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Abstract: With increasing concerns about climate change, there is a transition from high-carbon-
emitting fuels to green energy resources in various applications including household, commercial,
transportation, and electric grid applications. Even though renewable energy resources are receiving
traction for being carbon-neutral, their availability is intermittent. To address this issue to achieve
extensive application, the integration of energy storage systems in conjunction with these resources is
becoming a recommended practice. Additionally, in the transportation sector, the increased demand
for EVs requires the development of energy storage systems that can deliver energy for rigorous
driving cycles, with lithium-ion-based batteries emerging as the superior choice for energy storage
due to their high power and energy densities, length of their life cycle, low self-discharge rates,
and reasonable cost. As a result, battery energy storage systems (BESSs) are becoming a primary
energy storage system. The high-performance demand on these BESS can have severe negative effects
on their internal operations such as heating and catching on fire when operating in overcharge or
undercharge states. Reduced efficiency and poor charge storage result in the battery operating at
higher temperatures. To mitigate early battery degradation, battery management systems (BMSs) have
been devised to enhance battery life and ensure normal operation under safe operating conditions.
Some BMSs are capable of determining precise state estimations to ensure safe battery operation and
reduce hazards. Precise estimation of battery health is computed by evaluating several metrics and is
a central factor in effective battery management systems. In this scenario, the accurate estimation of
the health indicators (HIs) of the battery becomes even more important within the framework of a
BMS. This paper provides a comprehensive review and discussion of battery management systems
and different health indicators for BESSs, with suitable classification based on key characteristics.

Keywords: battery energy storage system (BESS); battery management system (BMS); lithium-ion
batteries (LIBs); battery health monitoring; health indicators (HIs); renewable energy resources

1. Introduction

With the increasing power load demand and considering load characteristics, more
energy resources are needed given the changing generation mix. Fossil-fuel-based resources
result in emission and environmental pollution [1]. To reduce their environmental impact
and ensure sustainable energy, renewable energy resources, such as solar and wind energies,
are being integrated into our energy system infrastructure [2]. The key challenge with these
renewable energy systems is their intermittent nature: they cannot continuously provide
energy in a dispatchable manner. Integrating an energy storage system with renewable
energy provides one possible solution to this key challenge [3].

With the growth of the electric vehicle (EV) sector and their wide deployment, batteries
in EVs provide energy storage not only to drive the vehicle but also to possibly connect to
the grid bidirectionally for both charging (grid to vehicle) or discharging (vehicle to grid)
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for grid services. In these cases, battery management systems (BMSs) have a key role in
ensuring reliable and safe operations for both users and the power grid [4].

The battery energy storage systems (BESSs) used in EVs undergo many charge and
discharge cycles during their life, and, as they age, performance degradation evolves,
and their reliability becomes questionable. The aging mechanism can be measured by
estimating battery health indicators and battery state of health (SOH). So, SOH estimation
is critical, and other health indicators (HIs) are used to determine battery degradation. This
paper explores the state of the art for estimating HIs and other battery states [5].

Battery technologies are evolving rapidly as a result of innovative materials and
methodologies of battery management systems. HI and state estimations were proposed
by the research community in [6]. The research focus on the SOH and remaining useful life
(RUL) estimation of batteries is rapidcly increasing, amounting to around 1850 research
articles in 2023 [7], as shown in Figure 1.

Figure 1. Progress of research on BMS and battery health monitoring in recent years.

The expanding research footprint of battery-related publications makes a comprehen-
sive review of BMS essential for characterizing the research landscape and charting future
research directions. The review of BMSs in [8] covers the functionality of BMSs from the
perspective of cell balancing and limited state estimation, e.g., SOH and state of charge
(SOC) only. Advances in BMSs are drive technology to include additional functionality
that is essential for safe and extended battery use. RUL estimation methods, as a function
of BMS, are covered in [9], categorizing existing approaches into physics-based, hybrid,
statistical, and machine learning methods. However, limited methods for state estimation
are mentioned, which are important for computing the RUL. Some of the new approaches
like digital twins and cloud computing are also not covered in [9]. Extensive machine
learning approaches are covered in [10] for the estimation of the RUL, with an end goal
of formulating a battery degradation model. The impact of SOH and a few other battery
use parameters like available capacity, internal resistance, and battery power are important
when designing a battery degradation model.

Methods of evaluation of SOH covering data-driven methods and SOC are listed in [11].
A detailed classification of the available methods for SOH is also missing in the context
of SOH estimation. Nonprobabilistic machine learning methods like linear regression,
support vector machine (SVM), artificial neural network (ANN), random forest, and some
of their variations for estimating SOH are listed in [12]. A comprehensive classification
of the different SOH estimation methods is covered in [13], with special emphasis on its
relationship to smart BMS development. Some methods related to ANN, gradient boosting,
and SVM for the estimation of SOC and SOH are covered in [14] without HIs and their
relation to BMS functionality. Model-based, data-driven, and ML-based estimation methods
of SOH and RUL are covered in [15] with special emphasis on onboard technique. Critical
reviews of BMS functionality are covered in [16] listing all major computation applications
running in BMS. SOH and RUL estimation focusing on techniques based on deep learning
like recursive neural network (RNN), long short-term memory (LSTM), gated recurrent
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units (GRUs), convolution neural network (CNN), and generative adversarial network
(GAN) are covered in [17]. Transfer learning like LSTM, CNN, and GRU methods for the
estimation of battery states like state of temperature (SOT), SOC, and SOH are covered
in [18], with a study of their limited impact on aging prognosis. Different methods are
available for battery modeling, including physics-based models, electrical-circuit-based
models, and data-driven models, as covered in [19] for estimating battery states like state
of power (SOP), SOC, and SOH. Popular battery chemistry types for electrical vehicle
applications with significant emphasis on modeling, SOT estimation, and SOH estimation
are discussed in [20], relating these metrics to BMS functionality. EV-specific battery types
covering new battery types like flow batteries, high-temperature batteries, and metal air
batteries are listed in [21]. Emerging BMS functionality for state estimation based on
cloud computing and digital twins is covered in [21]. Methods related to data-driven
and cloud computing frameworks for battery SOH estimation are proposed in [22]. A
comprehensive classification of SOH estimation methods is performed in [23], which
establishes its relationship to BMS functionality.

The optimal scheduling of isolated microgrids with BESSs under load and renewable
generation uncertainties is described in [24]. The objective function considers (a) fuel costs
of MT units, (b) spinning reserve costs, and (c) charge–discharge costs. The performance
of the scheduling is evaluated for (a) different levels of renewable generation forecasting,
(b) different values of charge–discharge cost of BESS, (c) different levels of available spin-
ning reserves, (d) different sizes of BESSs, (e) different levels of load fluctuations, and (f)
different solution steps of the optimization. The allocation and sizing of BESSs in weak
grids with a high penetration of RESs to improve voltage and frequency stability were per-
formed in [25]. The planning of distributed generation and energy storage by minimizing
the annual cost of grid operation and daily operation optimization of the energy storage
effectively alleviates the fluctuation caused by renewables, which improves the voltage
profile, peak shaving, and minimizes network loss i [26].

1.1. Research Gap

Many studies on battery types and their performance comparison are available in
the literature. Reviews of battery performance based on cost, performance, and strength
have been performed in past work. The battery types covered in most of the papers are
limited to traditional and lithium-ion batteries. Some papers are available on emerging
battery technologies, with few comparisons of these with traditional technologies. BMS
functionality is also evolving, with multiple functionalities added as the batteries and
load demands advance. Comprehensive BMS functionality and its latest trends need to
be revisited to provide at a holistic review of BMSs. Identifying and computing HIs are
two of the main functions of BMSs. Reviews of HIs with systematic classification are
scarce, with almost no graphical description for computation provided in the literature.
A systematic classification and a graphical description of HIs are required to cover key
aspects of battery health.

1.2. Objectives and Key Contributions

This paper comprehensively reviews the architecture of BMSs and reviews HIs as
some of the functions of BMS. The objectives of this study are as follows:

1. Comprehensively review battery characteristics for a wide range of batteries with
focus on lithium-based batteries.

2. Review of battery management system (BMS) functionality and latest trends.
3. Simplified classification of health indicators (HIs) based on electrical and temperature

indicators and graphical description of HIs based on the proposed classification.

This paper provides a comprehensive view of BMS functionality along with key
critical HIs. An analysis for comprehensive battery state estimation including SOH, SOC,
state of safety (SOS), state of function (SOF), SOP, state of energy (SOE), SOT, and the
final assessment of RUL are also discussed. Diverse metrics of HIs related to voltage,
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current, and temperature are extensively covered in this paper, placing each method in the
appropriate category as computed by the BMS. All the major HIs are classified because
BMSs dedicate significant computation effort in estimating these metrics.

This paper is organized as follows: Section 2 covers different BESS technologies with
their characteristics, advantages, and limitations. Section 3 provides a comprehensive
review of BMS functionality. Section 4 lists all the key HIs and classifies them based on
estimation methods, which is followed by conclusions in Section 5.

2. BESS Classifications and Characteristics

Energy storage devices with recharging capabilities are used extensively in applica-
tions ranging from high-throughput electrical grids to portable low-power devices, because
they overcome the problem of renewable energy intermittency and reuse over a long period.
Variations in the weather, season, and time of day determine the power output of wind
and solar farms [3]. The deployment of rechargeable batteries is extensive, as renewable
energy sources are becoming cost-effective for supplying carbon-neutral electric power [2].
When surplus power is generated, these batteries are charged, and during its absence
and connected to load, they are discharged when powered by a charging system [27].
However, for portable applications like EVs, mobile phones, and drones, the device needs
to be taken out of operation and connected to the charging system. Batteries gradually
degrade over time on repeated charging and discharging. The degradation is accelerated in
the presence of temperature fluctuations, excessive variation in charging duration, deep
discharges, and cycling partly without fully recharging [1]. A review of the basic chemistry
of rechargeable batteries with an overview of characteristics is shown in Table 1 [28]. The
characteristics of mature battery technology like lead acid, nickel-based, and lithium-based
technology are reviewed in [20,29]. The technology and performance of future battery
chemistry like sodium batteries, flow batteries, high-temperature batteries, and fuel cell
batteries are covered in [20,30]. Similar cost, life cycle, energy density, power density, and
efficiency of lead-acid, nickel cadmium, and lithium-ion batteries are compared in [31],
listing lithium-ion as the best performing at the expense of cost.

Table 1. Common BESS types and examples of characteristics.

Battery Type Lead-Acid Ni-Cd Ni-MH Zn-Br Fe-Cr lithium-ion NaS NaNiCl VRFB ZBFB

Energy Density (Wh/L) 50–80
[29]

60–150
[29]

40–80
[32]

65–75
[20]

20–35
[33]

200–400
[29]

140–300
[29]

160–275
[29]

25–33
[29]

55–65
[29]

Power Density (W/L) 10–400
[29]

80–600
[29]

250–1000
[34]

60–110
[20]

70–100
[33]

1500–10,000
[29]

140–300
[29]

150–270
[29]

1–2
[29]

1–25
[29]

Cell Nominal Voltage (V) 2
[29]

1.3
[29]

1.2
[32]

1.67
[33]

1.18
[33]

4.3
[29]

2.08
[29]

2.85–3.1
[35]

1.4
[29]

1.8
[29]

Round Trip Efficiency 82%
[29]

83%
[29]

70% 70–80% 97.4%
95%
[29]

80%
[29]

84%
[29]

70%
[29]

70%
[29]

Depth of Discharge 50%
[29]

85%
[29]

100% 100% 100%
95%
[29]

100%
[29]

100%
[29]

100%
[29]

100%
[29]

Operating Temperature −20–60
[33]

−40–60
[33]

−20–60
[33]

−20–60
[33]

−40–60
[33]

−20–60
[33]

300–350
[36]

−70–100
[37]

10–40
[38]

20–50
[39]

Charge Efficiency 79%
[33]

70% 70% 73% 97.4%
100%
[33]

90% 80–95%
97%
[40]

70–80%

Energy Efficiency 70%
[33]

69–90%
[33]

75%
[33]

80%
[33]

66%
[33]

80%
[33]

90%
[41]

95%
[33]

72.3%
[40]

82%
[42]

Voltage Efficiency 80% 75% 70% 80%
82%
[33]

98% 87% 80.9%
74.5%

[40]
83%

Life Cycle 1500
[29]

2500
[29]

800–1200
[32]

200–400
[20]

300
[43]

10,000
[29]

5000
[29]

3000
[29]

13,000
[29]

10,000
[29]

Estimated Cost (USD/kWh) 105–475
[29]

400 100–500 170–580 290
200–1260

[29]
263–735

[29]
315–488

[29]
315–1050

[29]
525–1680

[29]
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Lithium battery research [44] started in 1912, long before lithium-ion batteries became
prominent in 1976 [20]. By that time, metallic lithium anodes and nonaqueous electrolytes
were employed in the initial lithium-metal batteries (LMBs), resulting in substantial en-
hancements in specific energy and energy density. When Whittingham [45] developed
intercalation materials in 1976, research and development of rechargeable LMBs became
popular [46]. Rechargeable LMBs have low working potential and high specific capacity,
making them candidates for electric vehicle (EV) propulsion despite the fact that safety
concerns have impeded commercialization [15]. The merits of lithium nickel cobalt alu-
minium oxide (NCA) in terms of longevity, power density, energy storage, cost, and safety
are listed in [15]. A comparison of the major lithium battery chemistries on the basis of cost,
life span, performance, safety, power density, and energy density is provided in [16]. The
most cost effective lithium battery chemistry is lithium titanate oxide (LTO), while lithium
phosphate, lithium manganese, and NMC are equally expensive [16]. NMC and LTO have
the maximum life span, whereas LTO has the maximum performance. A summary of the
above characteristics for different lithium-based batteries is shown in Figure 2, with the
individual pros and cons of each battery type.

An application-specific battery degradation study considering three applications, i.e.,
frequency containment reserve, increased self-consumption, and peak power shaving,
was carried out in [47]. The study in [47] showed that battery degradation affects most
of the peak power shaving applications. The component reliability of BESS was studied
in [47] using a life cycle bathtub curve, and it was derived that the highest chance of
failure is the DC link capacitor among the the components of the BESS. Lithium-ion battery
failure modes were classified and studied in [48]. The failures were classified into anode
degradation, cathode failures, separator failures, and current collector failures. The anode
failures were further classified into failures of the solid–electrolyte interface, lithium plating,
active material, anode structures, and electrolyte decomposition. Cathode failures consisted
of failures in cathode structures, active material dissolution, active material isolation, and
electrolyte decomposition due to oxidation. Regarding the contribution of the degradation
modes to the overall reliability of lithium-ion batteries, loss of active anode and cathode
material contributes to nearly 50% of the total capacity and power fades. This contribution
increases to 70% after including the loss of lithium inventory. In [48], it is also shown that
the solid–electrolyte interface growth with more rate and graphite exfoliation with less
rate are significant contributors to the reliability and safety of lithium-ion batteries. A
similar classification of lithium-ion degradation was performed in [49], considering the
impact of cell level and pack level aspects of batteries on reliability. The chemical and
electrical aspects were observed to have the highest impact compared to the mechanical
and thermal aspects on battery reliability. The reliability evaluation of thermal management
systems and electrical energy storage systems of lithium-ion batteries is proposed in [50].
Redundancy-driven improvement in the reliability of lithium-ion battery packs has been
suggested in [51,52], which demonstrated that a suitable configuration enhances the battery
reliability in EV applications.

The wide range of BESS characteristics cater to the diverse requirements of various
applications, depending on the characteristics of the load it is driving. This makes some
types of battery suitable for a specific application, while other batteries perform better for
other application types. This results in the need to customize the threshold, charging profile,
estimation algorithm, computation metric, etc., of the BMS for battery-specific management.
Hence, the following section provides a review of BMS functionality and architecture for
smart battery management.
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Figure 2. Different types of lithium metal oxides and key characteristics [15,16].

3. Battery Management System (BMS)

The battery management system is an electronic device that act as an interface with
the battery pack and the load/charger [3,4]. An efficient BMS is primarily responsible for
enhancing battery performance, ensuring safe battery operation, and extending battery life.
A BMS is an integrated system that comprises both hardware and software modules, as
demonstrated in Figure 3. A BMS monitors cell voltage, line current, and temperature to
estimate battery stress, charge–discharge cycles, and faults. BMS functionalities are broadly
segregated into temperature regulation, cell charge balancing, overvoltage, overcurrent and
overcharging protection, battery degradation assessment, and usage time prediction [3,27].
The hardware components of a BMS include microcontrollers for computation, actuators
for control and protection, sensors for data acquisition, and ports for communication. Its
main functionalities are as follows [53]:

1. Measurement Functionality: The input cell voltage, battery chassis temperature, and
line current signals are acquired by the sensors and digitized with an analog-to-digital
converter (ADC). Voltage, current, and temperature values are sampled at a fixed
interval, which are then digitized to analog values, scaled to the required level, and
stored in memory. Then, time series data are formulated, and metrics and trends
are extracted.

2. Protection Functionality: The BMS acts as a first line of defense for a battery against
extreme operating scenarios. A battery can be subjected to overcharge with overvolt-
age and overcurrent, leading to degradation, or it can be overdischarged with high
current, resulting in the battery being unusable. Extreme electrical conditions also
result in battery temperature rising to dangerous levels, leading to fire hazards. The
BMS prevents extreme electrical operating conditions as well as high-temperature
variations in the battery. The BMS also monitors for any system faults and dead cells
in the battery pack, with the possibility of isolating them if suitable circuit is in place.
With the occurrence of faults and damage, the BMS indicates the specific anomaly on
the visual alarms and display unit (if present).

3. Computational Functionality: All the computational functions, like charge manage-
ment, cell voltage balancing, state estimation of the battery, and cooling control, are
part of the output functionality of a BMS. Switching the charging mode from constant
current to constant voltage is performed by the BMS based on monitoring the voltage
and the current measurement functions. Differences in the electrical parameters of
individual cells may lead to internal circuit loops, resulting in damage to the cells
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when operated in series and parallel. The voltage balancing and charge balancing of
each cell are important to prevent circulating current loops in the battery. Monitoring
HIs and estimating battery states like the SOC, SOH, SOP, SOE, SOF, SOS, etc., are the
computations performed by a BMS to maintain high battery performance.

4. Communication Functionality: BMS are typically equipped with communication
ports like serial, controller area network (CAN), distributed network protocol (DNP3),
and USB ports to connect with the host computer. New BMSs may also have wireless
communication capabilities like Bluetooth, WiFi, etc. Communication with BMS smay
be required for diagnostics, data downloading, and system updates.

The data acquisition module of a BMS samples the electrical and temperature signal at
a rate higher than the Nyquist rate. However, this conventional strategy is inadequate when
dealing with signals that fluctuate rapidly, including battery voltage and current. Event-
driven ADCs (EDADCs) based on event-driven sensing (EDS) dynamically modify their
sampling frequency to reduce the memory requirement and power consumption, enhancing
system efficiency and increasing the speed of postprocessing [27]. In [54], the author
presents a primary–secondary architecture [53] of battery management that is suitable
for EVs. Thermal management, high-voltage protection, and CAN bus communication
for data retrieval are some of the BMS functionalities implemented in [54]. A battery
management integrated circuit (BMIC) fabricated using 0.18 µm high-voltage bipolar Cmos
Dmos technology was tested in this study. The low-power BMIC was effective and compact.
The BMIC could monitor a battery pack of 16 cells with sigma–delta ADC and had modules
for control, data storage, and fault reporting. In [29], the author provides the comprehensive
framework for a BMS consisting of a main fuse as a safety unit, a charging system unit, a
balancing control module, a communication module, an internal power supply module,
general digital outputs, voltage and current measurement units, a temperature control unit,
a global clock module, a general analog, and a digital input. The communication module
includes a calibration channel and supports the CAN bus protocol. The general digital
output consists of cell balance indicators, SOH indicators, SOC indicators, and fault alarms.

SOC, SOH, SOE, SOP, SOT, SOS, and SOF are the key factors assessed by a BMS.
The main focus is monitoring these metrics, leading to improved reliability and ensuring
safety [55,56]. SOC, SOH, and SOP estimation; cell balancing; overvoltage protection;
and thermal protection are the main functionalities of the BMS presented in [57]. An
accurate SOC estimation helps a BMS to ensure better battery charging and discharging
control. An extensive battery thermal management system is proposed in [20,58], with
cooling and preheating functionalities for BMS applications. The BMS functions in [59]
include protection, high-voltage control, diagnostics for battery state estimation and fault
detection, performance management, and interface operation. A review of BMS technology,
including battery modeling, battery state estimation, and charging optimization using
current, voltage, and temperature sensors, is provided in [34]. A combination of phase-
change materials (PCMs) and liquid cooling was used for the purpose of optimized coolant
flow and enhanced cooling effect. Three categories of cell balancing methodology were
implemented, which were voltage uniformity methods, capacity uniformity method, and
an SOC uniformity method. Sensor faults, internal/external short-circuit faults, battery
thermal management system faults, overcharge/overdischarge faults, and actuator faults
were considered in the BMS’s functionality. AI-powered cyber–physical platforms based
on digital twins have also been explored for online large-scale fault detection [20,21].
The state estimations such as SOC, SOH, SOT, SOF, and overcharging and discharging
protection functionalities of BMSs are reviewed in [60]. Improving rechargeable battery
efficiency using a active energy balancing system with integrated SOC and SOH estimation
is proposed in [61]. An application of a BMS in a house subscribed to demand-side
management (DSM) is proposed in [3]. The data on the battery’s status are transmitted to
the load management system to optimize the usage patterns of appliances with variable
power requirements, such as washing machines, HVAC, and boilers to improve energy
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efficiency and save costs [3]. A BMS assists with power supply fluctuations and hthe igh
evening demand to optimize device scheduling and battery charging [27].

Figure 3. Battery management system (BMS).

A hierarchical architecture of a BMS is proposed in [53], in which centralized dis-
tributed and modular topologies are considered. The centralized BMS is more cost-effective
and the least expandable, while the distributed BMS is the most expensive but easy to
assemble. The study also demonstrated a primary–secondary configuration of a centralized
BMS with multiple secondary BMSs connected to a serial interface for electric transporta-
tion applications. A comprehensive BMS architecture is presented in [53,62], in which
charging/discharging control, voltage monitoring, battery balancing, temperature control,
and fault diagnosis functionalities are implemented.

In [8,63], the concept related to cell balancing is proposed, which is vital to the func-
tionality of BMSs for an extended battery life. Cell balancing is classified into two main
categories, passive and active methods. In passive balancing techniques, shunt and by-
pass resistors are used; on the other hand, active balancing methods use energy transfer
of elements like R, L, C, and a semiconductor switch. Between these two methods, ac-
tive balancing is much better due to its faster cell balancing time, economic use, and
higher efficiency. The active balancing circuit uses a charge shuttle and firing capacitors
to transfer energy among cells. Inductor-based balancing circuits take less cell balancing
time via storing energy in inductors. A detailed cell balancing comparison is provided
in [8], covering simple cell balancing methods like shunt resistors to multi-inductor active
charge/discharge methods. The shunt-based methods are high in power loss and low
in efficiency, at the benefit of being low cost. High-performance methods with switches,
inductors, and diodes are significantly more expensive. The BMS presented in [31] has
all the major functionalities like charging, cell balancing, state estimation, thermal man-
agement, and fault detection. The functionality of traction motor control is also discussed
extensively with a cost performance analysis. A performance comparison of EV motor con-
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figurations is also described in [31]. In [19], the author presents the future trends in BMSs,
which should include increasing accuracy and meeting real-time demands, considering
vehicle-to-grid (V2G) technology and emerging technologies such as 5G, increasing BMS
bandwidth, and using big data and cloud computing [64,65]. A vulnerability study and
the means of mitigating cyber-attacks are mentioned in [66]. Defending against false data
injection attacks, random delay attacks, confidentiality and availability attacks via model-
based, data-driven, and pseudo-measurement generation is the primary focus in [66]. An
adversarial reinforcement learning agent is proposed to detect false-reporting attacks of
SOC [66]. In [67], the author presented a field-programable gate array (FPGA) implemen-
tation of a BMS with a centralized and decentralized architecture. The centralized BMS
version is cost-effective but less expandible. In contrast, the decentralized BMS using a
primary–secondary architecture is robust and more flexible. The secondary module han-
dles temperature measurement, voltage, and current measurements, and implements cell
balancing; the primary module manages communication and battery state estimation. A
practical BMS for unmanned aerial vehicles (UAVs) is presented in [68] using the ESP32 mi-
crocontroller platform. The proposed BMS uses machine learning and the IoT for real-time
data exchange and control through mobile applications. Another FPGA implementation
of a BMS is presented in [67,69]. State estimation is performed by an FPGA-based BMS
design using a Matlab HDL coder. In [70], the author presents the concept of a smart battery
consisting of self-reconfigurable multicell batteries (SRMBs) and self-regulated smart cells
(SRSCs). The SRMBs use a matrix of switches and sensors for monitoring and controlling
the cells in a battery pack, while the SRSC monitors individual cells of the battery, leading
to a more expensive solution. A BMS using a digital twin with an extended Kalman filter
(EKF) and XGBoost was implemented in [71] for improved state estimation. In [72], a similar
digital twin for battery health monitoring is presented with stable hardware, software, and
a diagnostic algorithm as advantages. In [73], the author presents a review with the main
focus on cloud-based smart BMSs, considering their potential for removing limitations, im-
proving battery algorithms, and enabling advanced BMS functionalities. Blockchain, cloud
computing, artificial intelligence, and digital twins have been used to efficiently estimate
battery chemical behavior using a BMS in [73–75]. In [76], the author presents a digital twin
framework for EV batteries. The physical system has an on-vehicle BMS that gathers real-time
data and transmits them to the Azure cloud. The digital model in the cloud estimates the
SOH, including incremental fine-tuning of a deep learning network on new data.

In [9], the author presents a review focusing on BMSs, mainly focusing on the remain-
ing useful life (RUL) of batteries, considering the advantages of and challenges ahead for
different methods. Estimation of RUL using adaptive filter technologies provided the best
estimation measure using an unscented particle filter (UPF), and its variation with estima-
tion error in the range of 0–2% was achieved within 30–32 cycles of charging/discharging.
Similar accuracy was also achieved using a combination of empirical mode decomposition,
DNN, and LSTM within 30 cycles.

The high penetration of batteries with renewable energy sources poses new challenges
and additional requirements for BMSs. A comprehensive list of supplementary tasks
of BMS installed for managing batteries in grid energy storage is covered in [77]. The
authors in [77] point out that mechanical hazard protection, thermal isolation, and battery
pressure release are some of the safety functions of BMSs in batteries used for grid storage
systems. Several specialized functionalities of BMSs related to grid management are
also listed in [77,78], like (a) participation of the grid assets in primary and secondary
control, (b) participation in energy arbitrage, (c) optimizing renewable energy supply
to daily load demand curves, (d) responding to demand response programs, and (e)
improving grid resiliency by minimizing blackouts. The inclusion of life cycle operating and
storage cost as optimization objectives in BMSs for renewable energy sources is proposed
in [79]. Extending the battery life and improving power quality in the grid are advanced
functionalities included in BMS operation in [79]. Large arrays of cells and battery packs
are common in grid energy storage systems to obtain rated output voltage and current
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levels. The reconfiguration functionality of battery packs to achieve balancing, healing,
and optimization is proposed in [80]. Grid-scale application requires functionalities like
supplying peak power demand, load following, improved stability, power quality, parallel
operation, and fulfilling renewable intermittency, which is mentioned in [81]. In [82],
BMS functionalities are expanded to cover economic operation, minimizing power loss,
and hourly battery scheduling, as well as achieving user-defined objectives. Optimizing
the objectives of demand response, minimizing intermittency, and minimizing power
loss is demonstrated in [83]. A solar PV was interfaced with a smart grid with a goal of
maximizing revenue in a variable tariff market [84].

Recommendations for extending the battery life are listed as controlling four battery
features in [85], which are temperature-related features, like (a) minimizing exposure to high
temperature during discharge and low temperature during charging; (b) maintaining the
SOC at 90% and not at 100% or 0% for a long time; (c) avoiding fast charging and discharging
current; (d) prevening moisture exposure, mechanical damage, and follow calibration.
Apart from these restrictions, several other goals are considered in [86] for formulating
objective functions like (a) cost of operation when connected to a microgrid; (b) cost of
storage and expansion considering the time shifting of application to ease grid operation;
(c) life cycle cost including installation, operation, and maintenance; (d) degradation cost
of battery. A similar cost function minimization is also presented in [87]. Optimal life
cycle battery planning is presented in [88] considering (a) fixed revenue obtained from
frequency-regulation services, (b) operation and maintenance cost is proportional to the
power capacity of a BESS, (c) BESS degradation cost and penalty cost for uncompensated
power, (d) BESS second-life operation and maintenance cost, and (e) BESS depreciation cost.
An optimized real-time BESS schedule considering total life loss and facilitating economic
operation and security of microgrids under stochastic conditions is demonstrated in [89].
The consideration of aging and maximizing lifetime battery profitability is demonstrated
in [90,91]. A summary of the BMS trends discussed in this paper is presented in Table 2.

Table 2. BMS functionality summary.

BMS Trends Works
Event-driven ADCs [27]

Primary, secondary architecture, FPGA
centralized and decentralized architecture

[53,54,67,69]

Cell balancing, overvoltage protection,
and thermal protection, liquid cooling,
Charging/discharging control, fault diagnosis
and detection, battery state estimation,
thermal isolation, and battery pressure release

[8,9,20,29,31,34,54–62,77]

Mitigating cyber attacks [66]

Unmanned Aerial Vehicles (UAVs) [68]

Blockchain, cloud computing, artificial intelligence,
digital twins, vehicle-to-grid (V2G), big data

[20,21,64,65,71–76]

Reconfiguration, self-reconfigurable multicell batteries [70,80]

Demand response, demand-side management,
grid management

[3,78,81,83]

Economic operation and security, energy arbitrage,
battery operation cost minimization, minimizing
power loss, battery scheduling, life cycle operating
and storage cost optimization

[79,82,84–91]

Amongst the many functionalities of BMSs, computing HIs and states of the battery
provides important metrics for healthy operation and improving battery longevity. Hence,
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the selection of the HIs to be computed and the different states to be estimated drives the
innovation path of BMSss. In the following section, a review of HIs and battery states and
a detailed classification of the methods are provided under suitable groups and subgroups.

4. BESS Health Indicators (HIs)

The health indicators (HIs) are parameters used to quantify the degradation of a
battery. These parameters are further used to estimate the state of health (SOH) of batteries,
which indicates the (1) capacity, denoting the battery’s ability to hold energy; (2)iInternal
resistance, demonstrating the battery’s ability to deliver current; and (3) self-discharge,
offering data regarding the mechanical integrity and stress events of the battery [92]. HIs
are determined using a set of fundamental parameters like voltage, current, and tempera-
ture [93,94] to ascertain the performance of the electrochemical process, and these markers
are used to estimate the SOH. Simple HIs like open-circuit voltage (OCV) and instantaneous
temperature are used for portable appliances, while complex HIs are preferred in EV and
grid-support applications. A broad classification of HIs is shown in Figure 4, with primarily
measured and calculated HIs as the types of HIs. The measured HIs consist of voltage-
and current-based HIs, and the second type is the temperature-based HIs. The voltage and
current plots of a [95] battery starting from the discharged state, charging initially with
a constant current, followed by constant voltage, and finally discharged with a constant
current are shown in Figure 5. The voltage- and current-based HIs in the measured HIs
segment are the following [93,94,96]:

1. CCCT, constant-current charge time: The time interval for charging at a constant
current from a discharged state, shown in Figure 5.

2. CVCT, constant-voltage charge time: The time interval for charging at a constant
voltage post-constant-current charging, shown in Figure 5.

3. TECD, time of equal current drop: Time of charging current reduction by the same
value for multiple charging cycles during constant-voltage charge.

4. TEVR, time of equal voltage rise: Time of charging voltage rise by same value for
multiple charging cycles during constant-current charge.

5. VRET, voltage rise of equal time: Voltage rises in the same time interval for multiple
charging cycles during constant-current charge.

6. CDET, current drop of equal time: Current drop in the same time interval for multiple
charging cycles during constant-voltage charge.

7. CCDT, constant-current discharge time: The time interval for discharging at constant-
current from full charge to discharge state.

8. VDET, voltage drop of equal time: Voltage drop in the same time interval for multiple
discharging cycles during constant-current discharge.

9. TEVD, time of equal voltage drop: Time of discharging voltage drop by same value
for multiple discharging cycles during constant-current discharge.

The voltage- and current-based calculated HIs are as follows:

1. RCCCV, ratio of constant current to constant voltage: The ratio of the time interval of
constant current to constant voltage.

2. SCC, slope of charge current: SCC = dI/dt at the constant-voltage charging interval.
3. SCV, slope of charge voltage: SCC = dV/dt at the constant-current charging interval.
4. SDV, slope of discharge voltage: SCC = dV/dt at the constant-current discharging interval.

The temperature plot of constant-current charging followed by constant-voltage
charging and constant-current discharging for a [95] battery is shown in Figure 6. The
temperature-based HIs in the measured HIs segment are as follows:

1. HCCCT, LCCCT: highest and lowest constant-current charge temperature: The highest
and lowest values of temperature in the constant-current charging interval.

2. HCT, LCT: highest and lowest charge temperature: The highest and lowest valuesof
temperature in the entire charging interval.
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3. HT, LT: highest and lowest temperature: Highest and lowest values of temperature in
the entire charging and discharging interval.

4. TETR, time of equal temperature rise: Time of equal value of rise in temperature for
multiple cycles during constant-current discharging.

5. TRET, temperature rise of equal time: Temperature rise in the same time interval for
multiple cycles during constant-current discharging.

6. HCVCT, LCVCT: highest and lowest constant-voltage charge temperature: Highest
and lowest values of temperature in the constant-voltage charging interval.

7. HDT, LDT: highest and lowest discharge temperature: Highest and lowest values of
temperature in the discharging interval.

The temperature-based HIs in the calculated HIs segment are as follows:

1. SDT, slope of discharge temperature: SDT = dT/dt in the constant-current discharg-
ing interval.

2. MDT, mean discharge temperature: Mean value of temperature in constant-current
discharging interval.

3. MCT, mean charging temperature: Mean value of temperature in the entire charg-
ing interval.

4. MCCCT, mean constant-current charge temperature: Mean value of temperature in
the constant-current charging interval.

5. MT, mean temperature: Mean value of temperature in the entire charging and dis-
charging cycle.

6. MCVCT, mean constant-voltage charge temperature: Mean value of temperature in
the constant-voltage charging interval.

Figure 4. Classification of health indicators.
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Figure 5. Voltage- and current-based HIs.

Figure 6. Temperature-based HIs.

The calculated HIs, consisting of the integral of a combination of voltage and current
signals, are proposed in [97]. The integral of the voltage and current plots results in
area components are shown in Figure 7. The integral voltage- and current-based HIs are
as follows:

1. ACCCV, area under constant-current charge voltage: Area under the voltage in the
interval of constant-current charging, shown as A2 in Figure 7.

2. ACCCC, area under constant-current charge current: Area under the current in the
interval of constant-current charging, shown as A1 + A2 in Figure 7.

3. ACV, area under charge voltage: Area under the voltage in the entire charging interval,
shown as A2 + A4 + A5 in Figure 7.

4. ACC, area under charge current: Area under the current in the entire charging interval,
shown as A1 + A2 + A3 + A5 in Figure 7.

5. ADV and ACCDV, area under discharge voltage and area under constant-current
discharge voltage: Area under voltage in the constant-current discharging interval,
shown as A7 + A8 in Figure 7. These are the same, as only constant-current discharge
is considered.

6. ADC and ACCDC, area under discharge current and area under constant-current
discharge current: Area under current in the constant-current discharging interval,
shown as A6 + A8 in Figure 7. These are the same in this case, as only constant-current
discharging is considered.
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7. ACVCV, area under constant-voltage charge voltage: Area under the voltage in the
interval of constant voltage charging, shown as A4 + A5 in Figure 7.

8. ACVCC, area under constant-voltage charge current: Area under the current in the
interval of constant-voltage charging, shown as A3 + A5 in Figure 7.

The calculated HIs, consisting of the integral of temperature resulting in area under
temperature, are shown in Figure 8 and are follows:

1. ACCCT, area under constant-current charge temperature: Area under temperature in
the interval of constant-current charging, shown as A1 in Figure 8.

2. ACT, area under charge temperature: Area under temperature in the interval of entire
charging, shown as A1 + A2 in Figure 8.

3. ADT and ACCDT, area under discharge temperature and area under constant-current
discharge temperature: Area under temperature in the interval of constant current dis-
charging, shown as A3 in Figure 8. These are the same, as constant-current discharging
is considered in this case.

4. ACVCT, area under constant-voltage charge temperature: Area under temperature in
the interval of constant-voltage charging, shown as A2 in Figure 8.

The combination of CCCT, CVCT, and a new metric called fixed segment (FST) is
a specific duration within CCCT, where a battery experiences a fixed voltage interval,
as proposed in [98]. This enhanced HI is a linear combination of the three HIs, where
a , b, and c are feature parameters to be obtained after performing optimization when
learning SOH estimation. The expression of enhanced HI is given as EnhancedHI =
aCCCT + b(1 − CVCT) + cFST. In [99], the author introduced a new HI, duration of equal
charging voltage difference (DECVD), which is evaluated as a time difference between
the specified low voltage and high voltage during the constant-current charging interval.
DECVD was used for estimating the SOH in [99] using extreme learning machines. A
Box–Cox transformation, normalization, and correlation analysis of VDET was used to
estimate the RUL of a battery in [100]. The transformed HIs were observed to have a
greater impact on the battery degradation for estimating the RUL. Incremental capacity
analysis (ICA), given by IC = dQ

dV = ∆dQ
∆V , is an effective HI for estimating battery SOH, as

demonstrated in [94,101,102]. Further insights into the application and usability of HIs in
real-world applications are obtained based on the trends in and ease of computation of
HIs. The usability of the HIs depends on their variations as the battery ages. The operation
reliability and lifespan of a BESS improve when controlling the charging and discharging
patterns based on the deterioration of the battery health as computed using HIs. The
variation in the HIs with battery cycles is shown in Table 3, which shows that the HIs that
change more during the later life of the battery are particularly more useful in tracking a
battery’s health.

Figure 7. Voltage- and current-integral-based HIs.
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Figure 8. Temperature-integral-based HIs.

Table 3. Variations in HIs with battery deterioration.

Name of HIs Trend as Battery Ages Impact on Early Life Impact on Later Life Works
CCCT Decrease Less High [94,103]
CCDT decrease Less High [94]
CVCT increase Less High [94,104]
LCCCT increase Less High [94]
HCVCT increase Less Less [94]
LCVCT increase Less Less [94]
HT increase Less Less [94]
(dQ/dV vs. V) peak decrease High Less [94,102]
SCC decrease Less Less [94]
SCV increase Less Less [94]
SDV Same Less Less [94]
VRET increase Less High [96]
TEVR decrease Less High [96]
CDET decrease Less Less [105]
TECD increase Less Less [105]
VDET increase Less High [106]
TEVD increase Less High [106]
TRET increase Less High [107]
TETR decrease Less High [107]

5. Future Trends in BMS Development

In the era of interconnected devices with multiple access points in a BMS, the issue of
cyber threats is an important consideration for future research. Robust threat identification
and isolation are important features that are indispensable for future BMSs. The intercon-
nectivity of BMSs is also required to form a platform for solving distributed optimization
problems considering multiple objectives for computational efficiency and improving stor-
age resiliency. Implementing high-computing physics-informed neural networks is also
a future trend that has the potential to improve the accuracy of battery state estimation
and predict faults in the battery packs of BMSs. Remedial action schemes using different
communication channels are important for addressing the intermittent nature and ensur-
ing the secure grid operation of renewables, as described in [108]. The trends in future
BMS are listed in [109], which include (a) smart sensing of multiple battery parameters
like electrochemical, mechanical, acoustical, and optical behavior; (b) employing big data
technology to process large and high-fidelity measurements; (c) blockchain technology for
energy society data management; (d) high intelligence like attention transformers.



Energies 2024, 17, 1250 16 of 21

6. Conclusions

This paper provided (a) a review of battery technologies with a focus on lithium-ion
BESSs, (b) a comprehensive review of battery management systems (BMSs) and functional-
ity, and (c) a review and classification of health indicators (HIs) as one of the functionalities
provided by BESS BMSs. An extensive review of the wide range of battery characteristics
in terms of performance, and capacity was provided. The typical cell-level operating
parameters of the batteries were also compared. When selecting a battery for a load-specific
application, specific characteristics must be considered to appropriately match the require-
ments. The advantages and limitations of the recently developed Li-metal batteries were
also covered as they are the blocks that are supporting EVs and grid-connected renewable
sources. The application-specific relationships among BMS functionality and HIs are shown
in Table 4, in which the required BMS functionality for different applications is presented
depending on the available computing resources, criticality, and protection requirement.
Similarly, the computed HIs were also selected based on the application requirement.

Table 4. BMS and HIs requirements for common applications.

Application BMS Functionality Battery HIs Key Considerations

Electric Vehicles (EVs)

Cell balancing, thermal management,
SOC monitoring, protection, fault detection,
and communication with vehicle electronic
control unit (ECU)

Measured voltage and current HIs,
measured temperature HIs

High power density,
fast charging capability,
robust thermal management.

Renewable
energy storage

SOC monitoring, cell balancing, protection,
cooling, and communication with EMS

Measured voltage and current HIs,
measured temperature HIs,
calculated voltage and Current HIs,
calculated temperature HIs,
voltage and current integral HIs,
temperature integral HIs

Scalability, and grid
integration capabilities.

Consumer Eeectronics
SOC monitoring, protection,
thermal management,

OCV, HT
Compact size, low
power consumption

Uninterruptible power
supplies (UPSs)

Voltage monitoring, balancing, protection,
fault detection, cooling, communication
with power management systems.

Measured voltage and current HIs,
measured temperature HIs,
calculated voltage and current HIs,
calculated temperature HIs,

High reliability, quick response
to power interruptions, long
service life.

Medical devices
Reliable SOC monitoring, protection,
fault detection,

OCV
Safety-critical, compact
design, low power consumption.

Aerospace

Cell balancing, thermal management,
fault detection, communication with
the flight control system, and adherence
to strict safety standards.

Measured voltage and current HIs,
measured temperature HIs,
calculated voltage and current HIs,
calculated temperature HIs,
voltage and current integral HIs,
temperature integral HIs

Lightweight, high reliability,
wide operating temperature
range.

Electric grid support

SOC monitoring, cell balancing,
cell reconfiguration, cooling,
meeting grid demands, communication
with energy management systems.

Measured voltage and current HIs,
measured temperature HIs,
calculated voltage and current HIs,
calculated temperature HIs,
voltage and current integral HIs,
temperature integral HIs

Grid compatibility, scalability,
and bidirectional power flow.

The development of advanced batteries is also fostering innovations in BMSs, as
discussed in this work. Computing requirements are driven by estimating HIs and battery
states for different battery types, finally impacting the estimation of RUL. This paper
highlighted the functional components of BMSs in great detail and the architectures of
BMSs. The HIs are one of the modules of BMSs, which were also reviewed based on
different categories and methodologies. The basis of categorizing HIs is measurement-
based and calculation-based, which were further subclassified depending on the associated
phenomenon of the battery under study. In view of the extensive classification of BMSs and
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HIs discussed in this paper, the trends and accuracy performance of major technologies
were analyzed.
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