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Abstract: The quality of the intermediate point temperature control of a supercritical unit is directly
related to the quality of the coal–water ratio and main steam temperature control of the supercritical
unit, which is also related to the economy and safety of the unit. In order to improve the accuracy
of short-term predictions of the intermediate point temperature, a short-term prediction model of
the intermediate point temperature based on the EEMD (Ensemble Empirical Mode Decomposition)-
LSTM (Long Short-Term Memory) model is proposed. This model uses the data of a 600 MW thermal
power station in 2022 as a sample. The EEMD method is used to decompose the historical data into
IMF components and residual components, and the correlation between each component and the
original data is calculated. The relevant components are sent to the LSTM neural network, and all
the sub-components are superimposed to obtain the final intermediate point temperature prediction
results. At the same time, the BP and LSTM models are built to compare the errors with the proposed
model. The results show that the single model will produce large errors when predicting the factors of
large data fluctuations. The EEMD–LSTM coupling model can fully extract the detailed features and
the prediction effect is obvious. The prediction accuracy of the EEMD–LSTM prediction model built
in this paper is significantly better than that of the other two models. It has certain application value
in the research field of intermediate point temperature prediction and can meet the requirements of
short-term predictions of the intermediate point temperature.

Keywords: supercritical unit; data-driven identification; combined prediction model; LSTM neural
network; EEMD

1. Introduction

The intermediate point temperature of a supercritical boiler temperature is the tem-
perature of the working fluid from the water wall to the outlet steam water separator. The
intermediate point temperature is often used as the feed-forward signal of the main steam
in the field. Through the introduction of a control system, the measures to prevent the
film boiling or film boiling of the water wall are prevented, and the alarm signal of the
water wall is protected [1]. The intermediate point temperature is affected by parameters
such as the feed water, coal quantity, feed water temperature, total air volume and unit
load. There is a strong coupling relationship between the above parameters and the in-
termediate point temperature, which cannot be described by a simple mechanistic model.
It is easier to describe using a data-driven method. The main steam temperature has a
great influence on the safety, stability and operation of the unit. In boiler emergencies,
more than 50% of the accidents are caused by the overheating and overpressure of the
superheated steam [2]. Because of the multi-internal DC form adopted by supercritical
units, the complex of the steam–water system, the length of travel, and the changing model
parameters with changing working conditions (especially the introduction of deep peak
regulation), the working state of the steam–water system is extremely complicated. It is
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difficult for a controller designed according to the traditional object model to meet the
control requirements [3]. It cannot be described by a simple mechanistic model, and it is
easier using a data-driven method. In actual operation, the intermediate point temperature
is controlled by adjusting the water–coal ratio through experimentation; however, the
difference in the intermediate temperatures corresponding to the load of each unit results
in hysteresis and errors in the regulatory control of the intermediate point temperature.
Therefore, it is very important to establish an intermediate point temperature simulation
model to guide the regulation control. With the increase in the installed capacity of the unit
and the continuous improvement of the parameters, higher requirements are needed for
the performance of the control system [4]. In-depth studies of the thermal object of a power
plant unit and the establishment of a mathematical model are key to ensuring the control
quality, and have always been the focus of research in the field of thermal process control.
The study in [5] shows that in the 1960s, simulation technology was applied to the model-
ing of thermal systems. At present, many experts and scholars have used the mechanism
model identification method to study the power station control system, and have achieved
a lot of research results, and established many models and empirical formulas. The study
in [6] used the recursive least squares method to develop a model for the superheated
steam temperature system of a 330 MW subcritical unit, and on this basis, a two-stage
superheated steam temperature linkage control optimization strategy was constructed by
applying multivariate generalized predictive control. In [7], an improved particle swarm
algorithm identification was used to obtain a mathematical model with three inputs and
three outputs for a 600 MW supercritical unit, which was established a temperature model
with a high accuracy. The study in [8] used partial least squares regression in conjunction
with actual unit operational data to model a supercritical unit.

However, the identification method based on the mechanism model requires in-depth
principle analysis of the controlled object and relies on an empirical formula to set the
parameters. The accuracy and universality of the model are very poor, especially for a
power plant with flexible transformation and deep peak shaving, where the impact is
greater and the model’s adaptability is difficult to guarantee. With the development of
artificial intelligence algorithms, data-driven modeling methods are becoming more and
more mature. In particular, for thermal power plants, which have long-term continuous
operation and accumulated massive data, data-driven modeling is very suitable. In the
data-driven modeling method, neural network algorithms are a typical representative and
are widely [9] used. As an adaptive pattern recognition technology, neural networks do
not need empirical knowledge and a discriminant function of the model in advance. It
can automatically form the required decision region through its own learning mechanism.
The characteristics of the network depend on the topology of the neural network, the
characteristics of the neurons, and the rules of learning and training [10]. Therefore, many
experts and scholars have applied neural network algorithms to the control of thermal
power units. In study in [11], the neural network identification method was used for
training using a large amount of data to obtain a model of the main steam temperature
system. The study in [12] proposed an identification method combining field data and
mechanism analysis, and verified that the output of the model and the actual field output
data have a high degree of fitting. The study in [13] proposed a steam temperature
identification method combining field data and neural networks. The results show that the
identified model met the accuracy requirements.

With the development of technology, deep learning has gradually replaced the tra-
ditional neural network as the representative of intelligent algorithms. Long Short-Term
Memory (LSTM) is a kind of machine learning intelligent algorithm, which is widely used
in signal modeling, time series prediction and other research which can effectively solve
the series of gradient problems caused by RNNs. Many scholars have applied time series
prediction methods to finance and business, computer science, agricultural engineering,
power plant thermal systems, and many interdisciplinary fields [14]. In [15], a model
prediction method based on the LSTM algorithm was proposed by identifying the real-time
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data [16]; it analyzed how windy weather can easily lead to high-speed train accidents and
proposed a two-layer LSTM network structure, which was verified by using wind speed
data in a certain area. The study in [17] analyzed the characteristics of wind speed with
strong randomness and many influencing factors and proposed a wind speed prediction
method based on LSTM. The studies in [18,19] described the application of deep learning
in power-load forecasting, listed the commonly used deep learning algorithms, and after
comparative analysis, verified that the LSTM (Long Short-Term Memory Neural Network)
algorithm has high accuracy. In study in [20], the LSTM algorithm was applied to the study
of pollutant emissions from power plants, and the correctness of the method was proven.
In study in [21], the LSTM algorithm was introduced into the field of the prediction and
identification of coal-fired boilers. The experiments showed that the convergence process
of the model identified using LSTM was stable, and few time steps were required.

However, in terms of the prediction method for the intermediate point temperature,
which is an important parameter of the main steam temperature control and the main
feed water control, the combination of EEMD (Ensemble Empirical Mode Decomposition)
and LSTM has been less used. EEMD can decompose various features contained in the
intermediate point temperature time series data one by one, and the selection of the main
IMF components is carried out, which can effectively avoid the phenomenon of modal
aliasing [22], which is conducive to better prediction and an improvement in the prediction
accuracy. LSTM is a good alternative model to the RNN, as it eliminates the risk of gradient
disappearance and gradient explosion that may occur in RNN when processing time
series [23]. When predicting without considering the underlying mechanism process, the
LSTM model can be used as an alternative to the physical model to predict the change in
the intermediate point temperature. The model has strong applicability and learning ability
for data with high degree of nonlinearity, can compare and update memory information
and current information more accurately and efficiently, and has a higher accuracy and
better prediction ability than the traditional prediction methods [24]. For neural networks,
state information can be fully utilized to train information from different states one by one
to obtain a certain correlation mapping relationship. Due to the characteristics of the neural
network itself, it has been widely studied and applied in the field of time series prediction.

The intermediate point temperature of a supercritical unit refers to the temperature
of the working medium in the steam–water separator at the outlet of the water wall. In
the supercritical pressure boiler, the temperature of the working fluid in the water wall
changes with the change in the heat absorption, while the change in the temperature of the
working fluid at the outlet of the water wall must first directly affect the superheated steam
temperature. Therefore, the intermediate point temperature is obviously very important as
the leading signal or the primary reference temperature for controlling the superheated
steam temperature.

The intermediate point temperature is a function of the separator pressure, which
needs to ensure that the steam in the separator is 10~30 ◦C. Based on the importance
of the intermediate point temperature, the intermediate point temperature protection is
set. Obviously, the quality of the coal directly affects the size of the water–coal ratio; for
example, if the actual coal type has a higher calorific value than the designed coal type, the
value of the water–coal ratio will be larger. Therefore, the water–coal ratio is only a coarse
estimate of the intermediate point temperature.

At present, most of the research on the control model of the intermediate point temper-
ature of a supercritical unit has difficulty in fully reflecting its dynamic characteristics. The
model data are very different from the actual operating data, and it is difficult to apply in
practice. A combined prediction model can indeed improve the prediction accuracy in the
prediction of the intermediate point temperature time series. The use of EEMD does not
require any subjective intervention; it provides a truly adaptive data analysis method. By
eliminating modal aliasing, a set of IMFs that can carry the full physical meaning of each
component is generated. These IMF components are able to more accurately characterize
the local features of the original data at different time scales [25]. Moreover, LSTM consists
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of a forgetting gate, input gate, output gate, and cell state messaging part [26], creating good
short-term prediction capability. From the literature review and analysis, few prediction
studies were found in this field based on an EEMD and LSTM decomposition ensemble
series combination model. Therefore, this paper attempts to construct an EEMD–LSTM
decomposition and integration model for empirical analysis to explore its performance in
the short-term prediction of an intermediate point temperature time series.

In this study, an intermediate point temperature identification method based on
EEMD–LSTM is proposed. Firstly, the neural network is used to abstract the historical
data for preprocessing to decompose the characteristic data and extract the variation law
of the signal at different scales. Then, the data after EEMD decomposition are input into
the LSTM identification algorithm for object modeling. The model has higher accuracy
than the traditional prediction method. In order to improve the learning efficiency of
the prediction model and extract the characteristics of the data, this work introduces the
data processing method of data decomposition into the prediction and uses the EEMD
signal decomposition method to extract the characteristics of the data on different time
scales, so that the prediction accuracy can be further improved. By adjusting the structure
and parameters of the algorithm, the intermediate point temperature system model is
finally established.

2. Analysis of Input Influencing Factors

In the actual operation of a supercritical unit, the important parameters of the main
steam temperature control and the wall temperature safety control are determined by the
key variable of the intermediate point temperature, and there are many factors affecting
the intermediate point temperature. As the main means to adjust the temperature of the
intermediate point, the amount of water and coal can directly affect the temperature of the
intermediate point. When the unit load is different, the intermediate point temperature will
be different; thus, the relationship between the two is close. The total air volume can control
the combustion and heat transfer of the furnace, which further affects the heat absorption
of the water wall and then affects the intermediate point temperature. At the same time,
the feed water temperature, as an advance control parameter for entering the water wall,
indirectly affects the temperature of the intermediate point [27]. According to the relevant
mechanism research and field operation experience, four feature vectors, including the coal
quantity, water supply quantity, water supply temperature of the economizer outlet, and
the total air volume of the furnace, were selected as inputs. Considering the change in the
normal operation parameters of a boiler under different unit loads, the unit load was also
used as an input neuron for the accuracy of the simulation training.

Based on the above analysis, it was reasonable to use the coal quantity, water supply
quantity, water supply temperature of the economizer outlet, total air volume of the furnace,
and the boiler load as prediction input data, which are shown in Figure 1. Some input
and output data of the prediction model are shown in Table 1. The intermediate point
temperature of a supercritical once-through boiler is used as the output neuron. Due to
the strong coupling and nonlinear characteristics among neurons, it is difficult to describe
it with a simple mechanism model. The EEMD–LSTM neural network can be arbitrarily
approximated to nonlinear functions and dynamic systems. Therefore, this model was
used to establish the intermediate point temperature prediction model.
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Table 1. Access characteristics of the thermal equipment.

Serial
Number

Feed Water
Quantity

(t/h)

Coal Quantity
(t/h)

Unit Load
(MW)

Feed Water
Temperature

(◦C)

Total Furnace
Air Volume

(%)

Intermediate Point
Temperature

(◦C)

1 849.206 162.533 328.516 600.4415 1224.46 363.171
2 845.906 162.282 329.573 600.4415 1226.206 364.171
3 843.209 162.459 329.111 600.4415 1227.82 364.171
4 842.526 162.226 329.903 600.3695 1229.516 364.025
5 840.602 162.226 329.243 600.298 1233.786 364.025
6 842.22 162.026 330.102 600.2265 1236.135 364.171
7 841.738 161.825 329.375 600.2265 1238.163 364.025
8 839.977 161.825 329.375 600.155 1236.797 364.025
9 839.596 161.825 330.696 600.011 1234.9 364.171

10 841.877 161.825 329.639 600.011 1231.505 364.171
11 842.23 161.825 329.639 600.011 1230.08 364.171
12 842.381 161.825 330.234 600.011 1233.341 364.317
13 842.806 161.825 328.78 600.011 1235.257 364.317
14 842.584 161.825 329.375 599.868 1232.022 364,463
15 844.239 161.825 328.846 599.9395 1235.836 364.609
16 843.355 161.825 328.639 599.9395 1235.629 364.754
17 844.658 161.825 330.102 599.7965 1230.513 364.9
18 844.679 161.633 329.045 599.868 1227.551 364.9
19 843.926 161.633 328.582 599.7965 1228.61 365.046
20 843.365 161.633 329.111 599.7965 1221.381 365.046

3. EEMD and LSTM Prediction Methods

When the output data of the intermediate point temperature fluctuate, the parameters
of the model will change accordingly, and the accuracy of the prediction model will be
affected. Therefore, it is necessary to use EEMD to decompose the historical data to ensure
the accuracy of the model.

3.1. EEMD Decomposition

The EEMD decomposition aliasing method is mainly designed to optimize the mode-
aliasing phenomenon similar to the Empirical Mode Decomposition method; EEMD is an
improvement on the EMD method, which is a method of assisting in the decomposition of
the data through the inclusion of noise signals [28]. The Empirical Mode Decomposition
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(EMD) method can decompose the different scale components in any time series signal in
turn and generate multiple sets of data sequences with different scale features; each set of
data sequences is an intrinsic mode function (IMF) [29]. Firstly, white noise is added to
the input signal, and then EMD decomposition is performed. The mean value of the IMF
component after multiple decompositions is calculated [30], and an original input signal
x(t) is given. Adding Gaussian white noise to the original signal effectively improves
the mode aliasing problem. Since the EEMD method is based on the EMD method, the
decomposition frequency m of EMD and the amplitude k of the Gaussian white noise will
directly affect the accuracy of model prediction.

Before using EEMD, the integrated average number m and the amplitude k of the
added white noise need to be initialized, where σ is the standard deviation of the origi-
nal signal.

ln σ +
k
2

ln m = 0 (1)

k = 0.2σ (2)

After several parameter adjustments, the m value was finally determined to be 150
and the k value to be 0.25.

The EEMD decomposition process is as follows:

(1) Add normal Gaussian noise with amplitude k = 0.25 into the signal, set the number of
EMD decomposition m as 150, and set the number of iterations m as 1.

(2) Carry out the m-th iteration of the Empirical Mode Decomposition (EMD). The EMD
decomposition process is as follows:

① After adding Gaussian white noise to the data series of the intermediate point
temperature, the new data series is as follows:

xm(t) = x(t) + kqm(t), m = 1, · · · , k (3)

In the formula:
x(t)—raw data series of the intermediate point temperature;
m—the number of times white noise is added;
qm(t)—white Gaussian noise;
xm(t)—new temperature series.

② The new temperature series xm(t) is decomposed by EMD to obtain n IMF
components and one remaining component:

xm(t) = ∑n
i=1 Cmi(t) + Rm(t) (4)

In the formula:
Cmi(t)—the m-th decomposition yields the i-th component of the IMF;
Rm(t)—remaining component.

(3) Compute the average of each individual decomposed quantity:

Ci(t) =
1
k ∑k

m=1 Cmi(t) (5)

Ci(t) represents the ultimate outcome of the decomposition process.

3.2. LSTM Algorithm

Long Short-Term Memory (LSTM) [31] is a kind of machine learning intelligent al-
gorithm, which is widely used in signal modeling and time series prediction and can
effectively solve a series of gradient problems caused by the recurrent neural network RNN.

As with the traditional RNN networks, LSTM topological neural networks are also
composed of a combination of an input control layer, an output control layer, and a
hidden layer. Compared with traditional RNN networks, the hidden layer of LSTM neural
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networks uses gated memory modules to replace ordinary input neurons, whose topology
is shown in Figure 2. The gated memory module unit is the most important core component
of the LSTM system structure, and its memory state at a certain moment t is recorded as ct,
which includes part of the long-term memory data information of the memory sequence.
The memory state ht of the hidden layer at a certain moment t mainly contains some short-
term memory data information of the memory sequence. Obviously, the former memory
data cycle update rate is much lower than the latter. The whole memory module is realized
through an input gate, an output gate, and a forget gate.
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At a specific moment, the input of a memory unit module in LSTM mainly includes
the sequence input xt, the state ht−1 before the hidden layer, and the state ct−1 before the
memory unit. The sequence output of the memory unit module mainly includes the state
of the hidden layer ht and the state of the memory unit xt at this moment. The influence
degree of the input gate control is xt on ct; the influence of ct on ht is controlled by the
output gate. The forgetting door is mainly responsible for controlling and processing the
historical data information in the memory unit.

3.3. The EEMD–LSTM Model

The intermediate point temperature model is affected by factors such as the unit
load, the coal quantity, the main feed water flow, the total air volume, and the feed water
temperature. It is a typical nonlinear and non-stationary signal. Therefore, this work
proposes an EEMD–LSTM coupling model. The model decomposes the intermediate point
temperature sequence into a series of IMF components using EEMD decomposition. The
decomposed input sequence is shown in Figure 3a–e, and the output sequence of the output
intermediate point temperature is shown in Figure 3f. The first behavior inputs the original
output power of the variable, and the IMF is the decomposed sequence, the remaining
component of the last behavior, which then selects the subsequences highly correlated with
the target variable to input into the multi-layer LSTM network. Finally, the subsequence
prediction results are reconstructed to obtain the prediction results. For the more stable
second-by-second data of the operating unit on 30 July 2022, the data within each 4 s
were averaged, and the temperature sequence with a resolution of 4 s was formed after
preprocessing. EEMD decomposition was performed on the five input variables. Through
observation, it can be seen that the fluctuation trend of the IMF component had certain
similarities overall, but the details of the fluctuation were different. The IMFs and residual
components of each input variable were added to other factors as the prediction conditions
for the LSTM model.
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The specific modeling process was as follows:

(1) EEMD decomposition

Using the EEMD decomposition method, the signal x(t) was decomposed into the
IMF component and the residual component Rn.

(2) IMF component extraction

Pearson correlation coefficients of the IMF component and the residual component Rn
and x(t) were calculated, denoted as P = {p1, p2, · · · , pn}. 1/(2(n + 1)) of Pearson’s corre-
lation coefficient was taken as the threshold p0 for the correlation coefficient, where n is the
sum of the number of IMF components and the number of Rn of the remaining components.

p0 =
∑n

i=1 pi

2(n + 1)
(6)

Energies 2024, 17, x FOR PEER REVIEW  8  of  17 
 

 

preprocessing. EEMD decomposition was performed on the five input variables. Through 

observation, it can be seen that the fluctuation trend of the IMF component had certain 

similarities overall, but the details of the fluctuation were different. The IMFs and residual 

components of each input variable were added to other factors as the prediction condi-

tions for the LSTM model. 

 

(a) 

 

(b) 

Figure 3. Cont.



Energies 2024, 17, 949 9 of 17Energies 2024, 17, x FOR PEER REVIEW  9  of  17 
 

 

 

(c) 

 

(d) 

 

(e) 

Figure 3. Cont.



Energies 2024, 17, 949 10 of 17Energies 2024, 17, x FOR PEER REVIEW  10  of  17 
 

 

 

(f) 

Figure 3. EEMD decomposition waveform of the set empirical mode of five influencing factors and 

the  intermediate point temperature. (a) EEMD decomposition results of the unit  load. (b) EEMD 

decomposition results of the coal quantity. (c) EEMD decomposition results of the feed water quan-

tity. (d) EEMD decomposition results of the total furnace air volume. (e) EEMD decomposition re-

sults of the feed water temperature. (f) EEMD decomposition results of the intermediate point tem-

perature. 

The specific modeling process was as follows: 

(1) EEMD decomposition 

Using the EEMD decomposition method, the signal  𝑥ሺ𝑡ሻ was decomposed into the 

IMF component and the residual component  𝑅. 

(2) IMF component extraction 

Pearson correlation coefficients of the IMF component and the residual component 

𝑅  and  𝑥ሺ𝑡ሻ were calculated, denoted as  𝑃 ൌ ሼ𝑝ଵ,𝑝ଶ,⋯ ,𝑝ሽ. 1/(2(n + 1)) of Pearson’s cor-
relation coefficient was taken as the threshold  𝑝  for the correlation coefficient, where n 

is  the sum of  the number of  IMF components and  the number of  𝑅  of  the remaining 

components. 

𝑝 ൌ
∑  
సభ 

ଶሺାଵሻ
    (6)

For any two equal  length vectors X and Y, Pearson’s correlation coefficient can be 

expressed as [32]: 

𝑝, ൌ
ୡ୭୴ ሺ,ሻ

ఙఙೊ
ൌ

ா൫ሺିఓሻሺିఓೊሻ൯

ఙఙೊ
ൌ

ாሺሻିாሺሻாሺሻ

ඥாሺమሻିாమሺሻඥாሺమሻିாమሺሻ

    (7)

According to Equation (5), the value range of  𝑝  is between −1 and 1, and when the 

absolute value of  𝑝  is close to 1, it shows a strong correlation. When the absolute value 

of  𝑝  approaches 0, it is said to be uncorrelated. The IMF component or  𝑅  component 

with high correlation can be screened out according to the threshold  𝑝. 

(3) LSTM network prediction 

In order to reduce the influence caused by different dimensions of the temperature 

series after decomposition, the selected components with high correlation are normalized 

[33]. After being  input  to  the LSTM neural network, the prediction result of  the subse-

quence is obtained. The sub-temperature prediction components are reverse normalized 

and then superimposed to obtain the final  intermediate temperature prediction results. 

Figure 3. EEMD decomposition waveform of the set empirical mode of five influencing factors and
the intermediate point temperature. (a) EEMD decomposition results of the unit load. (b) EEMD
decomposition results of the coal quantity. (c) EEMD decomposition results of the feed water quantity.
(d) EEMD decomposition results of the total furnace air volume. (e) EEMD decomposition results of
the feed water temperature. (f) EEMD decomposition results of the intermediate point temperature.

For any two equal length vectors X and Y, Pearson’s correlation coefficient can be
expressed as [32]:

pX,Y = cov(X,Y)
σXσY

= E((X−µX)(Y−µY))
σXσY

=
E(XY)−E(X)E(Y)√

E(X2)−E2(X)
√

E(Y2)−E2(Y)

(7)

According to Equation (5), the value range of pi is between −1 and 1, and when the
absolute value of pi is close to 1, it shows a strong correlation. When the absolute value of
pi approaches 0, it is said to be uncorrelated. The IMF component or Rn component with
high correlation can be screened out according to the threshold p0.

(3) LSTM network prediction

In order to reduce the influence caused by different dimensions of the temperature se-
ries after decomposition, the selected components with high correlation are normalized [33].
After being input to the LSTM neural network, the prediction result of the subsequence is
obtained. The sub-temperature prediction components are reverse normalized and then
superimposed to obtain the final intermediate temperature prediction results. Initial param-
eter settings: the maximum number of training times was set to 20, the Minibatch Size was
selected as 128, the initial learning rate was 0.01, the learning rate was adjusted to 70 after
training, the learning rate adjustment factor was 0.2, there were two neural network layers,
there were two fully connected layers, the input dimensions were set to five, the output
dimensions were set to one, and the mean absolute error function was selected as the loss
function, Adam as the optimization function, and tanh as the activation function. Due to
the large amount of data, in order to alleviate the overfitting phenomenon, the Dropout
was set to 0.2, of which 70% of the sample data were used as the training set, and 30% of the
sample data were used as the testing set. The IMF components obtained from the EEMD
decomposition were input into the LSTM model for training, and the resulting optimal
adaptation parameters were set as follows: the maximum training times were set to 20, the
Minibatch Size was selected as 64, the initial learning rate was 0.01, the adjusted learning
rate after training was 70, and the learning rate adjustment factor was 0.2. There were
two neural network layers, there were two fully connected layers, the input dimension
was set to five, and the output dimension was one. The average absolute error function
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was selected as the loss function, with Adam as the optimization function and tanh as the
activation function. Due to the large amount of data, the Dropout was set to 0.2 to mitigate
overfitting. Finally, 70% of the sample data were used as the training set, and 30% of the
sample data were used as the testing set.

The evaluation indexes of the experimental results are as follows:
MAE (mean absolute error) is the mean absolute error, and its calculation formula is:

XMAE =
1
n ∑n

t=1|yt − ŷt| (8)

RMSE (root mean square error) is the root mean square error, and its calculation
formula is:

XRMSE =

√
1
n ∑n

i=1(yi − ŷi)
2 (9)

MAPE (mean absolute percentage error) is the mean absolute percentage error, and its
calculation formula is:

XMAPE =
1
n ∑n

i=1
|yi − ŷi|

yi
(10)

The coefficient of determination R2 represents the fitting effect of each model:

R2 = 1 − ∑n
i=1(ŷi − yi)

2/ ∑n
i=1(yi − yi)

2 (11)

In the formula:
ŷi—the ith intermediate point temperature real data;
yi—the ith intermediate point temperature predicted value;
yi i—the mean of true value;
n—the total number of intermediate temperature data points.

4. Example Analysis of Unit Temperature Prediction Based on the EEMD–LSTM
Neural Network

The time series data column of the intermediate point temperature was selected as
the research object, and the prediction model constructed by LSTM, BP, and EEMD–LSTM,
respectively, was used for short-term prediction research. The prediction results were
comprehensively evaluated using four evaluation indexes: the root mean square error
RMSE, the mean absolute percentage error MAPE, the determination coefficient R2, and
the mean absolute error MAE. We determined which of the three prediction models, BP,
LSTM, and EEMD–LSTM, was superior in the prediction of intermediate point temperature
time series, analyzed whether the signal decomposition technology EEMD improved the
prediction accuracy, and focused on the performance of the combined model based on
long-term and short-term memory neural network in the short-term prediction of the
intermediate point temperature time series. This experiment was implemented on the
MATLAB 9.9.0.1467703 (R2020b) software platform.

In this work, the operation data of all thermal power units from 16 July 2022 to 2
August 2022 were analyzed in detail, and it was found that the data on 30 July 2022 were
more suitable, the unit load was more typical, the quantity of coal used was of good quality,
the feedwater quantity was appropriate, and the sampling time was appropriately 4 s.
Therefore, the validity of the model was verified using the operation data of a thermal
power unit on 30 July 2022. The data came from the same unit. The data group was taken
from the intermediate point temperature control system during the operation of a 600 MW
supercritical unit, including real-time data such as the fuel quantity, feed water quantity,
and intermediate point temperature, with a total of 21,600 groups, and the sampling time
was 4 s. The first 15,120 groups were taken as training samples, and the last 6480 groups
were taken as testing samples. We selected the following time period (00:00 to 23:56) for
prediction. Analyzing the RMSE, MAE, MAPE, and R2 separately, it was determined that
the error of the proposed EEMD–LSTM prediction model was generally lower than that
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of a single prediction model. Compared with the single prediction model, the proposed
EEMD–LSTM prediction model was closer to the actual temperature curve, and the fitting
effect was the best.

The EEMD method was used to effectively decompose the intermediate point temper-
ature time series, input each component of the decomposition into the LSTM model for
prediction, and combine and reconstruct the predicted data of all components, to obtain the
prediction results of the EEMD–LSTM model. In order to verify the prediction performance
and reliability of the established EEMD–LSTM model, the BP and LSTM neural network
models were used to predict the time series of the intermediate point temperature. The
results obtained are shown in Figures 4–6 below, and Figures 7 and 8 show the errors of the
three prediction methods.
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It can be seen from Figure 6 that the relative error of the prediction results of the
EEMD–LSTM model was relatively stable, and the fluctuation in the relative error of the
prediction results of the other two models was more prominent. It can be seen from Figure 9
that when the number of iterations was one, the model loss function value was 0.0432.
When the number of iterations was 500, the model loss function value was 0.0021. As the
number of iterations increased to 2000, the model error was 0.0023. Overall, the relative
error of the EEMD–LSTM model was significantly smaller than that of the BP and LSTM
models, and the relative error of the LSTM model in each year was smaller than that of
the BP model. The results obtained from the evaluation index are shown in Tables 2 and 3.
The average absolute error (MAE) and root mean square error (RMSE) of the common
evaluation indexes were used. The specific calculation results of the three models are
shown in Tables 2 and 3.
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Table 2. Prediction model testing set simulation results.

Model RMSE MAE MAPE R2

EEMD–LSTM 1.8849 1.6119 0.37372% 0.98891
LSTM 3.5503 2.9562 0.693% 0.96065

BP 2.8483 2.1633 0.56297% 0.99561

Table 3. Prediction model training set simulation results.

Model RMSE MAE MAPE R2

EEMD–LSTM 1.6905 1.1831 0.27571% 0.99108
LSTM 2.5579 2.1698 0.50393% 0.97958

BP 2.7977 2.1388 0.55712% 0.99586

Table 3 shows that the mean absolute error MAE and root mean square error RMSE
of the EEMD–LSTM model prediction results were 1.1381 and 1.6905, respectively. Con-
sidering the mean absolute error MAE, the prediction performance of the EEMD–LSTM
model was improved by 98.67% and 95.57%, respectively, compared with the LSTM neural
network and the BP neural network. Similarly, in terms of the mean square error RMSE,
the prediction performance of the EEMD–LSTM model was 86.74% and 110.72% higher
than that of the LSTM neural network and the BP neural network, respectively. It can
be concluded that the accuracy of the prediction results of the EEMD–LSTM model is
significantly better than that of the other two models, which is mainly due to the fact that
the EEMD transforms the non-stationary intermediate point temperature time series into
several components with different variation rules. The predicted values of each component
are more accurate after reconstruction, which effectively reduces the prediction error.

5. Conclusions

In this study, an intermediate point temperature prediction model based on the
EEMD–LSTM method is proposed. This model directly performs EEMD modal decomposi-
tion on the output data to determine the local characteristics of the data for prediction. Two
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single models are established and compared with the proposed model. The MAPE, RMSE,
MAE, and R2 are used to evaluate the prediction error. The main results are as follows:
(1) The EEMD modal decomposition method is used to decompose the curve data of each
input variable and to improve the progress of the LSTM prediction algorithm by extracting
the curve detail components and presenting the local features of the curve in a complete
way. The EEMD–LSTM model’s accuracy, compared with the LSTM model, using the root
mean square error (RMSE) and the average absolute error (MAE), is increased by 86.74%
and 98.67%, respectively; compared with the BP model, the accuracy was increased by
110.72% and 95.57%, respectively. Obviously, the prediction results of the EEMD–LSTM are
more accurate, and the LSTM model and BP model are not as effective as the EEMD–LSTM
in terms of the RMSE and MAE. (2) The prediction results show that the intermediate
point temperature prediction model based on EEMD–LSTM has the characteristics of
timeliness and high efficiency and can accurately predict the change in the intermediate
point temperature. The obtained model can objectively reflect the dynamic change law of
the intermediate point temperature and has good prediction accuracy and generalization
ability, which confirms the feasibility of the method. At the same time, it is pointed out
that the EEMD–LSTM neural network automatically determines the network structure and
model parameters in a self-organizing manner, without too much experience and artificial
adjustment; hence, it has more practical significance and application value. (3) The results
show that the relative error of the EEMD–LSTM model prediction results is relatively stable
and significantly smaller than those of the BP and LSTM neural network models. Compared
with the other two models, the EEMD–LSTM model can predict the intermediate point
temperature more accurately. There are few studies for prediction based on the combined
model of EEMD and LSTM in this field. The EEMD–LSTM prediction model established
in this work has certain application value in the field of intermediate point temperature
prediction and can meet the requirements of the short-term prediction of the intermediate
point temperature. In theory, the neural network has strong adaptive characteristics and
online training ability, but in practical applications, it still has its own shortcomings that
are difficult to overcome. For example, the BP network has the problem of a slow training
speed. When the system is more complex, the training time of the network is obviously
longer, which limits its real-time application. In addition, in some links, there is still a
lack of complete theoretical guidance, such as the number of hidden layer nodes in the
network. Therefore, the present model needs algorithmic improvement to overcome the
above drawbacks when used for the prediction of 1000 MW ultra-supercritical units.
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