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Abstract: In the face of increasing irregular temperature patterns and climate shifts, the need for
accurate power consumption prediction is becoming increasingly important to ensure a steady
supply of electricity. Existing deep learning models have sought to improve prediction accuracy
but commonly require greater computational demands. In this research, on the other hand, we
introduce DelayNet, a lightweight deep learning model that maintains model efficiency while
accommodating extended time sequences. Our DelayNet is designed based on the observation that
electronic series data exhibit recurring irregular patterns over time. Furthermore, we present two
substantial datasets of electricity consumption records from South Korean buildings spanning nearly
two years. Empirical findings demonstrate the model’s performance, achieving 21.23%, 43.60%,
17.05% and 21.71% improvement compared to recurrent neural networks, gated-recurrent units,
temporal convolutional neural networks and ARIMA models, as well as greatly reducing model
complexity and computational requirements. These findings indicate the potential for micro-level
power consumption planning, as lightweight models can be implemented on edge devices.
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According to recent observations, the frequency and intensity of extreme weather
events are increasing globally and becoming more severe [1,2]. Due to abnormal temper-
atures and climate changes, there is an increasing volatility in power consumption [3].
Since electrical energy must be produced and consumed simultaneously due to its physical
characteristics [4], accurate prediction of power demand is crucial when planning power
generation at the national and power plant levels. For instance, failing to predict power
demand accurately may result in not only budget overspending on excessive power gener-
ation facilities but also wasted electrical energy. On the other hand, if there is a shortage of
electrical energy, power outages can occur. In fact, in South Korea, a power outage occurred
in September 2011 due to a shortage of electricity [5].

The most effective application of electricity demand forecasting pertains to predicting
the power consumption of individual buildings. The consumption of energy in buildings
is anticipated to witness a surge of over 40% in the forthcoming two decades, accounting
for 30-45% of the total global energy consumption. Systems such as the Home Energy
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Management System (HEMS) and Building Energy Management Systems (BEMS) are
structured in diverse forms, contingent upon the type and size of the building. These
systems are under research not only for collecting and monitoring building-level electricity
consumption [6,7] data, but also for enabling the forecasting of electricity consumption. In
Attribution (CC BY) license (https://  buildings of larger scale, extensive cloud servers and server rooms exist, equipped with
creativecommons.org/licenses /by / substantial computing power for BEMS. However, medium and smaller-scale buildings
40/). typically possess only small-scale server rooms or MCUs at the level of edge computing.
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Consequently, the availability of computing power resources emerges as a critical element
in the research of electricity forecasting.

Research on electricity demand forecasting has seen substantial progress encompass-
ing a variety of methodologies from machine learning to deep learning techniques. In
earlier studies, there were efforts aimed at forecasting household electricity consumption
by categorizing patterns of electricity usage data, which were accumulated through home
systems [8]. Investigations were initiated where the characteristics of electricity utiliza-
tion data were grouped and examined, and uniquely normalized data was employed
to educate machine learning models for forecasting purposes [9]. Additionally, studies
were conducted on systems with the capability to predict long-term electricity demand,
utilizing machine learning models trained with time-series-analyzed monthly electricity
consumption data [10].

In more recent advancements, deep learning techniques have been integrated, utilizing
multilayer perceptron (MLP), recurrent neural network (RNN), and long-short-term mem-
ory (LSTM) for training models on household electricity consumption data for predictive
purposes [11]. There has been a noteworthy study that proposed a hybrid convolutional
long-short-term-memory (CNN-LSTM) model specifically aiming to predict residential
energy consumption [12]. Additionally, innovative approaches have been adopted where
electricity consumption data was manipulated to conform with the characteristics inherent
to sequential data, employing Transformer models for the purpose of electricity demand
prediction [13]. This convergence of methodologies highlights the evolving landscape of
machine learning research in addressing the challenges of electricity demand forecasting.

Typically, power consumption prediction models employ temporal convolutional
neural networks (TCNs), effectively capturing the local features, a strength of CNN, but they
fall short of adequately incorporating time-series characteristics. To counter this, advanced
approaches have been developed, combining CNN and RNN and introducing models in
the Transformer family that apply attention mechanisms. This evolution in methodologies
has led to a notable improvement in the accuracy of electricity demand forecasting models,
which are trained using electricity usage data. However, this advancement in accuracy has
consequently demanded a parallel increase in both the model’s capacity and the computing
power required.

In this paper, we aim to propose DelayNet, a lightweight building power consumption
prediction model for BEMS that can be applied to medium- and small-sized buildings.
The proposed DelayNet interprets the Dilated Convolution of TCN [14] in a new way and
applies Dilated Delay Convolution, thus well reflecting both local features and time-series
characteristics while using fewer parameters and fewer computational operations. The
main contributions of this paper are as follows:

e  We publish our in-house power consumption dataset, a reliable dataset collected from
residences over a period of two years.

e  We propose DelayNet, a stable yet lightweight deep learning model for predicting
the power consumption of buildings. The DelayNet can retain the local feature of
TCN while reflecting long sequence characteristics. Compared to previous works, the
Delay Block maintains the same number of filters while increasing the interval be-
tween sequences, significantly reducing the number of parameters and computational
operations while exhibiting high performance.

The structure of the remainder of this paper is as follows: Section 2 will explore studies
related to predicting power consumption. Section 3 will give a detailed explanation of the
common deep learning models used for such predictions and discuss the background and
approach of the proposed DelayNet. In Section 4, we will share the actual data on power
consumption that we collected and the results of our experiments. Finally, Section 5 will
conclude the paper.
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2. Related Works

Research efforts have been dedicated to extracting features from energy consumption
data and predicting power demand to ensure a stable power supply. These efforts can be
divided into three main categories: statistical-based approaches, machine learning-based
approaches, and deep learning-based approaches.

Statistical-based methods have been utilized for predicting power demand. These
approaches involved conducting simple and multiple linear regression analyses as well
as quadratic regression analyses using building data collected on an hourly and daily
basis [15]. It was noted that as the time intervals increased, the quality of the models [16]
improved. In the context of forecasting daily power consumption in commercial buildings,
research was conducted on both multiple regression and genetic programming models.
While the genetic programming model displayed a slight performance advantage over the
multiple regression model, it did have the drawback of longer training times. Addition-
ally, a study presented a method for predicting next-day electricity prices in the Spanish
and Californian power markets based on the autoregressive integrated moving average
(ARIMA) methodology [17]. Customized ARIMA models were developed for each dataset.
Furthermore, research focused on building load forecasting using a hybrid model that
combined clustering techniques with ARIMA models [18]. It was observed that the hybrid
model yielded improved predictive performance compared to using a standalone ARIMA
model. However, these traditional statistical models often encounter difficulties when
handling complex datasets that are non-linear and noisy, leading to potential reductions in
prediction accuracy.

In the context of machine-learning-based approaches, research endeavors have focused
on the application of the Random Forest ensemble learning method to predict the maximum
energy consumption [19]. Random Forest was chosen for its ability to optimize and
mitigate overfitting, and attempts were made to improve performance by including not
only basic current loads but also data from GSM network call records. Furthermore,
a study investigated the utilization of the Support Vector Regression (SVR) model to
forecast demand response criteria in office buildings [20]. Enhancements in performance
were sought by introducing foundational electrical loads and ambient temperature into
the model. It is important to note that these machine learning-based methods may face
challenges as the volume of data increases.

In the domain of deep learning-based techniques, research has delved into the de-
velopment of models for short-term load prediction. This includes a study that combines
CNN (Convolutional Neural Network) with K-means clustering [21]. Additionally, there
has been investigation into LSTM (Long-Short-Term-Memory) models for short-term load
forecasting [22]. Building upon these findings, hybrid models integrating CNN and LSTM
networks have been explored for short-term load prediction [23]. Furthermore, research
has been conducted on S2S (Sequence to Sequence) models, such as LSTM-based S2S
structures [24] and GRU-based S2S structures [25]. In these cases, crucial autocorrelation
coefficients in time series data were used for data analysis. Moreover, research has ex-
amined the integration of Attention mechanisms into S25 structures [26]. For time series
prediction, there has been exploration of TCN (Temporal Convolutional Network) models,
which adapt CNN filters for time series data [27].

Inspired by the Transformer model’s exceptional performance in Natural Language
Processing (NLP) [28], research has also extended to power demand prediction models
based on the Transformer architecture [13]. The basic Transformer structure has been
customized to optimize it for power demand prediction in this context. More recently,
models like Informer have emerged, which are Transformer-based models fine-tuned specif-
ically for time series data prediction [29]. Additionally, there are models like Autoformer,
which employ autocorrelation coefficients for time series prediction within a Transformer
framework [30], and Fedformer, which optimizes computation by using frequency domain
operations in a Transformer architecture [31].



Energies 2023, 16, 7662

40f18

These deep learning-based methods have demonstrated impressive performance not
only in short-term and long-term power demand forecasting but also in various other time
series prediction tasks. However, it is essential to acknowledge that the pursuit of higher
performance often results in significantly larger model sizes and computational require-
ments. For example, the computational complexity of Transformers is O(L?), meaning
computational demands increase quadratically with the length of the input sequence.

As previously mentioned, research in power demand prediction has explored a vari-
ety of methods, including those based on statistics, machine learning, and deep learning.
However, most of these studies aimed to improve the accuracy of power demand predic-
tion models by incorporating additional variables and leveraging big data alongside the
provided power data. Nevertheless, our research reveals that using highly complicated
models does not always lead to better outcomes. When dealing with specific tasks and
limited data, it is often better to create a custom model that suits the task well and learns
effectively, instead of using complex models that need a lot of data to work correctly.

3. DelayNet

This section outlines our contribution, the Delay Dilated Convolutional Grouping
Network (DelayNet), designed for time series forecasting. Our proposed architecture draws
inspiration from TCN models and shares a close relationship with the Stride-TCN design.
To provide context, we will briefly demonstrate developments in time series forecasting
before introducing our model.

3.1. Preliminaries

Time series forecasting (TSF) finds numerous applications and can be categorized
into two tasks: Single Step Prediction and Multi-Step Prediction. Concerning time series
datasets, they can be categorized into Multivariable and Univariable Datasets. In this
research, our primary focus is on the task of Multi-Step Prediction within the context of
Univariable time series data.

The task of power demand forecasting shares commonalities with the broader field
of time series prediction, which finds applications across diverse domains. Specifically,
predicting power demand from power consumption data can be likened to the challenge of
univariate time series forecasting [32].

?H-l - fs (yt_k;t/xt—k:t) (1)

Equation (1) presents a mathematical model for time series prediction tasks. In this
context, § represents the predicted value, while x and y denote input values. Time is
denoted by t, and k is the window size, while s represents static metadata values that
remain constant over time. For univariate time series prediction, we can define it as the
forecasted value derived by applying input values and static metadata from time step
t —k to t to a function f. This framework allows us to construct 2 subcomponents, as in
Equations (2) and (3).

zt = Zencoder (Xt—k:t) (2)

yAt—&-l = &decoder (Ztr yt—k:t) (3)

In this framework, z; represents a latent vector. The process involves transforming
input values into latent values using an encoder, and these resultant latent values are
subsequently employed for generating final predictions through a decoder. Within g.ycoder
a variety of deep learning models can be applied, offering flexibility, while g.co40r can
encompass a range of models, spanning from basic linear functions to more complex ones
like Sequence-to-Sequence (S2S) models. In the context of univariate time series prediction,
non-linear functions are primarily employed within g,;,co4er- Next, we will introduce some
common deep learning-based models for TSFE.
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Deep Learning Model Based TSF

Deep learning models for time series forecasting can be categorized into four primary
types, each distinguished by how the encoder and decoder functions are constructed.

Firstly, the MLP-based TSF, depicted in Figure 1a, employs perceptrons as fundamental
components, Equation (4). These perceptrons take inputs x;_.;, apply weights W, add
biases b, and utilize activation functions f to compute predictions. While effective for simple
and short-term data, MLP models struggle with large datasets due to their substantial
computational requirements.

ﬁt+1 = 8decoder = f(thfk:t + b) (4)
Outputs

Recurrent
Layer

Inputs

(b) RNN
O
e Outputs O O O
Attention o
Layer /
2 e © @ @
C
Projection L:}f‘l:r O O
Inputs
Inputs
(c) Transformer (d) CNN

Figure 1. Deep learning models for univariate time series forecasting can be categorized into four
distinct types.

On the other hand, RNN-based TSEF, represented in Figure 1b, utilizes recurrent neural
networks (RNNs) that incorporate information from previous hidden layers into current
computations, Equations (5) and (6). This allows them to capture long-range dependencies
in sequential data. However, RNNs have limitations, such as fixed window sizes and
challenges related to gradient issues and long-distance prediction.

Zt = Sendoder = f([uext/ Vezt—l] + be) 5)

]2t+1 = &encoder = f([ud]/t/ Vazt, Wdhtfl] + bd) (6)

The third type is Transformer-based TSF, as seen in Figure 1c, leverages attention mech-
anisms to consider relationships between tokens in input sequences, Equation (7). Trans-
formers are capable of incorporating important information from past time steps directly
into predictions. However, they are characterized by complex models, high computational
costs for attention calculations O (1?), and suboptimal performance on smaller datasets.

1

t—1
2t = Zencoder = f< Z a(Ky, Qi)%ﬁ) )
—f—

k

]213+1 = &decoder = f(w[ztfk:t] + b) (8)
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Lastly, to adapt CNNs for time series, causal convolution is essential to ensure that
the model only considers past data. In this context, hidden states z; and filter weights
W; play crucial roles. To increase the receptive field while minimizing computational
demands, Dilated convolution is employed, as shown in Figure 1d, allowing the model to
capture d long-term dependencies, Equation (9). CNN-based time series forecasting excels
in capturing local correlations and addressing long-range dependencies [33], making it a
valuable tool for time series data analysis.

F

2t = Zencoder = f Z Wix; g )
i=0
yt-i—l = &decoder = f(w[zt—k:t] + b) (10

3.2. Rethinking TCN

Conventional TCNs [34] using 1D causal convolution and made use of dilated convo-
lutions, as seen in Figure 2a, to enhance their capacity for information capture. However,
to extend the receptive field for examining longer-term patterns in time series data, it is
necessary to stack multiple dilated convolutions. This led to an increase in both model
size and computational complexity. Nonetheless, TCNs offer an advantage by maintaining
solid performance with a more compact model and lower computational demands when
compared to other types of models for univariate time series prediction. To address this
efficiency concern, Anh et al. introduced Stride-Dilated TCN (Stride-TCN), as depicted in
Figure 2b [14]. Stride-TCN introduced a stride parameter into dilated convolutions, result-
ing in a significant enlargement of the receptive field using a single dilated convolution.

[ T o T |
Em k-

| 1 ([ [ ] T T S=4k=3
mE k=2
N O Yy B I
{5 o o o ot .
BEE k=1

Figure 2. Original TCN with dilated convolutions (left) and Stride-Dilated TCN (right).

While TCN exhibits relatively dense connections for convolution calculations, result-
ing in an inflated model size that does not effectively harness sequence repetitiveness,
Stride-TCN was introduced to mitigate this issue. However, Stride-TCN’s optimal perfor-
mance requires an intricate and computationally expensive hyperparameter search using
Bayesian Optimization [14], leading to prolonged training times. Moreover, it came to
our attention that TCN and Stride-TCN inadequately capture sequence information, as
they rely on a single connection between repeating intervals (dilated). This limitation
is particularly significant when dealing with energy data, where individual values carry
limited informational value.

Our model draws inspiration from the architectural foundations of TCN and Stride-
TCN, underpinned by a crucial observation regarding the repetitive nature of data se-
quences, particularly in the context of electronic consumption data. Within DelayNet, we
propose a fresh adaptation of the TCN model by incorporating Delay Dilated convolutions.
This approach enables us to fully capture the nuances of time series data while keeping the
model’s parameter and computational demands relatively low. The primary objective is to
substantially increase the receptive field, addressing the constraints observed in previous
TCN models.
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Output

Fully Connected

DelayNet exhibits a structure akin to the original TCN and stride-TCN, comprising
two fundamental components: dilated and causal 1D convolutional layers. However, the
novel aspect of Delay Dilated Convolution lies in its distinct approach. As depicted in
Figure 3, each layer denoted as [ is directly computed based on the preceding layer, | — 1.
The nodes within layer /, represented as xf, are determined by a convolution size K, which
encompasses a delay gap extending upwards from layer  — 1. Likewise, the calculation
of node x! 41 inlayer [ follows the same methodology as xf. This computation facilitates
the aggregation of information from the delayed data, as previously mentioned, within the
confines of a single causal 1D convolution filter size.

2t = Sencoder = DelayBZOCk(xtfk:t) (11)

(12)

yAt—&-l = &decoder = MLPW<Zt—k:t>

7
(=

Weight Norm

Dropout
ReLU

Dilated Causal Conv

]

Weight Norm
Dropout

RelLU

Dilated Causal Conv

RelLU

Delayed Dilated Conv

Input

Figure 3. Overall architecture: Delay Block (left), and Connection between two layers in
DelayNet (right).

In essence, this signifies that delayed dilated convolution can place a more significant
emphasis on capturing the seasonal and cyclical characteristics inherent in time series data,
while maintaining an equal number of convolution operations. Especially when dealing
with datasets employed for predicting power demand, as visualized in Figure 4, the sea-
sonal and cyclical patterns influenced by climate conditions and building-specific attributes
often outweigh the trend component. Hence, delayed dilated convolutional filters can yield
substantial benefits in such scenarios. Furthermore, by employing fewer convolutional
filters with a delayed gap, it becomes feasible to acquire a considerable receptive field
while simultaneously reducing both parameter quantities and computational intricacies.
Consequently, this approach allows for crafting models suitable for forecasting power
demand in small to medium-sized building systems, making them adaptable to environ-
ments with constrained server resources or embedded systems, while also maintaining
cost-effectiveness.
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Figure 4. Characteristics of electricity consumption-time series data.

4. Experiments

In our experiment, we explore three scenarios to assess the performance and efficiency
of DelayNet in comparison to other established models across various configurations.

Scenario 1 (Model Comparison): In the first scenario, we evaluate the performance
of DelayNet with a small model size, emphasizing high accuracy. We compare it against
a range of well-established models, including LSTM, MLP, GRU, TCN with two layers,
ARIMA, and StrideTCN-2. This comparison aims to discern how DelayNet’s compact
architecture fares in accuracy against more complex counterparts, shedding light on its
suitability for resource-efficient forecasting.

Scenario 2 (Model Depth Analysis): In the second scenario, we delve into the impact
of model depth on forecasting capabilities. We analyze Deeper-DelayNet with stacking five
and seven layers. By exploring how these architectures handle increased depth, we aim to
identify the optimal trade-off between model complexity and forecasting accuracy.

Scenario 3 (Lightweight Models Comparison): In the third scenario, we investigate
Light-DelayNet versus Light-TCN, emphasizing efficiency and computational simplic-
ity. This comparison seeks to elucidate how these lightweight variants of DelayNet and
TCN perform.

4.1. Dataset

In our empirical studies, we conducted experiments using two publicly available
datasets and two privately acquired datasets. All these datasets are accessible online, the
size comparison is shown in Figure 5. It is worth noting that our research specifically
centers on univariate time-series forecasting, which means we concentrated on time series
data with a single dimension for each of the mentioned datasets. The key statistics of the
dataset corpus are summarized in Table 1.

Spain-Household CNU Gyeonggi-1-hour

France-Household-
1-hour

Figure 5. Comparison of Dataset Sizes—Public (Spain and France) vs. Private (CNU and Gyeonggi).
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Table 1. Summary of Dataset.

No. S
Dataset Length Variables Attributions
Global active power, Global reactive power, Voltage,
France 34,589 7 Global intensity, Submetering 1, Submetering 2,
Submetering 3
Spain 8760 2 Energy consumption, Outside temperature
CNU 11,209 2 Energy consumption, Outside temperature
Gyeonggi 17,001 1 Energy consumption

e Individual Household Electric Power Consumption (France): This dataset is accessible
online [35] and offers minute-by-minute electric power consumption data from a
single household in France. The data spans 47 months, covering the period from
December 2006 to November 2010. It comprises multivariable sequences, including
total active power consumption, total reactive power consumption, average current
intensity, active energy for the kitchen, active energy for the laundry, and active energy
for climate control systems [36]. The dataset contains a total of 2,075,259 multivariable
sequences. For our research, we specifically utilized 34,589 univariable sequences,
focusing on the hourly global active power data. Our analysis centers on the total
electricity consumption of a specific ID: 20.

e  Energy Consumption from Spain (Spain): Dataset is available online [37], provides
hourly energy consumption data, outside temperatures for the region, and metadata
for 499 customers in Spain. This dataset covers approximately one year, from 1 January
to 31 December 2019, totaling 8760 data points. Our primary interest in this research is
the total electricity consumption of a particular ID.

e CNU Energy Consumption (CNU): This dataset features a real-world collection of
energy consumption data from 90 distinct locations within CNU (Chonnam National
University), available online [38]. The data was meticulously gathered at an hourly
frequency over a span of 1.3 years, starting from 1 January 2021 and completing
on 14 January 2022. Each location contributes valuable insights through a total of
11,232 data points. A notable enhancement in this upgraded CNU energy consumption
dataset is the inclusion of additional dependable multivariate data, such as tempera-
ture, humidity, wind speed, and more. These supplementary variables were sourced
from records maintained by the South Korean Meteorological Administration during
the same period. Our experiment focuses on the total electricity consumption of a
particular location, namely, “Gongdae 7th Building, HV_02".

e  Gyeonggi-do Building Power Usage (Gyeonggi): This is a real-world dataset collected
directly from household electricity consumption, also accessible online [39]. It en-
compasses hourly records of building power consumption spanning approximately
1.9 years, ranging from 1 January 2021 to 14 January 2022. The dataset covers around
17,001 specific commercial buildings situated in Gyeonggi Province, South Korea. We
have chosen to concentrate on two specific buildings within this dataset, namely, ID
9654 and 6499. These buildings were selected based on our data analysis, as they
exhibit minimal missing data, making them ideal candidates for our experiments.

Before the training process, it is crucial to perform preprocessing steps. This is necessi-
tated by the relatively high-power values present in the datasets. For instance, in the case
of CNU dataset, the power values exhibit a mean of approximately 130.48 and a standard
deviation of around 46.97. To circumvent potential challenges such as numerical errors and
distortion of the dataset, we employ min-max normalization. This normalization method
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transforms the features to a standardized range of [0, 1], ensuring uniformity and optimal
training performance. The min-max normalization is calculated in Equation (13).

x; — min(x)
max(x) — min(x)

(13)

Z;i =

In this experiment, we conducted time-series forecasting tasks using each of four
datasets. To provide further details, most models employed an input window of 168 h and
generated forecasts with output windows ranging from 1 to 144 h. For each dataset, we
followed a chronological split, dividing it into three distinct subsets: 80% for the training
set, 10% for the validation set, and 10% for the testing set.

4.2. Configurations

We utilized two evaluation metrics for univariate forecasting, namely the Mean Ab-
solute Error (MAE, k = 1) and Mean Squared Error (MSE, k = 2), which are defined
as follows:

Error = % Z |Y; — YiHé (14)
i=1

In our study, we employ input sequences of a fixed length, precisely 168 data points,
as the foundation for our forecasting endeavors. Our forecasting horizon extends from
short-term predictions of 1 to 24 time steps ahead, with a keen focus on assessing the
model’s performance in long-term forecasting, spanning 36, 48, 60, 72, 84, 96, 108, 120, 132
and 3 steps into the future. To ensure consistency and comparability, we normalize our
input sequences. During training, we utilize two loss functions, Huber and Mean Squared
Error (MSE), each serving specific aspects of our predictive goals. Additionally, we employ
a ReduceLROnPlateau callback on Adam optimizer to dynamically adjust the learning rate
during training of ten epochs. This setup aims to explore the model’s capabilities across
various forecasting horizons. All the models were trained/tested on a single Nvidia A100
40GB GPU. The source code is available at github.com /andrewlee1807/DelayNet (accessed
on 23 September 2023).

4.3. Model Comparision

Tables 2-5 present a comprehensive analysis of DelayNet’s performance in comparison
to other baseline models across the CNU, Gyeonggi, France, and Spain datasets, respectively.
In these experiments, DelayNet is configured to the settings of followings, the kernel size is
set to 3, the gap of 6, the delay factor of 7, the number of filters is 16 while the number of
stacks is 3. The results reveal that DelayNet is better than other models, including LSTM,
MLP, GRU, 2layers-TCN, ARIMA, and 2layers-Stride-TCN, with an average in (MSE, MAE)
across horizon decrease (21.23%, 6.64%), (9.42%, 2.21%), (17.05%, 2.74%), (21.71%, 7.03%),
(67.18%, 43.60%) and (38.4%, 19.82%), respectively on CNU dataset. Similarly, on Gyeonggi
dataset, DelayNet better than other models with the margin of (10.28%, 6.22%), (7.0%,
8.47%), (13.45%, 9.57%), (5.81%, 7.22%), (54.37%, 27.51%), and (23.22%, 17.23%). On Spain
dataset, DelayNet is also better than other models with the margin of (9.46%, 6.85%),
(4.19%, 2.48%), (3.89%, 2.54%), (11.78%, 6.32%), (65.67%, 45.65%) and (31.94%, 18.62%). This
demonstrates the robust predictive capabilities of Delay-Net, making it a compelling choice
for time series forecasting tasks. We compare model’s parameters in Figure 6.
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Table 2. Performance on CNU dataset.

Stride-TCN 2

Methods Delay-Net2 LSTM MLP GRU TCN-2 Layers ARIMA Layers
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
1 0.0018  0.0284 0.0021 0.0306  0.0026 0.0346  0.0022 0.0311  0.0020 0.0306  0.0025 0.0337 0.0145 0.0819
5 0.0058  0.0510 0.0073 0.0559  0.0061 0.0532 0.0065 0.0529 0.0067 0.0539 0.0135 0.0781 0.0154 0.0866
10 0.0085 0.0630 0.0108 0.0683 0.0082 0.0631  0.0096 0.0637 0.0094 0.0627 0.0261 0.1166 0.0153 0.0866
15 0.0099  0.0686 0.0111 0.0728  0.0088 0.0652 0.0109 0.0685 0.0109 0.0700 0.0326 0.1347  0.0148 0.0864
20 0.0110 0.0737  0.0128 0.0776  0.0101 0.0718  0.0119 0.0717 0.0119 0.0742  0.0339 0.1377  0.0150 0.0867
24 0.0108  0.0718  0.0105 0.0715 0.0098 0.0697  0.0124 0.0734 0.0117 0.0736  0.0319 0.1314 0.0153 0.0868
36 0.0096 0.0727 0.0125 0.0786  0.0103 0.0719  0.0122 0.0738 0.0136 0.0800  0.0335 0.1348  0.0155 0.0871
48 0.0110 0.0771  0.0129 0.0806 0.0115 0.0760 0.0111 0.0706  0.0144 0.0819 0.0351 0.1377  0.0148 0.0861
60 0.0109 0.0771  0.0137 0.0817 0.0117 0.0771  0.0121 0.0758 0.0153 0.0861  0.0361 0.1399  0.0191 0.0982
72 0.0102 0.0755 0.0135 0.0805 0.0128 0.0805 0.0126 0.0768 0.0144 0.0839 0.0363 0.1403 0.0157 0.0881
84 0.0101  0.0752 0.0135 0.0796  0.0122 0.0786  0.0128 0.0796  0.0146 0.0844 0.0363 0.1404 0.0150 0.0869
96 0.0098 0.0756 0.0154 0.0885 0.0118 0.0775 0.0134 0.0807 0.0144 0.0844 0.0364 0.1406  0.0180 0.0951
108 0.0099 0.0759 0.0148 0.0861 0.0122 0.0782  0.0131 0.0803 0.0145 0.0849 0.0365 0.1410 0.0141 0.0839
120 0.0099 0.0756 0.0139 0.0797 0.0122 0.0780  0.0135 0.0815 0.0140 0.0840 0.0368 0.1415 0.0133 0.0829
132 0.0096  0.0744 0.0137 0.0794 0.0120 0.0780  0.0137 0.0820  0.0138 0.0830  0.0369 0.1418  0.0133 0.0820
144 0.0103  0.0765 0.0138 0.0806  0.0129 0.0788  0.0133 0.0807  0.0137 0.0828 0.0370 0.1420 0.0132 0.0816
Better (in average) 21.23 6.64 9.42 67.18 43.60 221 17.05 2.74 21.71 7.03 38.04 19.82

Table 3. Performance on Gyeonggi dataset.

Methods DelayNet LSTM MLP GRU TCN-2 Layers ARIMA StriLd:y];fsN'z
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
1 0.0018 0.0172  0.0021 0.0199  0.0026 0.0243  0.0020 0.0195 0.0019 0.0199  0.0023 0.0161  0.0058 0.0351
5 0.0045 0.0280 0.0050 0.0311 0.0049 0.0334 0.0051 0.0321  0.0049 0.0314 0.0078 0.0337  0.0071 0.0435
10 0.0050 0.0308 0.0060 0.0351 0.0056 0.0348 0.0062 0.0362  0.0055 0.0344 0.0119 0.0465 0.0069 0.0397
15 0.0050  0.0308 0.0073 0.0401 0.0059 0.0363 0.0067 0.0379  0.0058 0.0362  0.0137 0.0523  0.0063 0.0373
20 0.0056  0.0329 0.0071 0.0403  0.0060 0.0365 0.0068 0.0380  0.0062 0.0381 0.0141 0.0534 0.0074 0.0422
24 0.0055 0.0362 0.0063 0.0377 0.0061 0.0372  0.0071 0.0387  0.0064 0.0387 0.0136 0.0516  0.0066 0.0390
36 0.0058 0.0385 0.0076 0.0433 0.0062 0.0392  0.0073 0.0414 0.0063 0.0399 0.0140 0.0531 0.0076 0.0434
48 0.0068  0.0386  0.0062 0.0391 0.0063 0.0396  0.0074 0.0424 0.0063 0.0406 0.0143 0.0543 0.0074 0.0456
60 0.0061  0.0392 0.0065 0.0408 0.0062 0.0397 0.0064 0.0422 0.0065 0.0416 0.0147 0.0556  0.0081 0.0459
84 0.0059  0.0393  0.0063 0.0396 0.0063 0.0417  0.0069 0.0435 0.0064 0.0408 0.0149 0.0569  0.0077 0.0487
96 0.0064 0.0410 0.0060 0.0375 0.0064 0.0437 0.0068 0.0448 0.0065 0.0424 0.0151 0.0575 0.0067 0.0424
132 0.0064 0.0417 0.0066 0.0399 0.0065 0.0442 0.0067 0.0424 0.0064 0.0426 0.0156 0.0591  0.0065 0.0399
144 0.0063 0.0418 0.0066 0.0403 0.0064 0.0428 0.0070 0.0433 0.0063 0.0421 0.0156 0.0593  0.0080 0.0459
Better (in average) 10.28 6.22 7.00 8.47 13.45 9.57 5.81 722 5473 2751 2322 17.23
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Table 4. Performance on France dataset.

Stride-TCN 2

Methods Delay-Net LSTM MLP GRU TCN-2 Layers ARIMA Layers
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
1 0.0052  0.0485 0.0054 0.0501 0.0054 0.0511 0.0054 0.0494 0.0053 0.0493 0.0076 0.0561 0.0098 0.0786
5 0.0074  0.0621  0.0075 0.0611  0.0076 0.0634 0.0072 0.0599 0.0075 0.0611 0.0165 0.0870  0.0097 0.0715
10 0.0078 0.0641 0.0078 0.0630 0.0080 0.0651  0.0079 0.0638 0.0082 0.0652 0.0193 0.0965 0.0098 0.0754
15 0.0080 0.0648 0.0080 0.0641 0.0082 0.0656  0.0084 0.0662 0.0084 0.0667 0.0192 0.0963  0.0089 0.0721
20 0.0082  0.0653 0.0082 0.0649 0.0083 0.0657 0.0083 0.0654 0.0089 0.0688  0.0202 0.0994  0.0092 0.0721
24 0.0083  0.0664 0.0083 0.0654 0.0084 0.0664 0.0082 0.0652 0.0086 0.0679  0.0195 0.0968  0.0095 0.0736
36 0.0085 0.0688  0.0087 0.0685 0.0086 0.0673  0.0085 0.0662 0.0090 0.0706 0.0198 0.0980 0.0113 0.0847
48 0.0086  0.0682 0.0093 0.0702 0.0087 0.0692  0.0087 0.0686  0.0089 0.0700 0.0200 0.0986  0.0099 0.0789
60 0.0087  0.0692  0.0088 0.0683 0.0088 0.0695 0.0087 0.0688  0.0091 0.0718  0.0202 0.0994 0.0094 0.0737
72 0.0088 0.0704 0.0088 0.0689  0.0088 0.0696  0.0087 0.0688 0.0091 0.0714 0.0203 0.1000 0.0099 0.0788
84 0.0089  0.0702  0.0095 0.0727 0.0089 0.0704 0.0087 0.0692 0.0092 0.0725 0.0204 0.1006  0.0117 0.0875
96 0.0089  0.0707 0.0092 0.0722  0.0089 0.0706  0.0087 0.0695 0.0092 0.0731 0.0204 0.1010 0.0095 0.0765
120 0.0089  0.0710 0.0098 0.0738 0.0091 0.0714  0.0088 0.0698 0.0094 0.0734 0.0204 0.1016 0.0119 0.0893
144 0.0091 0.0725 0.0095 0.0737 0.0092 0.0723  0.0089 0.0710 0.0094 0.0741 0.0204 0.1022 0.0117 0.0878
Better (in average) 2.78 0.46 1.46 0.67 -0.07 —-1.08 3.99 242 5526 29.58 1849 15.01

Table 5. Performance on Spain dataset.

Methods Delay-Net2 LSTM MLP GRU TCN-2 Layers ARIMA Strif:;r(;N 2
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
1 0.0075  0.0642 0.0127 0.0842 0.0086 0.0679  0.0095 0.0726  0.0083 0.0692  0.0093 0.0729  0.0177 0.1002
5 0.0124  0.0820 0.0156 0.0942  0.0123 0.0810 0.0137 0.0872  0.0132 0.0841 0.0286 0.1278  0.0227 0.1157
10 0.0139  0.0867 0.0163 0.0979 0.0151 0.0914 0.0147 0.0903 0.0153 0.0912 0.0465 0.1687 0.0214 0.1101
15 0.0146  0.0893  0.0162 0.0974 0.0147 0.0902 0.0168 0.0955 0.0163 0.0948 0.0544 0.1869  0.0210 0.1084
20 0.0152  0.0912 0.0158 0.0955 0.0146 0.0896 0.0154 0.0924 0.0164 0.0950 0.0550 0.1884  0.0215 0.1088
24 0.0153  0.0914 0.0157 0.0947 0.0154 0.0922 0.0165 0.0950 0.0174 0.0981  0.0506 0.1783  0.0213 0.1080
36 0.0161 0.0941 0.0165 0.0973 0.0169 0.0971 0.0160 0.0942 0.0176 0.0989  0.0530 0.1836  0.0208 0.1079
48 0.0164 0.0953  0.0167 0.0973 0.0163 0.0956  0.0160 0.0944 0.0187 0.1017 0.0533 0.1843  0.0305 0.1343
72 0.0169 0.0971 0.0180 0.1014 0.0172 0.0989  0.0167 0.0966  0.0201 0.1056  0.0552 0.1880  0.0354 0.1438
84 0.0166  0.0958  0.0178 0.1011  0.0188 0.1029  0.0169 0.0974  0.0202 0.1071  0.0557 0.1891  0.0216 0.1096
96 0.0172  0.0978  0.0183 0.1030  0.0189 0.1031  0.0168 0.0974 0.0203 0.1067 0.0563 0.1904 0.0221 0.1106
108 0.0172  0.0979 0.0182 0.1015 0.0185 0.1018 0.0170 0.0984 0.0204 0.1064 0.0568 0.1913  0.0216 0.1094
132 0.0170  0.0981 0.0186 0.1023  0.0171 0.0985 0.0173 0.0991  0.0201 0.1049 0.0580 0.1933  0.0211 0.1075
144 0.0176  0.0992 0.0186 0.1033 0.0190 0.1031 0.0178 0.1003  0.0194 0.1040 0.0582 0.1936  0.0207 0.1073
Better (in average) 9.64 6.85 4.19 248 3.89 2.54 11.78  6.32 65.67 45.65 3194 18.62
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Figure 6. Number of parameters comparison.

The proposed model demonstrates better performance not only in short-term predic-
tions but also in longer-term forecasting scenarios. For instance, when examining the CNU
(Table 2) and Gyeonggi (Table 3) datasets, DelayNet surpasses all other methods in terms of
MSE for prediction horizons ranging from 72- to 144-time steps. Moreover, even on larger
datasets like France, DelayNet delivers great performance, securing the second-best results
with only a slight margin (0.07% in MSE and 1.08% in MAE) behind the leading GRU-based
methods (Table 4). These outcomes underscore the model’s proficiency in capturing both
short and long-term patterns within time series data.

For more emphasize the robustness of our method, we measure the runtime of De-
layNet and TCN when forecasting range is 1 h, Figure 7. The results indicate that DelayNet
exhibits inferior performance compared to TCN, with a discernable gap of approximately
1% and 1.5 s in metrics, respectively.

" Error ™ Model Execution Time
0.0021 18
) 17.5
0.00205 -
- =
v 8
0.002 =
iz 165 -2
= 2
0.00195 2
== | 16 =
| ] -
0.0019 l yoig B
0.00185 15
DelayNet TCN

Figure 7. MSE of our DelayNet compared with TCN.
4.4. Depth Analysis

Figure 8 provides an insightful comparison of DelayNet models of varying sizes
against a seven-layer TCN model. DelayNet models are characterized by different sizes
in terms of the number of parameters (small: 62 K, medium: 148 K, large: 649 K), while
the TCN model comprises 640 K parameters. The analysis reveals that DelayNet consis-
tently delivers competitive forecasting accuracy across different sizes, despite variations in
parameter count. Remarkably, the medium-sized DelayNet (DelayNet-m) and the TCN
exhibits similar MAE values, underscoring their robust predictive capabilities. Intriguingly,
the small-sized DelayNet (DelayNet-s), despite its reduced parameter size, also performs
exceptionally well, achieving MAE values that are on par with its larger counterparts. This
underscores DelayNet's ability to strike a harmonious balance between model complexity
and predictive accuracy, rendering it an appealing choice for a wide range of forecasting
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tasks. Nonetheless, as the model depth increases with DelayNet-1, we observe an escalation
in errors compared to other models. While this phenomenon may suggest overfitting, it
is useful to note that there are instances in which DelayNet-1 outperforms TCN within
certain timeframes. On average, DelayNet-s, DelayNet-m and DelayNet-1 demonstrates
approximately a 13.44%, 12.24% and 12.99% improvement in forecasting accuracy over
TCN-7layers across the 10 forecasting horizons.

0.0750
0.0700
0065 - * DelayNet-m |DelayNet-l |DelayNet-s |TCN-7layers
” - 1 0.0485 0.0488 0.0489 0.0558
ol " 2 0.0536 0.0560 0.0546 0.0554
0.0600 » /". - 3 0.0566 0.0586 0.0572 0.0597
o 4 0.0603 0.0618 0.0613 0.0608
0.0550 H '/" 5 0.0621 0.0638 0.0607 0.0633
6 0.0613 0.0646 0.0668 0.0636
7 0.0622 0.0661 0.0652 0.0651
00500+ 8 0.0626 0.0663 0.0634 0.0648
9 0.0627 0.0684 0.0659 0.0657
0.0450 10 0.0641 0.0677 0.0690 0.0649
0.0400
1 2 3 4 5 6 7 8 9 10
+— DelayNet-m #— DelayNet-| DelayNet-s TCN-7layers

Figure 8. DelayNet’s depth comparison, experiments on France dataset. Errors (left) of each model
and its corresponding values are given in the table (right).

4.5. Light-Weight Model Comparision

The baseline DelayNet architecture relies on a kernel size of 3 and maintains a gap
of 5, ensuring that the gap size exceeds the kernel size. It references data from the past,
specifically 2-time steps back, within each kernel mask and employs 16 filters within each
kernel mask. Furthermore, it consists of a single block within the model, with a minimum
requirement of at least one block. In contrast, the Light-DelayNet architecture adopts
a larger kernel size of 12 and features a substantial gap of 24, which provides a more
extensive distance between connections within a kernel mask, surpassing the kernel size.
Additionally, Light-DelayNet incorporates three connections into each kernel mask from
the past and retains 16 filters within each kernel mask. To enhance model performance,
Light-DelayNet introduces increased depth by employing two blocks, offering greater
potential for capturing complex temporal patterns and improving forecasting accuracy.

In the architectural comparison between Light-TCN and Light-DelayNet, both models
employ a kernel size of 12, 16 filters, and process input sequences of width 168, indicating
a foundational structural similarity. However, Light-TCN utilizes a list of dilation values
[1, 2] to capture diverse temporal patterns, enabling the model to attend to different time
scales within the data. In contrast, Light-DelayNet opts for a more straightforward design
with a single stack, potentially reflecting a streamlined approach. Both Light-TCN and
Light-DelayNet models possess an equivalent number of parameters, totaling 9521. These
highlight the trade-off between complexity and adaptability in time series forecasting
models, offering researchers flexibility in choosing the most suitable model.

Figure 9 illustrates the MAE comparison between Light-DelayNet and Light-TCN
across four datasets when predicting energy consumption for a future time horizon of 10 h.
In all datasets, Light-DelayNet consistently outperforms Light-TCN in terms of forecasting
error. Notably, both models exhibit an increase in prediction errors as the forecasting
range extends further into the future, though the discrepancy between their performance
diminishes as the time steps increase. Moreover, the performance gap between the two
models becomes more recognizable when dealing with larger datasets, such as Gyeonggi
and France. Specifically, the average discrepancy in MAE over the forecasting range remains
at 6.26%, 2.13%, 10.80% and 0.9% for Gyeonggi, France, CNU, and Spain, respectively.
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Figure 9. Light-DelayNet performance compared with Light-TCN on four datasets.

Through experiments, DelayNet exhibits remarkable adaptability in time series pre-
diction, showcasing its prowess in forecasting over both short and extended timeframes.
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Drawing inspiration from TCN while surpassing its performance in simpler and more
intricate cases, DelayNet is tailored for datasets of moderate size, achieving a harmonious
balance between efficiency and efficacy. Furthermore, its scalability, achieved through
the stacking of DelayBlocks, bolsters its suitability for addressing complex forecasting
challenges. To sum up, DelayNet’s aptitude for capturing historical patterns, its flexibility
across dataset sizes, and its potential for expansion make it a compelling choice for a diverse
spectrum of time series forecasting applications.

5. Conclusions

While various deep learning methodologies have been applied to power consumption
forecasting, they have increasingly grown in size and computational complexity. In practical
applications, especially within small to medium-sized buildings, the resource constraints
of computing power become a critical consideration.

To address these challenges, we have proposed a specialized deep learning model
tailored for real-building power consumption prediction. Our DelayNet effectively en-
hances the receptive field while significantly reducing the model’s parameter count and
computational complexity. This model outperforms traditional approaches, including RNN,
GRU, TCN, and ARIMA, by 21.23%, 43.60%, 17.05% and 21.71% in terms of MSE error.

Furthermore, we have made significant contributions by providing access to valu-
able datasets, such as the CNU building power usage dataset and the Gyeonggi-do
building power usage dataset, which offer rich resources for future power consumption
prediction research.

Future research opportunities for enhancing DelayNet include integrating external
variables like weather and holidays for improved real-world predictions, fine-tuning
hyperparameters to tailor the model for specific contexts, and exploring transfer learning
to leverage knowledge across different datasets or domains, ultimately aiming to boost its
forecasting performance and practical applicability.
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