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Abstract: The growing integration of distributed energy resources underscores the critical importance
of having precise insights into the dynamics of an electrical power system (EPS). Consequently, an
estimator must align with the EPS dynamics to enhance the overall reliability, safety, and system
stability. This alignment ensures that operators can make informed decisions during system oper-
ations. An initial step in gaining insight into the system’s state involves examining its state vector,
which is represented by voltage phasors. These results are derived through the application of a
distributed state-estimation process in large-scale systems. This study delved into the effectiveness
of Bayesian filters, with a particular emphasis on the extended Kalman filter (EKF) algorithm in
the context of distributed state estimation. To analyze the outcomes, the nodal partitioning process
was incorporated within the distributed state-estimation framework. The synergy between the EKF
algorithm and the partitioning method was evaluated using the IEEE118 test system.

Keywords: Bayesian filter; Kalman filter; partition; redundancy; nodal grouping

1. Introduction

The significance of having information to ascertain the state of an electrical power
system (EPS) cannot be overstated. It enables system operators (SOs) to make prompt
decisions that prevent operational disruptions and potential blackouts within the electrical
network [1,2]. A pivotal tool in achieving this objective is a state estimator. This technology
ensures that power demands are met while adhering to operational constraints, including
transmission line capacities, voltage limits, and generation limits [3–5].

In the process of monitoring a system, the role of a state estimator (SE) is to determine
or approximate the optimal value of a deterministic or random variable. These variables
are often challenging to directly capture through measurement systems [6]. Consequently,
state estimators hold a pivotal position in the energy industry due to their essential role in
establishing the state of an electrical system [7]. Estimators play a crucial role by providing
essential information about a system’s state, allowing for the real-time assessment of
voltage phasors at different locations within the system. This task involves handling
extensive data volumes at a control center, which, in turn, leads to increased costs related
to economic and computational resources [8]. Within the estimation process, it becomes
essential to analyze measurement redundancy to mitigate the risk of deviations or errors in
the applied algorithm.

The architecture of state estimators has evolved with the development of new algo-
rithms, Figure 1. In the centralized estimation model, a single control center is required to
process all the measurements of an EPS; however, today, distributed processes are applied,
making it necessary to partition a system and reduce the problem to subproblems, where
the estimator is applied in this new configuration. Several methods for partitioning have
been proposed in the literature [9,10].
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Figure 1. Flowchart of a state estimator in electric power systems (EPS).

Estimators play a pivotal role in providing crucial insights into the system’s status.
They enable the real-time assessment of voltage phasors at various points within the system.
However, this task involves the management of substantial data volumes at a central control
center, leading to increased costs related to economic and computational resources [8].
Within the estimation process, it is essential to scrutinize measurement redundancy to
mitigate the risk of deviations or errors in the applied algorithm. In contemporary times,
the architecture of state estimators has evolved with the development of new algorithms.
While the conventional centralized estimation model required a single control center to
process all the measurements of an EPS, modern practices favor distributed processes.
Consequently, system partitioning is necessary, allowing the problem to be divided into
subproblems where the estimator is applied. Various partitioning methods have been
proposed in the literature to address this evolving landscape.

The Kalman filter and its extension, namely, the extended Kalman filter (EKF), rep-
resent fundamental tools in the precise and up-to-date estimation of the state of dynamic
systems, playing a crucial role in a wide range of fields from electrical engineering to
robotics [11,12]. These algorithms are especially relevant in environments where the fu-
sion of information from multiple sources is imperative to obtain reliable estimates of
the system state. Furthermore, the Kalman filter, along with its extended variant, is ca-
pable of effectively handling the noise present in both measurements and the system
model, making them valuable tools for situations where measurements may be subject to
significant disturbances.

On the other hand, the weighted least squares (WLS) method offers an alternative
strategy for system state estimation, focusing on minimizing the mean squared error
between measurements and state estimates. This method is particularly useful when
available measurements exhibit varying levels of uncertainty, as it allows for assigning
different weights to each measurement based on its perceived reliability. In situations
where precision and reliability are critical, the weighted least squares approach can provide
more accurate estimates of the system state by prioritizing the most reliable measurements.

In summary, both the Kalman filter and its extension, as well as the weighted least
squares method, are powerful tools in system state estimation, each with its own advantages
and specific applications. Their effective use enables obtaining precise and up-to-date
estimates of the system state in a variety of applications, from monitoring electrical systems
to autonomous vehicle navigation.



Energies 2024, 17, 2131 3 of 20

It is important to note that [13] both the EKF and WLS have their respective advantages
and limitations. The EKF excels when dealing with noisy measurements and when highly
accurate state estimation of the system is required, although its implementation requires a
dynamic model of the system and can result in a significant computational burden. On the
other hand, WLS is suitable for situations where measurements come with different levels
of precision, although its ability to maintain accuracy in the presence of high noise levels
may be more limited compared with the EKF [14].

The main differences between WLS and the EKF can be summarized as follows:

1. Application domain: WLS—Primarily used for curve fitting and regression tasks,
where the objective is to find the parameters of a mathematical model that best fit the
observed data. EKF—Mainly applied for state estimation in nonlinear dynamic sys-
tems. It is particularly useful when the relationships of the system and measurement
equations cannot be linearly modeled.

2. Problem type: WLS—Used for curve-fitting and regression problems, with the aim
to find coefficients of a mathematical model that describes the relationship between
variables. EKF—Designed for state-estimation problems in dynamic systems, such as
object tracking or estimating positions and velocities in nonlinear systems.

3. Treatment of nonlinearities: WLS—Not specifically designed to handle nonlinearities
in the relationships between variables. EKF—Handles nonlinear systems by lineariz-
ing the dynamic and measurement equations around the current estimated state.

4. Mathematical approach: WLS—Relies on the least squares method, minimizing the
sum of squared weighted errors between observed and model-predicted data. EKF—
Utilizes the theory of Kalman filters and linear approximation to perform estimation
in nonlinear systems.

In essence, WLS is focused on fitting models to observed data, while the EKF is geared
toward estimating states in dynamic systems, particularly nonlinear ones. Each method is
tailored to address specific challenges and objectives in estimation and modeling [15,16].

The choice between these methods will depend on the specific characteristics of the
system under consideration and the properties of the available measurements. This choice
is crucial to ensure an effective state estimation of the system.

A dynamic state estimation is a technique, as described in [17], that tracks changes in
the state variables within a power system. However, there is no precise physical modeling
of the system’s time behavior when monitoring changes. Dynamic behavior in estimators
is applied when the actual modeling attributed to time variables changes during operation.
The advantage of a Bayesian filter provides certain benefits in terms of computational
correctness and minimal measurement error in state estimation. To achieve this, it uses
information from the state vector over time, as well as the physical model corresponding to
the considered system [18,19].

Another concept to consider within the estimation process is network partitioning.
Kron and Happ were pioneers in the study of diakoptica, which aims to break down large
systems into smaller ones. This underscores the significance of reducing the computational
processes associated with analyzing large-scale systems [20].

The DSE anticipates the system’s capability in the time interval (t + 1). As a result,
DSE algorithms play a significant role in state-estimation techniques [9,21] and have the
ability to impact the character of real-time monitoring and control operation. In [22], the
importance of demand behavior is highlighted, as it exhibits load variations that increase
and decrease over time, causing rapid changes. This dynamic nature of the load makes the
model complex, turning the power system into a dynamic system. The monitoring and
control of energy systems become highly complex and significant as a result. The role of
the state estimator is to provide optimal real-time data on the state vector, relying on a
minimum set of measurements. Therefore, the concept of state estimation plays a crucial
role in ensuring the safe and economical operation of large-scale interconnected power
systems. Depending on the desired states, power system state estimation can be formulated
as a static or dynamic process [23].
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In the MATLAB 9.14 (R2023a) environment (Mathworks, Inc., Natick, MA, USA),
a code was developed to implement the distributed estimator process under the nodal
redundancy criterion proposed in [24] and the recursive EKF filter implementation in order
to determine the efficiency of the model in the operation of an electrical power system.

The application of the Kalman filter in a state estimator for power systems through
nodal partitioning aims to determine whether there is an improvement in the accuracy and
reliability of the state vector. The analysis of the results involves assessing the reduction in
measurement errors, effective management of uncertainty, optimization of control strategies,
and integration of multiple sources of information to achieve a more precise and coherent
estimation of the system state.

The article is organized as follows. First, Section 2 describes the integration of the
recursive filter within the nodal partitioning method. Second, Section 3 develops the model
in the distributed state-estimation process using the EKF for a large-scale system. Next,
in Section 4, the simulation results of the analyzed model are presented. The discussion
unfolds in Section 5, and finally, the conclusions are summarized in Section 6.

2. Bayesian Recursive Filters

Bayesian filters are a class of algorithms used in statistical estimation theory to infer the
state of a system from incomplete or noisy observations. These filters are based on Bayes’
theorem, which allows for updating beliefs about the system’s state as new observations
are acquired.

p(Ai | B) =
p(Ai ∩ B)

p(B)
=

p(B | Ai)p(Ai)

∑n
j=1 p

(
B | Aj

)
p
(

Aj
) (1)

The Bayesian approach in state estimation aims to construct the posterior probability
distribution of a state by considering all available information, including the set of received
measurements. This type of estimator is known as a recursive filter [7,10], as it processes
received data sequentially rather than in a batch manner, thus avoiding the need to store
all the data. The recursive filter consists of two basic stages: the prediction (a priori) stage
and the update (a posteriori) stage.

In the prediction stage, the motion model is used to forecast the state of the posterior
probability distribution at time t + 1. It is important to consider that the state is subject to
disturbances and is modeled as Gaussian noise. The prediction stage shifts, distorts, and
expands the prior probability distribution. In the update stage, the measurement at time
t+ 1 is used to modify the prediction of the probability distribution. This stage incorporates
measurement information and adjusts the posterior distribution.

Significant developments related to dynamic modeling and the establishment of a state
space have been proposed in the literature. From this perspective, it is necessary to establish
a model that captures the system and can be mathematically represented. To do this, the
plant system must be modeled, and a model that relates observations or measurements
must be established. In the context of an electrical power system, nonlinear equations are
used to model its dynamics [6]. Below are the equations that define a state space:

xt = f (xt−1, wt−1)

zt = h(xt, vt)
(2)

Equation (2) describes the evolution from state xt−1 to state xt over the time interval
between t− 1 and t. This evolution is associated with the error wt−1, which represents the
uncertainty in state update. These models have a prior probability distribution p(xt|xt−1),
which reflects the available information about the state at time t− 1 to predict the state at
time t.

Equation (3) presents the observation model, which relates the measurement zt to
the current value of the state xt. In this equation, the term vt is associated with the
stochastic measurement error and reflects its uncertainty. A probability distribution of the
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measurement p(zt|xt) can be inferred from this equation, which describes the probability
of obtaining the measurement zt given the state xt.

A state space is developed through a model that represents the evolution of the state
vector based on the imposed control signals. In Blood et al. [25,26], a plant model is
proposed based on the nodo balance equation:

fi(x, Γ) = Viejδi ∑ VkYikej(δj+ϕik) − (Pi + jQi) = 0 (3)

where Γ =
[

P1P2 . . . PN Q1Q2 . . . . . . QN
]T represents the vector of the active and reactive

power injections of dimension 2N.
Differentiating fi(x, Γ) with respect to x and Γ, we have

δ fi(x, Γ)
δx

dx +
δ fi(x, Γ)

δΓ
dΓ = 0 (4)

H =
δ fi(x, Γ)

δx
(5)

I =
δ fi(x, Γ)

δΓ
(6)

Hdx + IdΓ = 0 (7)

where H turns out to be the Jacobian matrix of the state vector, while I represents the
identity matrix. Solving for dx from (7), we have

dx = −H−1dΓ (8)

The differential dx represents the infinitesimal variation between two static operating
points (x1, Γ1) and (x2, Γ2), which satisfies Equation (7). Linearizing the differential as an
incremental relationship and considering a process error wl , Equation (8) can be expressed
as follows:

∆x = (x1 − x2) = −H−1(Γ1 − Γ2) + wl (9)

By considering that the two operating points are static within a time interval from t to
t + Ts, it allows the model to be represented as:

x[t + Ts] = x[t]−H−1u[t] + wl (10)

where the vector u[t] = ∆Γ[t] = Γ[t + Ts]− Γ[t] represents the change in system operation
over time due to demand dependency. Equation (10) presents the model that associates
both the new operating point and the previous one with a power variation u[t] when the
system changes its operating point due to the dynamic behavior of the demand.

2.1. Extended Kalman Filter (EKF)

The EKF, being a recursive algorithm, estimates the state of a system that evolves over
time due to the demand behavior of an electrical power system. This filter is considered
optimal, as it minimizes a specific criterion using all available information from the previous
state for filtering. The term recursive means that it does not require the storage of previous
data, thus facilitating its implementation in real-time processing systems.

The main goal of the EKF is to optimally estimate states, minimizing the mean squared
error index. Unlike WLS, the EKF leverages the system state information to improve the
estimation accuracy. This is achieved by using a dynamic model that describes the state’s
evolution over time and the propagation of associated uncertainty. As new measurements
are received, the EKF updates the state estimation using both the dynamic model and
available measurements. In the literature, various studies highlighted the advantages of
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the EKF compared with other methods, such as WLS. These studies emphasized the use of
system state information as a key factor in improving the estimation accuracy [6,27].

All these criteria and concepts provide us with the guidelines for implementing the
extended Kalman filter algorithm by considering two stages in the voltage phasor [V, θ]
estimation process:

1. In the prediction stage at t + 1, the prediction of the state vector and the measurement
covariance matrix are evaluated.

x̄[t + Ts] = x̂[t]−H−1u[t] (11)

P̄[t + Ts] = P̂[t] + Q (12)

2. In the correction stage of the estimation, given the dynamic behavior of demand that
generates a new operating point over a timeline, the measurement at instant t + 1 is
taken, allowing for the calculation of the gain matrix. This updates the estimation of
the state vector and the covariance.

K[t + Ts] = P̄[t + Ts]HT(x)
{

H(x)P̄[t + Ts]HT(x) + R
}−1

(13)

x̂[t + Ts] = x̄[t + Ts] + K[t + Ts]{z[t + Ts]− h(x̄[t + Ts])} (14)

P̂[t + Ts] = P̄[t + Ts]−K[t + Ts]H(x)P̄[t + Ts] (15)

where
K—Kalman gain;
x̂—estimation at t + Ts (update);
H—Jacobian matrix construction;
R—inverse matrix of the measurement covariance matrix w;
x—system measurements or observations.

This process allows for estimating the state vector by considering an a priori system
state. Figure 2 illustrates the extended Kalman filter algorithm.

Figure 2. Schematic of the extended Kalman filter algorithm.

The EKF approximates the nonlinear functions of the model using a first-order Tay-
lor series expansion to optimal terms, assuming that this approximation is sufficient to
describe the system’s dynamics. However, this approximation can decrease the filter’s
performance and even convergence because a fundamental feature of the EKF is that it
always approximates p(xt/zt) to a Gaussian distribution, which can be a drawback if
its probability density function (pdf) is not Gaussian. Additionally, another problem is
that it requires the construction of Jacobian matrices, which is not trivial and can lead to
difficult-to-detect errors. It is important to mention that the equations modeling the state
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space must be differentiable; otherwise, this filter cannot be applied. In this context, the
literature presents certain improvements, such as the unscented Kalman filter (UKF).

2.2. Nodal Grouping

Traditionally, power grid state estimation has relied on a centralized architecture.
However, with the deregulation of grids and growing concerns about information privacy
and security, there has been a shift toward multi-area state estimation. Current state-
of-the-art solutions often employ a weighted norm of a residual measurement model,
which may obscure gross errors concealed within the null space of the Jacobian matrix.
To address this issue, we propose a distributed innovation-based model. This approach
utilizes measurement innovation to effectively tackle error composition [28].

Clustering is a technique used to group items that share similar characteristics. Various
clustering methods have been developed, including K-means, electrical distance, spectral
clustering, and hierarchical clustering algorithms [24,29,30]. The proposed nodal grouping
method is based on the set of measurements associated with the buses of an electrical
system. The objective of this estimation model is to create areas or regions within the
system where measurements are distributed in such a way that the redundancy within
these regions is as uniform as possible.

The nodal grouping principle involves determining which measurements belong to
a specific bus. To achieve this, two types of measurements are established: bus measure-
ments (MB) and line measurements (Ml). Figure 3 illustrates the physical arrangement of
measurements in an electrical system.

Figure 3. The physical arrangement of measurements at the bus [24].

In the realm of MB measurements, those directly linked to the system bus can be
categorized into two distinct types: voltage measurements MV on the one hand, and
active power MP and reactive power MQ injection measurements on the other. These
measurements are typically associated with connections between generators and buses or
loads and buses. Therefore, for the i-th bus, we encounter the following:

MBi =


MVi
MPi
MQi

(16)

The measurement data defined as Ml are the active and reactive power flow mea-
surements between node i and node j, and the membership of the measurement will be
established with the closest bus under the following consideration:

M l =

{
MPij ∈ Bi
MQij ∈ Bi

(17)

Consequently, the set of all measurements affiliated with bus i is outlined as follows:

Mi = MBi + MLi (18)
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2.3. Nodal Partition Method

When implementing a distributed state estimator (DSE), the initial system is divided
into multiple groups or subsystems. At this stage, a local estimate is computed using
measurements from each cluster. Subsequently, the overall estimate of the electrical system
is determined by integrating the information from neighboring measurements across the
subsystems; see Figure 4.

Figure 4. Node-partitioning scheme.

2.4. Preliminary Concept

1. State estimation: The state-estimation process for an AC system relies on a mathemat-
ical model comprising nonlinear functions. These functions establish a relationship
between the set of measurements and the system’s state variables:

z = h(x) + e (19)

where
x: state vector 2N, [V,θ];
z: set of measurements M (M > 2N concept of observability);
h: set of nonlinear functions;
e: error present in the measurements.
In traditional state-estimation models, the state vector is defined by the voltage phasor
[V, θ0], and the measurement set includes voltage magnitudes V h

i , active and reactive
power injections, and active and reactive power flows [17]. The nonlinear equations
that establish the relationship between the state variables in the electric power system
model are
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Pi
m =

N

∑
j=1

ViVj
(
Gij cos θij + Bij sin θij

)
Qi

m =
N

∑
j=1

ViVj
(
Gij sin θij − Bij cos θij

)
Pij

n = ViVj
(
Gij cos θij + Bij sin θij

)
− GijV2

i

Qij
n = ViVj

(
Gij sin θij − cos θij

)
−V2

i
(

Bij − bij
)

(20)

In the estimator model, the objective function is minimized to assess the error between
the estimated measurements and the actual measured values [7].

min J =
M

∑
1

(zi − hi(x̂))2

σ2
i

= [z− Hx]
TW[z− Hx] (21)

2. Grouping concept: During the system partitioning process, interconnected areas may
exhibit varying physical configurations (Figure 5):

• Non-overlapping areas consist of buses that belong exclusively to one area.
The connection between these areas is established through their transmission
systems.

• In overlapping buses, the buses are part of multiple areas within the partition.
• In overlapping links, the configuration accounts for the fact that the link between

two buses belongs to multiple overlapping areas.

Figure 5. Physical arrangement.

According to [24], the EPS is divided into non-overlapping areas, ensuring the physical
connection of subsystems through the transmission system. The observability criterion
must be met for the entire system and for each area into which it is divided. If an area
is not observable, pseudo-measurements are used to restore observability.

3. Nodal buses: these buses concentrate the largest number of measurements:

BNk = max(#M) (22)

4. Node links: After determining the nodal buses (BNs), the areas are constructed, where
the neighboring buses connected through the transmission system must be linked. In
each iteration, the subsystems grow radially. The system expands through the lines
connecting the nodes, and the number of buses increases with each iteration.

5. Overlapping criteria: In the proposed methodology, expanding areas may cause
overlapping, where a bus can be part of multiple areas due to system connections. To
resolve this, the redundancy error minimization criterion is used to assign overlapping
buses to one area, ensuring homogeneity in redundancy values. Figure 6 shows how
systems are divided under the concept of nodal redundancy.
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Figure 6. Nodal partitioning of the IEEE118 system.

3. Problem Formulation

Integrating the extended Kalman filter (EKF) into a distributed state estimation (DSE)
requires dividing the power system into several groups (subsystems). In each of these
groups, a local estimation is performed using the EKF algorithm based on the measure-
ments from that specific group. Following this stage, the entire system is integrated with
information from neighboring subsystems to determine the global estimation. The dis-
tributed estimation process involves applying the EKF algorithm in each subsystem for
local estimation (Figure 4). Subsequently, a global system is constructed that performs a cor-
rection based on the information from its boundaries, which allows for a global estimation
of the system.

Power system dynamics can be represented as a set of nonlinear equations, such as

xt+1 = f (xt, ωt)

zt = h(xt, δt),
(23)

In this context, xt represents the state vector, zt corresponds to the measurement vector,
ωt is the white Gaussian noise vector, δt stands for the measurement noise vector at time
instance t, and f (.) and h(.) are nonlinear functions in vector form that describe the system
and state equations. The dimensions of these vectors are all 1× N, where N represents
the number of buses in the system. The state of each bus at time t, denoted as xi,t, can be
defined by its attributes, such as vi,t or θi,t. Here, vi,t and θi,t represent the voltage and
phase angle at bus i during time t, respectively. Additionally, the measurements at bus i
during time t, represented as zi,t, can encompass attributes like pi,t, qi,t, vi,t, and θi,t. In this
context, pi,t and qi,t refer to real and reactive power injections, respectively. The objective
of the state-estimation process here is to estimate the vector xt+1 based on the measurement
vector zt. As explained in [6], traditionally, state estimation has been addressed using
dynamic complex power flow equations, such as
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pi,t =
N

∑
j=1
|vi,t|

∣∣vj,t
∣∣∣∣Yij

∣∣ cos
(
θi,t − θj,t − ∆ij

)
qi,t =

N

∑
j=1
|vi,t|

∣∣vj,t
∣∣∣∣Yij

∣∣ sin
(
θi,t − θj,t − ∆ij

)
pij,t = |vi,t|

∣∣vj,t
∣∣∣∣Yij

∣∣ cos
(
θi,t − θj,t − ∆ij

)
− Gi j|vi,t|2

qij,t = |vi,t|
∣∣vj,t

∣∣∣∣Yij
∣∣ sin

(
θi,t − θj,t − ∆ij

)
− (Bi j− bi j)|vi,t|2

(24)

4. Simulation and Results of Application of EKF

The assessment of the EKF algorithm’s efficiency using the nodal redundancy method
was conducted on a MacBook Laptop (Apple’s M1 chip, featuring an eight-core GPU, 8 GB
of memory, and 5 GHz, with an 866 Mbps maximum physical data rate). Simulations were
performed on the IEEE 118-bus system as proposed in [24,31]. Test cases were prepared
using an observable heuristic approach. The MATPOWER package was implemented to
perform state estimation using the MATLAB platform. The processing time and the mean
square error (MSE) of the estimated states shown in Equation (25) were used to evaluate
the efficiency of the partitioning method applied to distributed estimation.

MSE =
n

∑
1

(xi − x̂i)
2

n
(25)

For measurement errors, a random component was added to the load flow. In all
simulations, it was assumed that the error was independent and followed an identically
distributed Gaussian distribution (iid). In Table 1, the variance values of the measure-
ment systems are presented, and Table 2 provides the type and number of measurements.
Additionally, Figure 7 displays the schematic of the IEEE118 system.

Figure 7. The IEEE 118-bus power system.
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Table 1. Variance of the measurement systems.

Type of Measure Variable Values

Voltage σ2
V 0.01

Power injection Pi + jQi σ2
I 0.015

Power flow Pij + jQij σ2
F 0.02

Table 2. Number of measurements in the IEEE118 bus system.

V Injection P Flow P Injection P Flow P Number of Measurements

59 56 134 56 134 439

4.1. Nodal Grouping Process

In the simulation process, the IEEE 118-bus system needed to be configured to en-
able the application of distributed estimation. This allowed for an analysis of the EKF
filter within the process. To partition the system, the concept of nodal redundancy was
employed, as described in [24]. This approach involved the use of a BN consisting of seven
measurements. Table 3 provides details regarding the characteristics of the subsystems
based on this approach. The Figure 8 shows the distribution of nodes and measurements in
each subsystem, as well as the value of localized redundancy.

Table 3. Partitioning of the IEEE118 bus system.

Area 1 Area 2 Area 3 Area 4 Area 5

Nodal Bus 8 49 70 80 100
Bus # 27 37 17 12 25

Measurement # 101 138 64 55 81

Figure 8. Subdivision of the IEEE118 bus system.

Having determined the physical conditioning of the system, for our simulation pro-
cess, we established five subsystems, as shown in Figure 9. In each subsystem, we applied
the iterative Kalman algorithm (IKF) for distributed estimation. Subsequently, the sys-
tem was reconstructed to exchange information between the subsystems through their
physical links.

In the Algorithm 1, a parallel process was employed to assess the a priori state and
the gain matrix. During the update stage, information was exchanged across boundaries,
facilitating the determination of the EPS state vector.

In the evaluation of the EKF applied to nodal redundancy, two scenarios were de-
veloped by considering the variation of injected powers in the system for which power
flow data were available. To analyze the performance, a centralized weighted least squares
(WLS) estimator, centralized EKF, and distributed estimator under the Kalman filter model
were applied. The results are presented below.
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Figure 9. Partition of the IEEE118 bus system.

Algorithm 1 EKF distributed algorithm

Subsystem(Areai)
function[X, GA, dY] = fEKF(XoA, arK, covam, W, rep, Dmed, Mi,

select area Areai ⊂ System− IEEE118
for t = 1, areas

XoA ← {t : 1 = nbarras}
cdemQK(i)← for i = 1, nbus
cdemPK(i)← for i = 1, nbus
dQ(matViV)← for iV = 1, length(matV)
dP(matViV)← for iV = 1, length(matV)

cdemQK(i)← for i = 1, nbarras

while ek > 0.05 && iter < 30
[HX, Ji, varVT] = f unHX(Mi, matY, xp)
hx ← evaluacion(nbA, dVT, HX)
HJ ← f unHJT(Ji, xp, Mi, matY, varVT)
GanKi ← Pke · HT

J (HJ · Pke · HT
J + cm)−1 for i = 1, areas← PROFIT MATRIX

deltaX ← GanK · (Dm − hx)
X(:, iter) = Xp + GanK ∗ (Dm − hx −HJ · (Xp− Xpos(:, iter− 1)))

return xp, GA, dY

PRIORI(XoA)
dY ← (HT

JT ·W ·HT
JT)
−1W · (Dm − hx)

GA← (HT
JT ·W ·HJT)

return X← State vector

4.2. Low Variation of Pi + jQi in the Injected Power Balance

In a preliminary scenario, a variation of 5% was considered as an input parameter
in the power balance between an operation state T and T + t. Table 4 presents the values
of the minimum mean square error (MSE) within the estimation process applied to the
IEEE118 system.
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Table 4. Mean squared error (MSE) min J(x) = ∑n
1

(xi−x̂i)
2

n .

Iteration EKF Distributed EKF WLS

0 0 0 0
1 5542.89 278.73 134,696.61
2 173.27 79.32 44.95
3 71.57 48.77 41.57
4 48.56 43.02 41.7
5 43.20 41.87 41.57
6 41.95 41.87 41.57

In Figure 10, the behavior of the voltage phasors applied in the proposed analysis sce-
nario is depicted. This was achieved through the application of three estimation processes:
two centralized methods, namely, WLS and EKF, and the third one through a distributed
process using the nodal partition method, which leverages the mathematical model of the
EKF estimator. The figure also presents the actual voltage phasors of the system during its
operation. The points determine the voltage Vi and its angle θi. It can be observed that the
concentration of the estimated state vector values exhibited a pseudo-symmetry, where no
significant variation between the methods was noted. This was due to the insignificance of
the power balance variation.

Figure 10. Voltage phasor: (a) WLS estimation, (b) EKF estimation, (c) distributed EKF estimation,
and (d) real value of the voltage phasor.
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Similarly, to undertake a sensitivity analysis among the estimation methods, the
estimated error in the system measurement set between real and estimated values in the
estimation process was considered. This relationship is presented in Figure 11, where a
similarity in concentration can be observed. However, in the distributed method, a higher
concentration of error was observed.

In Table 5, the time used within the estimation process is presented, comparing the
centralized and distributed methods. This demonstrates the computational burden that the
process utilized for the applied methods.

Table 5. Computational processing time [min].

WLS Estimator EKF Estimator Distributed Estimator

11.61 14.30 20.03

Figure 11. Error relationship between the actual measurement and the estimated measurement.

In Figure 12, the voltage values at each of the 118 buses of the IEEE118 system are
presented. In all estimation processes, the resulting voltages closely approximated the real
values, which is a consequence of a slow change in the system dynamics between one
operating point and another.

Figure 12. Bus voltage in the IEEE118 system, with low variation.

4.3. High Variation of Pi + jQi in the Injected Power Balance

In the following Figure 13, the behavior of the objective function of the applied
estimation methods is presented. Their convergence approximates a local solution of the
state vector.

In this second case, focusing on the power balance deviation, the performance of
both the centralized and distributed Kalman filters is analyzed. It was considered that the
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system exhibited a 10% variation between two operating points. The considerations for
this modeling are described as follows:

Under high variation in the power balance deviation of the system, a greater concen-
tration of measurement errors was observed, as depicted in Figure 14, compared with the
low-variation case. The difference in dispersion was notable, with it being lower in the
distributed estimator than in both the centralized EKF and WLS.

Figure 13. Analysis of the objective function under low variation.

Figure 14. Error relationship between the actual measurement and the estimated measurement
high variation.

In Figure 15, the voltage magnitudes at each bus of the system are depicted for both
centralized and distributed estimation processes. The estimated values closely tracked
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the real voltage value in both cases. However, the presence of an error could lead to
misinterpretations of the system’s state.

Figure 15. Bus voltage in the IEEE118 system, with high variation..

Table 6 presents the MSE results for each iteration. In the distributed estimation
process, convergence was achieved by iteration 4, whereas in the centralized EKF, conver-
gence occurred by iteration 9. However, in the distributed approach, although the result
was improved, it required a longer processing time, as reflected by the higher number of
iterations where the error decreased.

Table 6. Comparison of MSE between centralized EKF and distributed EKF.

Iteration EKF EKF Distributed

0 487.31 84.88
1 138.89 72.92
2 72.27 66.58
3 48.27 61.81
4 36.70 57.87
5 30.04 54.47
6 25.76 51.46
7 22.79 48.77
8 20.63 46.31
9 18.98 44.07
10 17.67 44.07
11 16.61 44.07
12 15.72 44.07
13 14.96 44.07
14 14.30 44.07
15 13.72 44.07
16 13.20 44.07

Similarly, comparing the scenario for centralized and distributed estimation through
the implementation of the Kalman filter in both processes, it can be inferred from Figure 16
that the distributed approach converged faster to a local optimum. However, within the
simulation, it also required a greater number of iterations to define another optimum that
improved the values of the state vector. This indicates the need for a longer convergence
time, rendering the application of the distributed EKF unable to provide a response within
the time frame required by the system operator for decision-making in the operation of the
electrical power system (EPS).
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Figure 16. Analysis of the objective function high variation.

5. Discussion

The importance of applying the Kalman filter as an estimator lies in its ability to model
systems beyond linearity, unlike the weighted least squares (WLS) estimator. However, it is
crucial to consider various factors in this process, such as the reliability of results, not only of
the state vector but also of the measurements represented by the set of nonlinear equations;
processing time, which provides insight into the system’s state; and the identification of
erroneous measurements that, due to communication processes, may skew the state vector
results and lead to misinterpretations.

This study aimed to determine the reliability of a nonlinear filter, such as the extended
Kalman filter (EKF), within a distributed estimator framework, employing the nodal
redundancy model. This model creates subsystems to apply the Kalman filter within
the process.

In the a priori stage of the filter process, the power balance variation between two
operating points was considered as a starting point, which was then applied in the sub-
systems. Subsequently, in the a posteriori stage and during the reconstruction process,
information regarding the boundaries between subsystems was considered and involved a
set of measurements. During this stage, the model was iterated to determine the estimated
state vector, incorporating the control metric, namely, the mean squared error (MSE).

Following this developmental stage and based on the results obtained in simulated
cases, the application of another Bayesian filter described in the literature, such as the
unscented Kalman filter (UKF), will be explored. Additionally, the analysis within this
investigation will focus on evaluating its performance under the conditions utilized in
this article.

6. Conclusions

The study underscores the pivotal role of Kalman filtering in nonlinear system estima-
tion, highlighting its superiority over traditional techniques like weighted least squares
(WLS). This capability becomes critical in environments characterized by nonlinearity or
dynamic variations.

Emphasis is placed on meticulous consideration of several factors during the estima-
tion process. These factors encompass the robustness of outcomes, encompassing both state
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vector reliability and measurement fidelity in the context of nonlinear equations. Moreover,
meticulous identification of erroneous measurements, particularly in communication-prone
settings prone to transmission errors, assumes paramount importance.

The study focuses on a rigorous evaluation of the Extended Kalman Filter’s (EKF)
reliability within a distributed estimator framework leveraging the nodal redundancy
model. This evaluation transcends mere state vector accuracy, extending to the efficacy of
the entire estimation process, especially in complex or multi-variable scenarios.

The methodology employed is described, encompassing both a priori and a posteriori
stages of the filtering process. This entails considering power balance variation between
operational points, integrating information about subsystem boundaries, and utilizing
control metrics such as the mean squared error (MSE). These stages ensure a thorough
evaluation of the effectiveness and precision of the estimation process.

Looking ahead, the study sets forth a path to explore alternative Bayesian filters such
as the nonlinear Kalman Filter (UKF). This exploration seeks to compare and evaluate the
filter’s performance under conditions similar to those studied, potentially sparking new
insights and methodologies in nonlinear system estimation.

In future research, the study will investigate the performance of the UKF filter and
assess the influence of boundary information between subsystems. This analysis aims to
understand the effects and find an alternative that ensures optimal performance without
significantly increasing processing time.
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