighted SAR
summation index 0.455 0.547 0.638 0.729 0.820 0.911

3.2.3. TOPSIS Method Results

The final results of calculations, such as the Euclidean distance of each variant to
the ideal and negative–ideal solutions and the relative closeness values, are presented
below (Table 6). Variant 3 is the best, with the highest relative closeness value. Due to the
slight difference of 4.5% between Variants 3 and 6 and the results of previous mathematical
models (AHP and Borda ranking), Variant 6 is selected for further spatial analysis.
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Table 6. The Euclidean distances and the final ranking of variants, using the TOPSIS method.

Variants Variant 1 Variant 2 Variant 3 Variant 4 Variant 5 Variant 6

The distances from each
variant to the ideal

solutions, S+
i

0.101 0.064 0.052 0.052 0.058 0.069

The distances from
each variant to

the non-ideal solutions, S−i

0.039 0.077 0.065 0.061 0.068 0.077

The relative
closeness values, Ci

0.278 0.547 0.553 0.542 0.537 0.528

Rank 6 2 1 3 4 5

3.3. Spatial Analysis

The spatial analysis was performed using open-source GIS programs: QGiS and
SAGAGIS.

The spatial analysis was conducted in three stages. The initial stage involved elimi-
nating areas that did not meet the criteria for wind farm placement. There are protected
nature areas with monuments of nature, forests, water networks, and permanent crops;
urban areas; power grids and roads; and areas around already-built wind turbines. A safety
buffer was added for each of these areas (Table 7).

Table 7. GIS layers with buffer zones, their area, and their share for spatial analysis.

GIS Layers Buffer, m Area, km2 Share of
All Areas, %

Protected nature areas with monuments of nature

Monuments of nature 200

3867 19.16

Ecological sites 200
Reserves 500

Landscape parks 0 *
National parks 2000

Protected landscape areas 200
Natural landscape complexes 200

Documentation posts 200
Natura 2000 (birds) 2000

Natura 2000 (habitats) 2000

Ecological corridors

Ecological corridors 0 * 10,009 49.60

Forests

Forest 100 11,749 58.22

Water network

Surface water 100

5021 24.88

Rivers and streams 100
Channels 100

Collective drainage ditches 100
Swamps and wetlands 100

Flood hazard areas 0 *

Permanent crops

Permanent crops 25 136 0.67

Urban areas

Buildings 700 14,422 71.47
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Table 7. Cont.

GIS Layers Buffer, m Area, km2 Share of
All Areas, %

Power grid

Power grid 10 278 1.38

Roads

Roads 50 6296 31.20

Areas around already-built wind turbines

Areas around wind turbines 500 63.20 0.31

Total 19,911 98.67
* Landscape parks have their buffer zone. Ecological corridors and flood hazard areas do not need a buffer zone.

As a result, from the total area of the Podlaskie Voivodeship (20,180 km2), the overlayed
area of 19,911 km2 was eliminated. This number includes protected natural areas with
monuments of nature (3867 km2). There are 4 national parks, 94 reserves, 3 landscape
parks, 13 protected landscape areas, and 37 areas of Natura 2000 (25 SOO; 12 OSO), in
addition to other forms of protected natural areas [73]. Next, areas such as ecological
corridors (10,009 km2), forests (11,749 km2), water networks (5021 km2), permanent crops
(136 km2), urban areas (14,422 km2), power grids (278 km2), roads (6296 km2), and areas
around already-built wind turbines (63.2 km2) were eliminated (Table 7).

After the initial stage of exclusion, a total of 4556 plots were selected, covering a
combined area of 269 km2. These plots represent approximately 1.33% of the total area in
the west, southwest, and south parts of Podlaskie Voivodeship (Figure 3).
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The second stage involved eliminating areas which were not included in the mathe-
matical model. There are areas which are fragmented in the Podlaskie Voivodeship: sacred
complex and cemetery (11.6 km2), historic and historical complexes (4.02 km2), city bor-
ders (951.15 km2), and excavations and heaps (30.43 km2). Figure 4a presents a map with
prohibited areas before exclusion.
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After the second stage of exclusion, a total of 4344 plots were selected, covering a
combined area of 255.41 km2. These plots represent approximately 1.26% of the total area
in the west, southwest, and south parts of Podlaskie Voivodeship (Figure 4b).

Before the final (third) exclusion, single plots with an area of less than 400 m2 were
deleted because of the required minimum area for one wind turbine foundation.

The third stage involved eliminating areas which did not meet the economic criteria
(Figure 5) according to Variant 6 (Table 2):

• Roughness class from 1 to 2;
• Slope from 0◦ to 3◦;
• Power grid with 200 m buffer;
• Roads with 100 m buffer;
• Mean wind speed from 7 to 8 m/s;
• Power density of air from 450 to 500 W/m2.
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roughness classes with a value from 1 to 2 (green colour—roughness class with a value 1; light green
colour—roughness class with a value 2); (b) the map of the slope with a value from 0◦ to 3◦ (light
green colour—the slope with a value 0◦; grey colour—the slope with a value 3◦); (c) the map of the
power grid with 200 m buffer (red colour—power grid with 200 m buffer); (d) the map of roads with
100 m buffer (black and orange colour—roads with 100 m buffer); (e) the map of mean wind speed
on 100 m high with a value from 7 to 8 m/s (orange colour—mean wind speed with a value from
7 to 8); and (f) the map of the power density of air with a value from 450 to 500 W/m2 (light blue
colour—power density of air with a value from 450 to 500).

During the third stage, the last six criteria were overlayed to eliminate unsuitable sites.
There are six maps: the map of roughness (11,520.19 km2), the map of slope (19,108.04 km2),
the map of the power grid with a 200 m zone (4869.6 km2), the map of roads with a 100 m
zone (10,875.2 km2), the map of mean wind speed of 100 m high (13,791.1 km2), and the
map of the power density of air (2412.9 km2).

After the third stage of exclusion, a total of 704 plots were selected, covering a com-
bined area of 32.50 km2. These plots represent approximately 0.16% of the total area in the
west, southwest, and south parts of Podlaskie Voivodeship (Figure 6).

Through a thorough site-selection process, 704 plots covering a total area of 32.50 km2

were identified as potential locations for wind farms and single turbine development. The
final exclusion also shows that Podlaskie Voivodeship has the largest clustering of suitable
sites for wind farm construction in three districts, with a total area of 21.53 km2. The first
district has 240 plots between Stawiski and Jedwabne cities (14.84 km2). This district is in
the eastern part of Kolneński County, in the northern part of Łomżyński County and in
the southern part of Grajewski County. This district crosses seven communes (Grabowo,
Wąsosz, Radziłów, Mały Płock, Stawiski, Przytuły, and Jedwabne). The second district has
79 plots between Bielsk Podlaski and Hajnowka Cities (5.59 km2). This district is in the
eastern part of Bielski County and in the western part of Hajnówski County. This district
crosses five communes (Bielsk Podlaski, Czyże, Narew, Hajnowka, and Orla). The third
district has 20 plots close to Garbas Drugi village (1.1 km2). This district is in the western
part of Suwałski County in Filipów Commune.
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4. Discussion

The selected area (about 0.16% of the region) offers significant opportunities for
international and Polish investors and renewable energy developers to select new sites
that align with their strategies in the local market. Podlaskie Voivodeship has seven wind
farms, according to open-source data (Augustowo, Grajewo, Orla, Rajgrod, Piecki, Suwałki,
and Taciewo), with a total power capacity of 211.9 MW. These wind farms use 52.35 km2 of
land, with a 250 m radius around each turbine because of the inefficiency of air turbulence
and power production. Adding 32.50 km2 of selected areas could theoretically increase the
power capacity by 62%, with 131.5 MW, if wind farms and single wind turbines are built.
Adding 21.53 km2 of selected areas in three districts for building wind farms could increase
the power capacity by 41%, with 87.2 MW. This assumption is based on averaged data
from constructed wind farms in the region and should be refined during further stages of
assessing the potential of the selected site for wind farms. The results (about 0.16% of the
region’s area) can be considered satisfactory. Diaz [74] reports that up to 0.03% (143.5 km2

of the considered area) has good potential for offshore wind farms.
The use of GIS and MCDA methods allows for a comprehensive assessment of various

criteria, including wind resource potential, land availability, environmental restrictions,
and grid integration, among others. Considering these factors, the study provides valuable
insights for spatial energy planning and the efficient deployment of onshore wind farms.

The article shows that the TOPSIS method is reasonably objective, helping to analyse
complex sets of criteria. Konstantinos [18] states that TOPSIS is well suited for complex
analyses in combination with other methods, like AHP. The TOPSIS method is suitable for
finding locations for wind farms, considering a criterion such as social acceptance. Lozano-
Minguez [75] says that the TOPSIS method was applied to obtain an objective methodology
for the comparative analysis of different support structure options for offshore wind farms,
considering engineering, economic, and environmental criteria.

The most used method is AHP [72]. It was used in the article because of the simplicity
of the structuring and expanding of the mathematical model. According to Watróbski [76],
the AHP method allows for an intuitive dialogue with decision-makers and simplifies
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organising and enhancing models. It can also be used in various areas of wind energy
production. Aras [77] indicates that the AHP is widely used and can be easily applied to
determine possible construction locations of wind observation stations. Also, the AHP
method can be used for surveying local people and analysing based on it. Latinopoulos [78]
says it is possible to carry out the AHP method comparative analyses with different groups
of people, e.g., residents, experts, and wind farm developers.

The Borda method produces equivalent outcomes to the AHP method, allowing for
an impartial comparison of criteria that are viewed as equal. Despite its infrequent use in
mathematical modelling due to the absence of criteria standardisation and weight assign-
ment, the Borda method treats all criteria with equal significance, as noted by Łaska [79].
Ultimately, the method delivers an objective outcome that hinges on the wind farm’s
specific localisation criteria.

In scientific papers, different methods such as VIKOR, ANP, DEMATEL, ELECTRE,
PROMETHEE, and others are utilised [72]. While each method has its advantages and
disadvantages, combining them increases the accuracy of mathematical modelling and
geospatial analysis [5], avoids uncertainties in the estimation processes of the weight and
score of criteria [17], and eliminates vagueness in decision matrices [74]. Ultimately, using a
combination of methods helps to achieve better and more precise outcomes in an analysis.

GIS layers of different types of topography used in the article have the maximum
accuracy for Poland. Ławniczak [80] presented the results for the BDOT10k database
comparing the location and shape of selected lakes. The geometric accuracy of the object
size estimated is about 2% different than the field measurement. BDOT10k is countrywide
topographic data with a level of detail and thematic scope corresponding to the civilian
maps at a 1:10,000 scale. Mierzwiak [81] says that the primary source of spatial data for
the study in Poland is BDOT10k, provided by the Central Geodetic and Cartographic
Documentation Centre.

The digital elevation model provided by the Head Office of Geodesy and Cartography
(GUGiK) is a state database for the representation of the elevation of the terrain, together
with an interpolation algorithm that allows for the calculation of the elevation at any point
in the area for which the model was built. It helps users obtain such layers as the elevation
(relief) and slope of the chosen area. Kozłowska [82] says that an essential part of their
approach was the cartometric analysis of the DEM, which provided detailed information
about the relief of the valley bottom and the slopes limiting it, which allowed for a precise
determination of the flood range.

Using a surface form of the nature protection database that is managed by the General
Directorate for Environmental Protection (GDOŚ) is obligatory because it is necessary to
know the exact boundaries of all forms of nature protection to fulfil the restrictions that are
specified in the law on investments in wind energy installations [33].

To minimise the risk of flooding, the ISOK map was utilised, which identifies areas
with a 0.2% occurrence probability. The ISOK map, provided by the Institute of Meteorology
and Water Management (IMGW), allows authors to use it on a country scale in future work.
Kozłowska [82] also says that one of the main tasks was comparing the results with the
flood risk zones determined in the ISOK project and the flooded area in 1997. Thanks to
this, it can be presumed that the presented area of flood risk could occur with a probability
of 0.1%, which means that the determined flood extent can statistically happen once in
1000 years.

In the article for creating a roughness map, we use the land cover classification
gridded map managed by the European Space Agency and Copernicus Services based on
the methodology presented by Floors [48]. For now, Poland does not have data which can
be used for creating roughness maps. Using the Polish digital land cover model to create a
roughness map is also impossible because it covers only part of the country, is outdated,
and is presented as tiles of 5 km2.

The article uses wind data such as maps of mean wind speed and power density of air
from the Global Wind Atlas. These data allow authors to use it on a country scale without
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losing the accuracy of the results. Murcia [83] says that the combination of ERA5 and the
Global Wind Atlas shows good agreement with measured country-level generation data.
In future work, authors will collect regional wind data to compare them with the wind
data from the Global Wind Atlas.

Seasonal wind variability is a critical factor to consider when constructing a wind
farm. However, it is just one of many criteria involved in a comprehensive analysis.
After identifying several suitable locations for wind farms, a thorough examination of the
seasonal wind variability is necessary. In upcoming research, the analysis will focus on a
smaller scale, such as one of the three districts outlined in the current study. This type of
research is becoming increasingly important, as Weber [84] notes an increase in seasonal
wind variability in most of Central, Northern, and Northwestern Europe.

Large companies’ investment planning departments evaluate future wind farms’
economic efficiency. Their objective is to achieve maximum profitability while minimising
expenses. The key factors that impact the end outcome are the wind turbine purchase cost,
wind speed, and wind stability throughout the year (measured in hours of operation) [85].
According to [72,86], the investment payback period lasts approximately 15.5 years.

This article strengthens the drive towards sustainable energy sources and reducing
greenhouse gas emissions. Using wind turbines with varying hub heights (80 m to 120 m),
rated power (2 MW to 3 MW), and a 20-year lifespan could significantly decrease green-
house gas emissions compared to traditional coal plants [1,87].

They also highlight the importance of strategic site selection based on rigorous analysis
and stakeholder engagement. With the increasing demand for clean energy, identifying
suitable locations for wind parks becomes crucial to ensure successful project development
and operation.

The sensitivity analysis was performed in the SuperDecisions program (Supplemen-
tary File S2). The sensitivity analysis results for the AHP method show that they are stable,
with Variant 6 remaining the best option after the 11 criteria have been correctly considered,
regardless of the criteria in question and changes in the values of its weights (Figure 7).
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On the other hand, the sensitivity analysis of each variant indicated that the variants
are sensitive with a p-value > 0.64. With such a p-value, each variant will rank first and
better than Variant 6. However, choosing one of the variants when it is better than Variant
6 will not allow the wind farm to be built due to non-compliance with the regulations for
constructing wind farms in Poland (Figure 8).
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5. Conclusions

This article demonstrates the effectiveness of GIS and MCDA tools in the context
of wind farm localisation. The results can inform decision-making processes for wind
energy investments in Podlaskie Voivodeship and serve as a foundation for further research
and development in the field of renewable energy planning and implementation in other
voivodeships and countries. The most important conclusions from the article are as follows:

• The selected area, constituting approximately 0.16% of the region, offers significant
opportunities for international and Polish investors and renewable energy developers.
These opportunities align with the current market strategies and may result in the
establishment of new wind farms or individual wind turbines.

• By adding 32.50 km2 of selected areas, the power capacity could increase by 62%,
reaching 131.5 MW. Additionally, adding 21.53 km2 of selected areas in three districts
could increase the power capacity by 41%, amounting to 87.2 MW. These estimates are
based on averaged data and may be improved in future assessments.

• The study used Geographic Information Systems (GIS) and multicriteria decision
analysis (MCDA) methods to comprehensively assess criteria such as wind resource
potential, land availability, environmental restrictions, and grid integration for wind
farm site selection.

• The Analytic Hierarchy Process (AHP) is the most commonly used wind farm site
selection method due to its simplicity and effectiveness in structuring mathematical
models. The Borda method is mentioned as providing impartial comparisons of crite-
ria. The TOPSIS method, in combination with other methods, like AHP, is highlighted
as effective for complex analyses.

• The article suggests that combining various methods, such as AHP, TOPSIS, Borda,
VIKOR, ANP, DEMATEL, ELECTRE, and PROMETHEE, can enhance the accuracy of
mathematical modelling and geospatial analysis.

• Accurate spatial data sources, such as the BDOT10k database, digital elevation models,
nature protection databases, and flood risk maps, are crucial for making informed
decisions in wind farm site selection.

• Seasonal wind variability is acknowledged as a critical factor in wind farm construc-
tion, and future research will focus on analysing it on a smaller scale.

• Large companies’ investment planning departments consider wind turbine cost, wind
speed, and wind stability to evaluate wind farm economic efficiency.
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• Wind turbines with varying specifications are highlighted to reduce greenhouse gas
emissions compared to traditional coal plants, contributing to sustainable energy sources.

• Strategic site selection based on rigorous analysis and stakeholder engagement is cru-
cial for successful wind park development, especially when considering the increasing
demand for clean energy.

• Sensitivity analysis results for the AHP method indicate stability, with Variant 6
consistently being the best option. However, other variants are sensitive, and choosing
an option better than Variant 6 may lead to non-compliance with Polish regulations
for wind farm construction.

The study has several limitations. Limitations in the accuracy and currency of the
GIS data could introduce uncertainties in the site selection process. The projected power
capacity increase is based on assumptions about the efficiency of wind farms and turbine
placement. Because of that, the actual performance may vary. This study did not compre-
hensively assess the potential ecological impact of wind farm construction, which may
require more detailed investigations. Wind energy regulations and policies can change over
time. This study assumes compliance with current regulations, but future changes in legis-
lation could affect the feasibility and permitting of wind farm projects. The study mentions
the importance of social acceptance. However, it needs to delve deeper into the complexities
of community engagement and potential opposition to wind farm development, which can
be a significant challenge.

The study has several perspectives. Regular updates and continuous data collection
on wind patterns, environmental conditions, and land use could enhance the accuracy
of future site selection processes. Future research could benefit from applying advanced
modelling techniques, including machine learning and AI algorithms, to refine site selection
based on historical data and real-time inputs. Future studies could explore integrating
wind energy with other renewable sources, such as solar or hydroelectric power, to create
more comprehensive and resilient energy systems. Comparative studies across different
regions or countries can provide valuable insights into the best practices for wind farm site
selection and regulatory frameworks. As climate change impacts wind patterns, future
research should consider how these changes may affect the long-term viability of wind
energy projects.

Supplementary Materials: The following supporting information can be downloaded at https:
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30. Najwięksi Inwestorzy w Energetyce Wiatrowej w Polsce. Available online: https://cleanerenergy.pl/2022/02/14/najwieksi-
inwestorzy-w-energetyce-wiatrowej-w-polsce-liderem-jest-grupa-pge/ (accessed on 21 June 2023).
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9788379304691.
54. Findeisen, W.; Szymanowski, J. Teoria i Metody Obliczeniowe Optymalizacji, 2nd ed.; Państwowe Wydawnictwo Naukowe:
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