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Abstract: Accurate Remaining Useful Life (RUL) prediction of lithium batteries is crucial for en-
hancing their performance and extending their lifespan. Existing studies focus on continuous or
relatively sparse datasets; however, continuous and complete datasets are rarely available in practical
applications due to missing or inaccessible data. This study attempts to achieve the prediction of
lithium battery RUL using random sparse data from only 10 data points, aligning more closely with
practical industrial scenarios. Furthermore, we introduce the application of a Flexible Parallel Neural
Network (FPNN) for the first time in predicting the RUL of lithium batteries. By combining these two
approaches, our tests on the MIT dataset show that by randomly downsampling 10 points per cycle
from 10 cycles, we can reconstruct new meaningful features and achieve a Mean Absolute Percentage
Error (MAPE) of 2.36% in predicting the RUL. When the input data are limited to the first 10 cycles
using the dataset constructed from random downsampling and the FPNN, the predicted RUL MAPE
is 0.75%. The method proposed in this study offers an accurate, adaptable, and comprehensible new
solution for predicting the RUL of lithium batteries, paving a new research path in the field of battery
health monitoring.

Keywords: neural networks; lithium batteries; remaining useful life; machine learning

1. Introduction

Lithium batteries, with their significant advantages such as high energy density, eco-
friendliness, low self-discharge rate, and long lifespan, have become the preferred choice
in emerging energy storage technologies and are widely used across various fields [1–5].
However, the capacity of these batteries gradually diminishes through repeated charging
and discharging cycles. The number of cycles a battery undergoes before its capacity
falls to 70–80% of its initial capacity is defined as its End of Life (EOL) [6]. Given the
long lifespan characteristic of lithium batteries, experimentally determining their lifespan
is not only time-consuming but also costly. Therefore, accurately predicting the EOL
of batteries is particularly important. Existing studies [7,8] have successfully predicted
the EOL, significantly saving time and costs. However, predicting just the EOL is not
sufficient; more crucial is the prediction of the Remaining Useful Life (RUL) of the battery,
which is vital for providing real-time information about the battery’s current state to users.
Moreover, the EOL can be considered a special case of the RUL under initial conditions.
Although batteries of the same model may have similar EOLs, their RULs at different stages
of use can vary greatly. Batteries at different RUL stages exhibit varying electrochemical
characteristics, such as capacity and power. Therefore, compared to the EOL, predicting
the RUL is more critical for the maintenance and optimization of battery performance.
However, due to the nonlinear changes in batteries during use and the randomness of other
conditions, accurately predicting the RUL remains a significant challenge [9].
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The methods for predicting the RUL of lithium batteries can be primarily categorized
into two types: model-based methods and data-driven approaches. Model-based methods
can be further subdivided into electrochemical models [10,11], equivalent circuit mod-
els [12], and empirical models [13,14]. For instance, Xing et al. [15] proposed a model
combining empirical indices and polynomial regression, which analyzes the degradation
trend of batteries throughout their entire cycle life based on experimental data. However,
these methods often rely on nonlinear partial differential equations and are highly sensitive
to changes in environmental conditions, making the solving process extremely complex [16].
This complexity poses a significant challenge to accurately predicting the RUL. To enhance
prediction accuracy, filters [17] can be used for fidelity and noise reduction in model predic-
tions. In 2011, He et al. [18] combined the Dempster–Shafer theory with Particle Filtering
(PF) methods to predict battery RUL. In 2013, Miao et al. [19] employed the UPF algo-
rithm based on a degradation model to predict the RUL of lithium-ion batteries, achieving
predictions with less than 5% error in the actual RUL.

In 2014, Ng et al. [20] proposed a naive Bayes model to predict battery RUL under
varying operational conditions, considering the impacts of different environmental tem-
peratures and discharge currents. Subsequently, data-driven methods based on machine
learning began to receive increasing attention. In the field of machine learning, commonly
used methods include Support Vector Machine (SVM) [21–24], Relevance Vector Machine
(RVM) [25–27], and Gaussian Process Regression (GPR) models [28,29]. Notably, similar to
model-based approaches, Relevance Vector Machines are often used in conjunction with
other filter algorithms, such as the Kalman Filter (KF) [25], to further enhance prediction
accuracy. In 2019, Severson and colleagues [7] successfully trained a simple linear model,
achieving an impressive RUL prediction accuracy of up to 9.1%. Additionally, they created
the Massachusetts Institute of Technology (MIT) battery dataset, the largest open-source bat-
tery dataset to date, providing a valuable resource for the development of neural network
models trained on large datasets.

With significant advancements in computational capabilities, neural networks have
garnered widespread attention in the field of lithium battery RUL prediction [30,31].
Ren et al. [31] achieved an accuracy of up to 88.2% in RUL prediction using 21 extracted
features and a deep neural network, particularly excelling when a larger number of input
cycles were involved. This represented a notable improvement over traditional methods
such as linear regression and SVM. In handling electrochemical sequence data, Recurrent
Neural Networks (RNNs) [32] have shown unique advantages. Long Short-Term Memory
(LSTM) networks, a variant of RNNs, are capable of handling variable-dimensional inputs
and optimizing parameters through prior information, demonstrating significant accuracy
in long-term RUL predictions [33–37]. Zhang et al. [36] used an LSTM network to predict
the RUL from lithium-ion battery data, effectively avoiding the vanishing gradient problem
common in traditional RNNs. Additionally, Convolutional Neural Networks (CNNs),
known for extracting local spatial features in electrochemistry, have also been applied
in RUL prediction [38]. Some studies [33,39–41] combined CNNs with RNNs and their
variants to further enhance the accuracy of RUL predictions. However, due to the reliance
of RNNs and their variants on previous moment data in the computation process, parallel
computing is challenging. To address this, Chen et al. [42] attempted to combine a 1D CNN
with a 2D CNN and used LSTM to capture temporal information, achieving a RUL predic-
tion error of only 3.37% using just 50 cycles. Yang, Y. [43] completely abandoned LSTM
and, by combining a three-dimensional CNN (3D CNN) with a 2D CNN, achieved an RUL
prediction error of 3.55% using only 10 cycles of charging data. Furthermore, considering
the discontinuity of experimental data in practical applications, Zhang et al. [44] used only
20% of sparse charging data from 10 cycles for RUL prediction, yet still maintained the
error within 4.15%.
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However, in practical applications, obtaining continuous 20% of charging data is often
challenging. In light of this, our study adopts a novel data processing method: each sample
contains charging data from 10 cycles, but only 10 points are randomly sampled from each
cycle, forming a new dataset. Jiang et al. [45] designed the Flexible Parallel Neural Network
(FPNN), which achieved state-of-the-art (SOTA) results in the early prediction of battery
life. In this paper, we input these randomly sampled 10 points of data into the FPNN for
battery RUL prediction.

The main contributions of this paper can be summarized as follows:
(1) Super-Sparse Data: This study is the first to use super-sparse random charging

data consisting of only 10 points for lithium battery RUL prediction, better aligning with
real-world production environments.

(2) Successful Application of FPNN in RUL Prediction: FPNN is an excellent inter-
pretable model, and this study reaffirms its effectiveness. The combination of sparse data
with FPNN enables our research to reach a new state-of-the-art level in RUL prediction.

The structure of the paper is arranged as follows. Section 2 details the MIT dataset,
including its composition and charging process data. Section 3 describes the method of
data sparsification and the evaluation metrics for model prediction performance. Section 4
presents the experimental results and in-depth analysis. It first introduces the performance
evaluation of the presented method, compares it with existing methods, conducts ablation
experiments, and concludes the paper with a summary and conclusions.

2. Datasets

In this study, we utilized the MIT dataset [7]. Since the basic information of the dataset
is similar to that in previous studies, it is not elaborated here in detail. In each charging
cycle of the MIT dataset, the charging capacity gradually increases with the charging
process until it reaches the maximum capacity, indicating the completion of charging. This
dataset consists of three ‘.mat’ files, representing battery data from three different batches.
As shown in Figure 1, data from 40 batteries in the third batch are displayed, whereas data
from the other two batches are presented in the appendix in Figures A1 and A2. Different
batteries have different cycle lifespans, and the charging completion times also vary at
different cycle stages for the same battery. To ensure consistent access to charging process
data, this study calculated the average index at which data points reach the charging
completion time. Subsequently, data from the first 400 points were extracted for analysis.
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Figure 1. Data point indices at the completion of each charging cycle for all batteries in the “2018-04-
12_batchdata_updated_struct_errorcorrect.mat” file.

3. Methodology

Following the comprehensive introduction of the dataset in the previous section, this
section further elaborates on the overall workflow for predicting the RUL of batteries. As
illustrated in Figure 2, the process begins with the Battery Management System (BMS),
whose primary responsibility is to collect data during battery operation. These raw data
are then subjected to a series of preprocessing steps, transforming them into a video-
like format to enhance their processability. Subsequently, the super-sparse data obtained
from the randomly sampled 10 data points are fed into the FPNN for model training
and prediction tasks. The hyperparameters of the FPNN model are determined through
Bayesian optimization algorithms, and except for the varying number of downsampled data
points, the other hyperparameters remain consistent across the different RUL prediction
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tasks. Finally, the model’s predictions are presented through a meticulously designed data
visualization tool.

Figure 2. (a) Schematic diagram of the technical route for RUL prediction based on the FPNN;
(b) Detailed architecture and components of the FPNN: ① a 3D convolutional layer using 3 × 3
convolutional kernels and 64 channels; ② an InceptionBlocks module; ③ a 2D convolutional layer
with a kernel size of 7 × 7 and 64 channels; ④ a max-pooling layer with a pooling kernel size of 3 × 3;
⑤ an InceptionBlock flexible unit; ⑥ a 2D convolutional layer with a kernel size of 1 × 1 and 16 or
24 channels (used as the target channel number for residual connections in other cases); ⑦ an average
pooling layer with a pooling kernel size of 3 × 3; and a ⑧ 2D convolutional layer with a kernel size of
3 × 3 and 16 or 24 channels. The figure also shows I FPNN video-like data after preprocessing; II the
overall architecture of the FPNN; III the detailed structure of the InceptionBlocks flexible module; and
the IV specific details of the InceptionBlock flexible unit. Reprinted with permission from Ref. [45].
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3.1. Data Preprocessing

Prior to inputting data into the model, a series of preprocessing steps is required,
similar to those described in Jiang et al. [45]. However, unlike the sample cycle numbers
selected in previous studies (the 1st cycle and its adjacent 3 cycles), each sample in this
study consisted of the first 5 cycles of the battery and its most recent 5 cycles. This method
of sample selection aimed to increase the similarity between samples, consistent with the
settings used in other studies [43,44].

3.2. Data Sparsification

Following data preprocessing, the data underwent sparse processing treatment. As
shown in Figure 3a,b, uniform downsampling of 10 points per cycle was performed, en-
suring that the contour of the features was not lost. Considering that uniform sampling
is relatively rare in real-life scenarios, random sampling better aligns with actual pro-
duction conditions. As depicted in Figure 3c,d, by randomly sampling 10 points from
each cycle’s data, new features corresponding to each cycle number were reconstructed.
Whether through uniform or random sampling, the newly generated electrochemical fea-
tures changed as the cycles progressed, providing a solid foundation for mapping the RUL.
Furthermore, the downsampling operation significantly reduced hardware requirements
and accelerated the speed of model training and inference.

Figure 3. Voltage variations during each charging cycle for the “b1c23” battery. The black circles in
the figure mark the areas of voltage rise and fall, highlighting the fluctuation characteristics of the
voltage during the charging process. (a) Uniform sampling of 10 points; (c) Random sampling of
10 points, depicting the temperature change trend of the “b1c23” battery during the charging process,
where temperature variations reflect the thermal management status at different charging stages.
(b) Uniform sampling of 10 points; (d) Random sampling of 10 points.

3.3. Hyperparameter Optimization

In this study, the Bayesian optimization algorithm [46] was employed to precisely
determine the hyperparameters of the FPNN model. By utilizing Gaussian Process Regres-
sion as a surrogate model, Bayesian optimization not only facilitated value prediction but
also provided confidence intervals, effectively balancing exploration and exploitation. As a
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key hyperparameter, the number of InceptionBlocks (NOI) in the FPNN for the different
RUL tasks was uniformly set to 3 to control the variables, allowing for a more accurate
comparison of the impact of different sampling methods on the RUL prediction tasks. In
all cases, new individual samples were composed of data from 10 cycles, with 10 points
randomly sampled from each cycle of each sample after preliminary preprocessing to form
a new dataset. In these datasets, although each sample consisted of data from 10 cycles,
there were only 10 data points per cycle, significantly speeding up the training process.
Under these conditions, an optimal hyperparameter search for the FPNN was conducted.
Subsequently, in the other RUL prediction tasks, the hyperparameter settings remained
the same to ensure the accuracy of the study. Except for the number of downsampled data
points, all hyperparameters were consistent across early and non-early predictions, as well
as random and uniform sampling. This methodical strategy was crucial for accurately
assessing the impact of the number of downsampled data points, ensuring the effectiveness
and comparability of the findings.

The definition of the RUL follows Equation (1), where NEOL represents the cycle life
of the battery and NECL represents the number of cycles the battery has already com-
pleted. RUL represents the difference between these two values and is the target value to
be predicted.

RUL = NEOL − NECL (1)

To comprehensively evaluate the predictive performance of the model, this study
selected the Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), and
Root-Mean-Square Error (RMSE) as the evaluation metrics. The corresponding mathemati-
cal expressions are given in Equations (2)–(4):

MAPE =
100%

n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (2)

MAE =
1
n

n

∑
i=1

|yi − ŷi| (3)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (4)

where n is the total number of samples, yi is the actual value of the i-th sample, and ŷi is
the predicted value of the i-th sample.

4. Results and Discussion

Each individual sample was composed of data from 10 cycles. When using data from
the first 10 cycles as the sample, according to Equation (1), NEOL equals the RUL plus 10,
representing the cycle life of the battery. Therefore, in this case, the study actually involved
the early prediction of the battery’s cycle life using early data, aligning with the objectives
of previous research. Consequently, this section focuses on the early prediction of the
RUL. In the other scenarios, to predict the RUL of the battery at any given time point,
the test set consisted of complete data from all cycles, where each individual sample was
composed of data from 10 cycles. Although the randomly sampled data more closely reflect
real production conditions, to provide a comparative baseline, this paper also considered
datasets with uniformly sampled data for comparative analysis alongside those with
randomly sampled data.

4.1. Predictive Performance under Different Conditions

Figure 4a–c depict heatmaps of various error metrics. Notably, for early predictions,
the MAPE values were significantly lower compared to non-early predictions. This result
even surpassed previous studies, where the accuracy for early predictions remained below
1% across different sampling data points. By adding the predicted RUL to 10, the cycle
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life of the battery could be obtained. This phenomenon can be attributed to the fact that,
unlike Jiang et al. [45], who included samples with only 4 cycles of data, the samples in this
study contained data from 10 cycles, providing richer and more specific electrochemical
information within each sample. However, although the samples in this study contained
data from 10 cycles, the MAPE for early predictions was smaller than that for non-early
predictions, which can be explained by Equation (2). For samples from the same battery, the
actual RUL labels for early predictions were larger, whereas those for non-early predictions
were smaller. Since the actual RUL label is in the denominator, the MAPE for early
predictions was smaller. This is validated in Figure 4b–c, where it can be seen that for error
metrics that do not require normalization, non-early predictions were more accurate, with
lower absolute errors, aligning with the common consensus that early predictions were
more challenging to model accurately compared to non-early predictions. Considering
that the RMSE and MAE exhibited similar trends, only the box plots of the MAPE and
MAE are shown in Figure 4d. The MAPE for non-early predictions exhibited greater
variability, possibly because the MAPE for non-early predictions was larger than that for
early predictions, leading to increased differences in extreme values of the MAPE and
a broader range of data distribution covered by different samples. Since the MAE for
non-early predictions was smaller than that for early predictions, the distribution of the
MAE in Figure 4f shows an opposite trend to the distribution of the MAPE in Figure 4d.

Figure 4. RUL prediction under different sampling modes. “Comp” represents non-early predictions,
“Early” stands for early predictions, “Rand” denotes random sampling, and “Unif” signifies uniform
sampling. The figure includes heatmaps and box plots to visually present the prediction accuracy.
The heatmap section includes the (a) MAPE; (b) MAE; and (c) RMSE. The box plot section shows the
(d) MAPE and (f) MAE. Additionally, the cycle life distribution of the samples in the test set is also
presented, including (e) the complete test set for non-early RUL predictions and (g) the test set for
early RUL predictions.
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Subsequently, Figure 4e,g display the distribution of the cycle life for the non-early
and early prediction samples, respectively. Given that the entire MIT dataset comprised
124 batteries, there could be up to 124 different cycle life values, meaning that all samples
from the same battery share one cycle life. Consistent with Jiang et al. [45], the training and
test sets were divided in a 94:30 ratio. Despite the large number of RUL samples overall,
there were relatively fewer samples for early predictions, which may account for the higher
non-normalized error metrics (MAE, RMSE) observed for early predictions. Conversely,
there were more samples for non-early predictions, covering almost all 124 possible cycle
life values. With the same number of data points, random and uniform sampling each
exhibited distinct advantages, albeit with minor differences. When other conditions re-
mained constant, various types of errors showed slight fluctuations with the changes in the
number of sampling points, possibly because different total numbers of data points could
still clearly describe the framework texture of features.

4.2. Predictive Performance under 10 Data Points

Considering the practical value of using 10 data points, this section focuses on the
prediction scenarios when sampling 10 data points. Figure 5a,b show the non-early predic-
tion RUL scenarios for random and uniform sampling, respectively. Overall, the difference
between the two is minimal, but uniform sampling has a slight edge in this context.
Figure 5c,d display the early prediction RUL scenarios for random and uniform sampling,
where again, the overall difference is small, but uniform sampling maintains a slight ad-
vantage. Figure 5e,f illustrate the prediction scenarios for individual batteries “b1c1” and
“b2c44” under random sampling datasets. Here, we selected single battery data representing
the extreme cases of maximum and minimum cycle lives for RUL prediction. The selection
of individual batteries in this study differs from previous research, as early samples from
those batteries were not randomly allocated to the test set, preventing early RUL prediction
for individual batteries. The early prediction scenarios for random sampling of “b1c1”
and “b2c44” batteries are shown in Figure 5i, demonstrating that even under extreme
conditions, the data processing method in this study combined with the FPNN still exhibits
strong robustness. Additionally, the scenarios of early and non-early RUL predictions
with 10-point sampling are more clearly presented in Figure 5g,h, with the conclusions
consistent with those of the previous subsection.

Finally, Table 1 provides a detailed list of the specific numerical results for early and
non-early RUL predictions using datasets with different numbers of data points from
random sampling. Our method is compared with other published methods in Table 2. The
comparison reveals that the novel data processing approach used in this study combined
with the FPNN demonstrates exceptional performance in predicting the RUL, successfully
achieving SOTA level.

Table 1. RUL prediction using datasets formed by randomly sampling different data points.

Complete/Early Points MAPE (%) MAE (Cycles) RMSE (Cycles)

Complete

10 2.36 3.15 4.13
100 2.31 3.01 3.92
200 2.62 3.21 4.36
300 2.86 3.43 4.34
400 2.20 2.80 3.70

Early

10 0.75 5.99 7.69
100 0.65 5.93 9.85
200 0.75 5.67 6.79
300 0.48 4.41 6.53
400 0.68 6.02 8.17
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Figure 5. The specifics of RUL prediction when sampling 10 data points. “Comp” represents
non-early predictions, “Early” stands for early predictions, “Rand” denotes random sampling, and
“Unif” signifies uniform sampling. The figure includes (a) random sampling for non-early RUL
predictions; (b) uniform sampling for non-early RUL predictions; (c) random sampling for early RUL
predictions; (d) uniform sampling for early RUL predictions; (e) “b1c1” battery: random sampling for
non-early RUL predictions; and (f) “b2c44” battery: random sampling for non-early RUL predictions.
Figure 4 also includes a comprehensive display of early and non-early predictions, as well as the RUL
predictions for random and uniform sampling, specifically including the (g) MAPE; (h) MAE and
RMSE; and (i) early prediction scenarios for “b1c1” and “b2c44” batteries with random sampling.

Table 2. RUL prediction from other published research methods.

Methods MAPE (%) MAE (Cycles) RMSE
(Cycles)

Requirements for Input Data

Linear model [7] 9.1 — — The dense data of the 100 cycles

HPR CNN [44] 5.16 46.69 64.52 20% sparse charging data from
the first 10 cycles

HPR CNN [44] 4.15 16.09 27.47 20% sparse charging data from
10 cycles

HCNN [43] 3.55 9 11 Dense charging data of the
60 cycles

TOP-Net [42] 3.37 8 11 The dense data of the 50 cycles

Proposed
method

2.36 3.15 4.13 10 random charging points from
each of 10 cycles

Proposed
method

0.75 5.99 7.69 10 random charging points from
each of the first 10 cycles

4.3. Ablation Experiments

To validate the effectiveness of this study, this section presents comprehensive data
from ablation experiments conducted for various scenarios. Detailed tabular data can be
found in Appendix A, specifically in Table A1 (non-early RUL predictions) and Table A2
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(early RUL predictions). Figure 6a–c display heatmaps of the ablation experiments under
all conditions. Given the significant differences in data extremes, a simple mathematical
transformation was applied to the original data, namely y = log(1 + x), where x represents
the original error evaluation metric and y is the processed evaluation metric, which is
also the value shown in the figures. ’NaN’ is used to indicate missing data because in
these scenarios, after removing the initialization layer, the model consumed excessive GPU
memory during training, preventing these experiments from being conducted.

In these experiments, the logarithmic MAPE for early predictions was generally
smaller, whereas the MAPE for non-early predictions was larger. Conversely, other non-
normalized error metrics like the MAE and RMSE showed the opposite trend. This is
consistent with the patterns observed in previous prediction results. It is evident that
removing different components of the FPNN model impacted its RUL prediction capability
in the various scenarios. Since previous research has indicated that setting the NOI to
3 performs well under different conditions, the NOI in this study was also set to 3.

In this study, special attention was given to the MAPE, a normalized metric, partic-
ularly for non-early prediction scenarios. When randomly selecting 10 data points and
sequentially removing each layer in the FPNN, it was observed that the accuracy of the
FPNN generally decreased. However, interestingly, when the residual was removed, the
accuracy slightly improved. This suggests that under the current data distribution, residual
connections might have had a minor adverse effect. However, it is important to note that
removing residual connections did not always produce adverse effects in other scenarios
with different numbers of data points and sampling patterns; sometimes, it even enhanced
accuracy. The initial layers, differential feature branch, and 3D conv consistently con-
tributed positively to the model, and their removal led to a decline in model performance.
Particularly, the differential feature branch had the most significant impact on the FPNN’s
performance, with its removal greatly diminishing the FPNN’s capabilities. The initial NOI
in the current model was set to 3. For non-early predictions with 300 randomly sampled
data points, removing one InceptionBlock slightly improved the FPNN’s accuracy, and
the same was observed for non-early predictions with 200 uniformly sampled data points.
However, in other scenarios, the FPNN’s performance typically worsened. When removing
two InceptionBlocks, there was a slight improvement in accuracy for non-early predictions
with 200 and 300 randomly sampled data points, as well as for 200 uniformly sampled
data points. Yet, when all three InceptionBlocks were removed, the FPNN’s performance
significantly declined across all non-early prediction scenarios.

In the case of early predictions, the situation changed slightly. Removing the initial
layers only led to adverse results when sampling 100 data points, whereas in other scenarios
with available data, the FPNN’s performance slightly improved. Similar to non-early
predictions, removing the residual sometimes had beneficial effects and sometimes the
opposite. The differential feature branch and 3D conv were consistently beneficial. With
the initial NOI set to 3, removing one InceptionBlock generally led to a decrease in the
FPNN’s performance, but there were improvements in scenarios with 10 and 100 randomly
sampled points and 10 uniformly sampled points. When removing two InceptionBlocks,
the FPNN’s performance generally declined, but there were improvements in scenarios
with 10, 100, and 300 uniformly sampled points. Finally, when all three InceptionBlocks
were removed, the FPNN’s performance generally declined, but there was an improvement
in the scenario with 100 uniformly sampled points.

Given the practical significance of sampling 10 data points, Figure 6d presents bar
graphs of the MAPE, MAE, and RMSE when sampling 10 data points. As previously
mentioned, the differential feature branch is crucial, a fact that is reaffirmed in this chart.
The roles of the other layers are also quite evident, with the unaltered FPNN consistently
performing well under various conditions. Certain layers, particularly the residual connec-
tions and NOI, had mixed effects on the FPNN’s performance. However, this also confirms
previous research findings [45] that adapting the NOI to suit different conditions can fully
harness the potential of the FPNN.
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Finally, for detailed information on the ablation experiments conducted for RUL
prediction using datasets with 10 randomly sampled data points, please refer to Table 3.

Figure 6. Results of ablation experiments for RUL prediction, including early and non-early predic-
tions, as well as random and uniform sampling of different numbers of points. The figure includes
heatmaps and bar charts to visually demonstrate prediction accuracy. “Comp” represents non-early
predictions, “Early” stands for early predictions, “Rand” denotes random sampling, and “Unif”
signifies uniform sampling. The heatmap section includes the (a) MAPE; (b) MAE; and (c) RMSE.
(d) The bar chart section shows comparisons of the MAPE, MAE, and RMSE when sampling 10 data
points. Notes: (1) “NaN” indicates missing data, which occurred in some cases where, after removing
the initialization layer, the model training consumed excessive GPU memory, preventing experimen-
tation. (2) “A branch” refers to a branch removed from the dual-stream network, specifically the
differential feature branch.
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Table 3. Ablation experiments using a dataset formed by randomly sampling 10 data points.

Complete/Early Detach MAPE (%) MAE (Cycles) RMSE (Cycles)

Complete

None 2.36 3.15 4.13
Initial layers 3.23 3.87 5.06
Residual 2.20 3.12 4.04
3D conv 3.88 5.61 7.75
1 block 2.54 3.72 4.83
2 blocks 4.00 4.38 5.62
3 blocks 2.68 3.72 5.02
A branch 99.86 484.65 619.75

Early

None 0.75 5.99 7.69
Initial layers 0.70 5.57 7.62
Residual 0.76 5.41 6.24
3D conv 1.17 9.86 13.38
1 block 0.52 3.50 4.33
2 blocks 0.91 6.21 6.96
3 blocks 0.90 7.80 10.89
A branch 99.60 820.09 931.36

5. Conclusions

This paper successfully integrates the FPNN model with the super-sparse random
sampling data processing technique for precise prediction of battery RUL on the MIT
dataset, demonstrating outstanding predictive accuracy. With random downsampling of
10 data points per cycle, the model reconstructed new, meaningful features, achieving
an MAPE of 2.36% for RUL prediction. When the input data were limited to the first
10 cycles, the predicted RUL MAPE dropped to 0.75%. To comprehensively assess the
proposed technique, we also conducted comparative experiments with uniform sampling.
The results showed with both random sampling and uniform downsampling, the error
of FPNN prediction is very low, and the corresponding variance is very small, reaching
the current SOTA level. This indicates that even super-sparse random data can effectively
establish the mapping relationship between features and labels. Furthermore, through
ablation experiments, this study further confirmed the importance and necessity of each
component in the FPNN architecture. Given the commonality between RUL tasks and other
machine learning tasks in the battery domain, the novel sparse data processing method
adopted in this study signifies its huge potential for broader application in the battery field.

Author Contributions: Conceptualization, L.J.; methodology, L.J.; software, L.J.; validation, L.J.;
formal analysis, L.J.; investigation, L.J.; resources, Q.H.; writing—original draft preparation, L.J.;
writing—review and editing, G.H.; visualization, G.H.; supervision, G.H.; project administration,
Q.H.; funding acquisition, G.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data will be made available on request.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

Nomenclature
LIBs lithium-ion batteries
ML machine learning
SVM support vector machine
KNN k-nearest neighbors
RUL remaining useful life
EIS electrochemical impedance spectroscopy
GPR gaussian process regression
SOTA state of the art
MAPE mean absolute percentage error
RNN recurrent neural network
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CNN convolutional neural network
FPNN flexible parallel neural network
BMS battery management system
NOI number of inceptionblock
MAE mean absolute error
RMSE root-mean-squared-error
CC constant current
CV constant voltage

Appendix A

Figure A1. Data point indices at the completion of each charging cycle for all batteries in the
“2017-05-12_batchdata_updated_struct_errorcorrect.mat” file.
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Figure A2. Data point indices at the completion of each charging cycle for all batteries in the
“2017-06-30_batchdata_updated_struct_errorcorrect.mat” file.

Table A1. The results of non-early RUL predictions using datasets formed by sampled data points.

Sampling Mode Points Detach MAPE (%) MAE (Cycles) RMSE (Cycles)

Random sampling

10 None 2.36 3.15 4.13
10 Initial layers 3.23 3.87 5.06
10 Residual 2.20 3.12 4.04
10 3D conv 3.88 5.61 7.75
10 1 block 2.54 3.72 4.83
10 2 blocks 4.00 4.38 5.62
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Table A1. Cont.

Sampling Mode Points Detach MAPE (%) MAE (Cycles) RMSE (Cycles)

Random sampling

10 3 blocks 2.68 3.72 5.02
10 A branch 99.86 484.65 619.75
100 None 2.31 3.01 3.92
100 Initial layers 6.07 7.21 8.87
100 Residual 2.39 3.16 4.08
100 3D conv 4.46 5.61 7.32
100 1 block 3.37 4.73 6.01
100 2 blocks 4.37 5.37 6.51
100 3 blocks 11.17 13.62 14.35
100 A branch 99.84 484.56 619.63
200 None 2.62 3.21 4.36
200 Initial layers NaN NaN NaN
200 Residual 1.87 2.69 3.45
200 3D conv 4.36 5.92 7.44
200 1 block 2.7 3.99 4.85
200 2 blocks 2.56 3.46 4.45
200 3 blocks 7.07 7.43 8.75
200 A branch 99.85 484.58 619.65
300 None 2.86 3.43 4.34
300 Initial layers NaN NaN NaN
300 Residual 2.24 2.87 3.84
300 3D conv 5.07 7.58 9.07
300 1 block 2.76 3.32 4.32
300 2 blocks 2.59 3.28 4.29
300 3 blocks 3.99 5.43 6.8
300 A branch 99.84 484.57 619.63
400 None 2.2 2.8 3.7
400 Initial layers NaN NaN NaN
400 Residual 2.07 3.11 3.96
400 3D conv 3.75 5.48 7
400 1 block 2.88 3.5 4.61
400 2 blocks 5.42 8.24 10.29
400 3 blocks 6.47 7.12 8.66
400 A branch 99.85 484.63 619.72

Uniform sampling

10 None 2.28 3.09 4.04
10 Initial layers 2.80 3.40 4.50
10 Residual 2.52 3.22 4.50
10 3D conv 4.40 6.06 8.24
10 1 block 2.48 2.97 3.98
10 2 blocks 2.63 3.31 4.39
10 3 blocks 3.44 3.91 5.09
10 A branch 99.86 484.67 619.77
100 None 2.49 3.51 4.42
100 Initial layers 4.53 4.93 6.17
100 Residual 2.13 2.96 3.8
100 3D conv 3.95 4.96 6.56
100 1 block 2.6 4.05 5.2
100 2 blocks 2.48 3.23 4.21
100 3 blocks 4.71 7 8.66
100 A branch 99.83 484.53 619.6
200 None 2.65 3.12 4.18
200 Initial layers NaN NaN NaN
200 Residual 1.92 2.48 3.27
200 3D conv 3.77 5.2 6.77
200 1 block 2.42 2.97 3.95
200 2 blocks 2.53 3.15 4.16
200 3 blocks 5.84 6.39 7.82
200 A branch 99.84 484.58 619.64
300 None 3.31 3.44 4.39
300 Initial layers NaN NaN NaN
300 Residual 2.07 2.83 3.77
300 3D conv 3.54 5.05 6.64
300 1 block 3.65 4.04 5.12
300 2 blocks 2.98 3.51 4.55
300 3 blocks 3.42 5.08 6.53
300 A branch 99.84 484.56 619.61
400 None 2.24 2.92 3.77
400 Initial layers NaN NaN NaN
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Table A1. Cont.

Sampling Mode Points Detach MAPE (%) MAE (Cycles) RMSE (Cycles)

400 Residual 2.29 2.72 3.56
400 3D conv 3.35 4.51 6.01

Uniform sampling 400 1 block 2.72 3.38 4.48
400 2 blocks 3.78 5.62 7.15
400 3 blocks 6.75 8.75 10.17
400 A branch 99.85 484.66 619.74

Note: (1) ’NaN’ indicates missing data because in these scenarios, after removing the initialization layer, the
model consumed excessive GPU memory during training, preventing these experiments from being conducted.
(2) ’A branch’ refers to the differential feature branch removed from the dual-stream network.

Table A2. The results of early RUL predictions using datasets formed by sampled data points.

Sampling Mode Points Detach MAPE (%) MAE (Cycles) RMSE (Cycles)

Random sampling

10 None 0.75 5.99 7.69
10 Initial layers 0.70 5.57 7.62
10 Residual 0.76 5.41 6.24
10 3D conv 1.17 9.86 13.38
10 1 block 0.52 3.50 4.33
10 2 blocks 0.91 6.21 6.96
10 3 blocks 0.90 7.80 10.89
10 A branch 99.60 820.09 931.36
100 None 0.65 5.93 9.85
100 Initial layers 1.22 9.97 12.93
100 Residual 0.74 5.61 7.76
100 3D conv 0.86 6.84 10.31
100 1 block 0.83 7.04 9.96
100 2 blocks 1.08 8.49 10.45
100 3 blocks 1.7 11.44 12.41
100 A branch 99.58 819.93 932.21
200 None 0.75 5.67 6.79
200 Initial layers NaN NaN NaN
200 Residual 0.57 4.49 6.58
200 3D conv 1.2 9.8 14.38
200 1 block 0.62 4.5 5.49
200 2 blocks 0.97 7.33 9.27
200 3 blocks 1.55 11.37 13.39
200 A branch 99.58 819.95 931.22
300 None 0.48 4.41 6.53
300 Initial layers NaN NaN NaN
300 Residual 0.64 4.29 5.67
300 3D conv 1.6 12.54 15.29
300 1 block 0.78 6.43 8.97
300 2 blocks 0.7 5.99 8.02
300 3 blocks 0.86 7.5 11.64
300 A branch 99.58 819.93 931.19
400 None 0.68 6.02 8.17
400 Initial layers NaN NaN NaN
400 Residual 0.56 4.48 6.48
400 3D conv 1.23 9.4 12.16
400 1 block 0.74 6.51 9.82
400 2 blocks 1.37 12.49 17.37
400 3 blocks 1.08 8.45 11.23
400 A branch 99.6 820.04 931.34

Uniform sampling

10 None 0.71 4.94 5.82
10 Initial layers 0.62 4.69 6.22
10 Residual 0.51 3.63 4.25
10 3D conv 1.30 10.96 16.38
10 1 block 0.69 4.91 5.82
10 2 blocks 0.52 3.50 4.54
10 3 blocks 0.76 6.77 10.16
10 A branch 99.60 820.10 931.40
100 None 0.78 5.77 7.07
100 Initial layers 0.75 6.79 9.49
100 Residual 0.66 5.3 7.64
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Table A2. Cont.

Sampling Mode Points Detach MAPE (%) MAE (Cycles) RMSE (Cycles)

Uniform sampling

100 3D conv 1.34 10.46 15.11
100 1 block 1 8.49 11.73
100 2 blocks 0.76 6.92 10.09
100 3 blocks 0.77 5.77 7.76
100 A branch 99.58 819.9 931.19
200 None 0.7 5.58 7.52
200 Initial layers NaN NaN NaN
200 Residual 0.71 5.28 7.36
200 3D conv 0.94 7.73 11.04
200 1 block 0.89 6.74 8.93
200 2 blocks 0.87 7.77 10.85
200 3 blocks 1.01 8.93 12.87
200 A branch 99.58 819.94 931.22
300 None 0.63 5.29 8.02
300 Initial layers NaN NaN NaN
300 Residual 0.66 4.8 6.08
300 3D conv 1.42 11.78 16.94
300 1 block 0.66 5.54 8.09
300 2 blocks 0.6 5.3 8.41
300 3 blocks 1.2 10.16 12.86
300 A branch 99.58 819.93 931.19
400 None 0.61 4.5 6.15
400 Initial layers NaN NaN NaN
400 Residual 0.63 4.76 6.36
400 3D conv 1.08 9.03 14.65
400 1 block 0.74 6.28 9.73
400 2 blocks 0.97 9.77 15.15
400 3 blocks 1.21 8.06 9.55
400 A branch 99.72 820.65 931.67

Note: (1) ’NaN’ indicates missing data because in these scenarios, after removing the initialization layer, the
model consumed excessive GPU memory during training, preventing these experiments from being conducted.
(2) ’A branch’ refers to the differential feature branch removed from the dual-stream network.
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