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Abstract: Currently, the process of creating industrial installations is associated with digital tech-
nologies and must involve the stage of developing digital models. It is also necessary to combine
installations with different properties, functions, and operational principles into a single system. Some
tasks require the use of predictive modeling and the creation of “digital twins”. The main processes
during the fuel cell modeling involve electrochemical transformations as well as the movement of
heat and mass flows, including monitoring and control processes. Numerical methods are utilized in
addressing various challenges related to fuel cells, such as electrochemical modeling, collector design,
performance evaluation, electrode microstructure impact, thermal stress analysis, and the innovation
of structural components and materials. A digital model of the membrane-electrode unit for a solid
oxide fuel cell (SOFC) is presented in the article, incorporating factors like fluid dynamics, mass
transfer, and electrochemical and thermal effects within the cell structure. The mathematical model
encompasses equations for momentum, mass, mode, heat and charge transfer, and electrochemical
and reforming reactions. Experimental data validates the model, with a computational mesh of
55 million cells ensuring numerical stability and simulation capability. Detailed insights on chemical
flow distribution, temperature, current density, and more are unveiled. Through a numerical model,
the influence of various fuel types on SOFC efficiency was explored, highlighting the promising
performance of petrochemical production waste as a high-efficiency, low-reagent consumption fuel
with a superior fuel utilization factor. The recommended voltage range is 0.6–0.7 V, with operating
temperatures of 900–1300 K to reduce temperature stresses on the cell when using synthesis gas from
petrochemical waste. The molar ratio of supplied air to fuel is 6.74 when operating on synthesis
gas. With these parameters, the utilization rate of methane is 0.36, carbon monoxide CO is 0.4, and
hydrogen is 0.43, respectively. The molar ratio of water to synthesis gas is 2.0. These results provide
an opportunity to achieve electrical efficiency of the fuel cell of 49.8% and a thermal power of 54.6 W
when using synthesis gas as fuel. It was demonstrated that a high-temperature fuel cell can provide
consumers with heat and electricity using fuel from waste from petrochemical production.

Keywords: solid oxide fuel cell (SOFC); hydrogen energy; numerical simulation; ANSYS Fluent

1. Introduction

The process of creating industrial installations requires a close connection with digital
technologies and must involve the digital model’s creation. At the same time, “digital
production” is being developed. It involves an accurate and reliable simulation of an
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energy equipment operating cycle in a virtual environment, based on reliable performance
identification and the prediction of unknown parameters. This is a necessary stage in the
creation, simulation, and predictive analysis of combined energy generation systems.

The solid oxide fuel cell (SOFC) represents an innovative energy technology that is
both resource-efficient and promising [1]. However, carrying out experimental studies
under various operating conditions is often impractical due to technical and economic
constraints. It can be challenging to measure all flow characteristics, such as tempera-
ture, pressure, or flow velocity distribution within a cell using experimental approaches.
Consequently, the numerical modeling of SOFCs provides a viable alternative [2–4]. The
accurate modeling of SOFCs poses a significant challenge as it requires the simultaneous
calculation of equations related to mass, momentum, energy, charge, electron transfer, and
electrochemistry at the interfaces of liquid, solid, and porous media. To address this com-
plexity, sophisticated numerical modeling tasks can be effectively tackled using commercial
software packages [5,6].

Computational fluid dynamics (CFD) is known as one of the most powerful tools
for calculating the performance of new apparatus and installations. CFD allows for the
visualization of flow field characteristics, thereby avoiding expensive experiments. The
scientific literature describes the numerous advantages of implementing CFD techniques,
such as the rapid assessment of geometric changes compared to laboratory tests, reduction
of scaling problems, ability to study phenomena occurring under extreme conditions, and
analysis of the underlying cause rather than just the effects [7–13].

There are several studies that have been carried out using the additional ANSYS Fluent
SOFC module [14–17]. In this module, the electrolyte is represented as a pair of imaginary
walls, called the “electrolyte surface”, through which the movement of ions and electrons
is simulated. The SOFC module provides the user with a varied choice of fuel options and
allows the simulation of electrochemical processes and polarization inside the cell. The use
of an additional SOFC module is convenient because the electrochemical model is included
in the built-in libraries and there is no need to develop a numerical code to take into account
electrochemical effects. ANSYS Fluent is capable of solving mass, momentum, and energy
equations along cells. Electrochemical processes and electrode microstructure cannot be
directly modeled through ANSYS Fluent, requiring the development of custom functions.

Over the past few years, research attention has been focused on the design and
optimization of manifolds to ensure uniform flow distribution at the inlet of the fuel and
air passages. Uniform inlet flow distribution improves heat transfer and reduces pressure
loss along the flow channels. This results in lower fuel consumption, less vibration and
noise, and reduced corrosion caused by flow irregularities [18,19].

Electrode microstructure has a significant impact on SOFC performance since losses
can be directly related to the morphological properties of the microstructure. Thermal
stresses within the cell are caused by microstructural defects and a mismatch in the coeffi-
cient of thermal expansion between the microstructure of the anode and cathode [20].

Another challenge in designing and extending the service life of SOFCs is the study of
thermal stress. This is caused by a mismatch in the coefficient of thermal expansion between
different components. Thermal stress can cause SOFC thermomechanical failure. Operating
the cell at high temperatures, along with startup and shutdown cycles, further increases
the effects of thermal stress. The analysis of heat transfer within a cell is considered
the most important task in the study of high-temperature SOFCs. As a result of the
analysis, temperature distributions are obtained, with the help of which thermal stresses
are calculated [21,22].

Assessing the morphological properties of porous electrodes is important when mod-
eling SOFCs. Many physicochemical properties at the micro level are difficult to study
experimentally. A reverse optimization goal can be set here. In this process, the unknown
parameters of the model are calculated in such a way as to minimize the difference between
the results of the direct formulation of the problem and real experimental data. COMSOL
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Multiphysics is an effective software package for implementing inverse solutions due to its
ability to perform microstructural analysis [23].

The introduction of new devices and installations requires the use of numerical mod-
eling methods, and software packages help to quickly carry out research on new designs.
In addition, innovative designs generally have unusual geometries that cannot be easily
modeled using internal tools [24,25].

For new designs, it is recommended to conduct full stack simulations to study mass
transfer and thermal stresses. In this case, calculations should be carried out both when
operating in stationary and transient modes [26].

Thus, the problems solved by numerical methods include electrochemical process mod-
eling, collector design, performance modeling, the influence of electrode microstructure,
thermal stress analysis, and the development of new SOFC structural elements [27–30].

Most researchers make many assumptions when modeling the influence of various
parameters on the flow process in a fuel cell. Electrochemical reactions are often ignored.
There are few studies in the literature regarding the optimization of a variety of SOFC
configurations and the consideration of all electrochemistry, heat transfer, and mass transfer
in porous media simultaneously [31]. Such a complex problem must be solved numerically
when developing the new technical solutions and design features of the fuel cell, as well
as when hybridizing the process with other power units. It is also important to conduct
experimental verification.

Most SOFC numerical modeling studies are aimed at finding ways to improve fuel
cell performance. In [32], a 3D SOFC model with an active area of 16 cm2 was developed to
investigate various parameters affecting performance. It is found that SOFC performance
improves with increasing operating pressure due to the partial pressure and diffusivity
of the reactant gases, which leads to a decrease in mass transfer resistance. Operating
temperature improves the performance of the fuel cell. Moreover, performance depends on
fuel consumption and does not depend on oxygen consumption.

In one study [33], using the example of a three-dimensional model for an SOFC on an
anode support, it was shown that significant temperature gradients exist along the length
of the element. The maximum temperature value for cross-flow is in the area of the element
outlet. The distribution of current density is uneven, and the maximum current density is
located at the interfaces between channels, ribs, and electrodes. Maximum current density
results in a large excess potential and heat source in the electrodes, which negatively affects
the overall performance and life of the fuel cells.

In [28], a 3D model was developed to elucidate the internal thermal conditions and
heat transfer mechanism of a 1 kW flat solid oxide fuel cell unit. It has been shown that the
change in internal temperature depends on the airflow, the heating of the incoming gas
through the gas manifolds, and the gas temperature entering each repeating unit.

Research [15] showed that increasing the porosity of the anode layers leads to an
increase in cell performance (up to 15%), higher fuel content (up to 8%), and a more
uniform distribution of fuel in the electrode.

In another study [34], a simulation of a single-cell SOFC battery of direct internal
reforming was carried out, in which the effect of cell geometry on the rate of reforming
reaction inside the fuel cell was studied.

There are several comprehensive reviews on the results of solid oxide fuel cell numeri-
cal modeling related to the topic of direct internal reforming [35], mathematical modeling
of SOFC methods [36], and hybrid energy systems with SOFC [37].

When analyzing publication activity from 2021 to 2024, it was revealed that the
interest of researchers modeling SOFCs is aimed at studying the operation of a fuel cell
using various types of organic and inorganic fuels, biofuels, and various agricultural and
industrial wastes [12,14,16,27,38,39].

Moreover, one urgent task is to predict the operating parameters of high-temperature
SOFC based on the numerical modeling of electrochemical and heat and mass transfer
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processes depending on the composition of the gas fuel mixture for its effective utilization
with high-performance indicators.

2. Model Description

Digital modeling was carried out on a personal computer with an Intel Xeon Gold
processor, 512 GB of RAM and a 1 TB SSD drive for more accurate and faster mathematical
modeling.

The calculations were performed using the Ansys 2020 R2 software system designed
for finite element analysis.

The geometric model of the stack is built in accordance with the specification. The
model in this study is based on anode-supported SOFC developed by Ningbo SOFCMAN,
China. Flows enter/exit the fuel cell stack through gas inlets/outlets (manifolds). Each fuel
cell unit consists of an electrolyte and porous electrodes with a system of gas distribution
channels and interconnections. Thus, for a 30-element cell, there are 900 repeating blocks.

Hydrogen, methane/hydrogen (CH4 and H2), and a mixture of methane, hydrogen,
water, carbon monoxide, and carbon dioxide, which are a product of the conversion of
oil refining waste, were modeled as fuel. Inlet conditions, namely, gas flow parameters,
cell geometry properties, and specified settings for creating a 3D model, are presented in
Tables 1 and 2.

Table 1. Characteristics of SOFC module parameters.

Name Characteristics

Relaxation coefficient 0.3

Total system voltage 0.1–1.1 V

Electrolyte thickness 1.5 × 10−5 m

Electrolyte resistivity 0.3 Ohm·m

Constant exchange current densities Anode 5300 A/m2

Cathode 2300 A/m2

Reference mole fraction values
H2 0.5

H2O 0.5
O2 0.5

Mass flow per 1 cell Anode 1.45 × 10−6 kg/s
Cathode 2.83 × 10−5 kg/s

Temperature Anode 998 K
Cathode 998 K

Substances: hydrogen fuel Anode
H2 0.97 mol%

H2O 0.03 mol%
Cathode O2 0.21 mol%

Substances: methane Anode
CH4 0.4 mol%
H2O 0.6 mol%

Cathode O2 0.21 mol%

Substances: synthesis gas Anode

CH4 0.002 mol%
H2 0.594 mol%

H2O 0.206 mol%
CO 0.163 mol%
CO2 0.035 mol%

Cathode O2 0.21 mol%

A mesh with tetrahedral cells was created in the Ansys 2020 R2 Workbench software
package (Figure 1). The number of cells was 55 million. The mesh quality was 0.94. The
computational grid was constructed using mathematical equations of mass and charge
conservation, matter transfer, heat transfer, and ion and electronic charge balance.
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Table 2. Materials and geometry characteristics of the SOFC model.

Name Material Characteristics Value

Anode YSZ + NiO

Density 5900 kg/m3

Specific heat 410 J/(kg·K)
Thermal conductivity 6.23 W/(m·K)

Tortuosity 3
Porosity 0.3

Permeability 1 × 10−12

Electrical conductivity 333,330 S/m
Length 100 mm
Width 34 mm

Thickness 0.04 mm

Cathode LSCF + GDC

Density 6180 kg/m3

Specific heat 600 J/(kg·K)
Thermal conductivity 9.6 W/(m·K)

Tortuosity 3
Porosity 0.3

Permeability 1 × 10−12

Electrical conductivity 7937 S/m
Length 100 mm
Width 34 mm

Thickness 0.56 mm

Electrolyte 8YSZ

Density 5900 kg/m3

Specific heat 410 J/(kg·K)
Thermal conductivity 6.23 W/(m·K)

Length 100 mm
Width 34 mm

Thickness 0.02 mm

Current collector Steel

Density 7700 kg/m3

Specific heat 650 J/(kg·K)
Thermal conductivity 25 W/(m·K)
Electrical conductivity 1.5 × 107 S/m

Length 100 mm
Width 1 mm
Height 1.6 mm

Collector surface
Length 100 mm
Width 34 mm

Rib size between channels
Length 100 mm
Width 1 mm
Height 1.6 mm

Dimensions of one fuel/air channel
Length 100 mm
Width 1.4 mm
Height 1.4 mm
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condensation for a 3D model of an SOFC cell. Cell operating parameters are presented in Table 1.
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2.1. Model Assumptions and Simplifications

The inlet pressure is atmospheric; the flow is laminar; for carbon-containing fuels, only
steam reforming and carbon dioxide conversion are allowed; the operating temperature
range is 700–1000 ◦C; perfect seal; there is no leakage effect; heat loss to the environment
is based only on radiation; Joule heating is neglected in the model; work in a stationary
mode; chemical reactions occur in one stage.

The processes in the cell are a combination of substance transfer, heat exchange,
electron transfer, and electrochemical reactions.

The distribution of velocities and pressures in each cell, independent of time and space,
is determined using the momentum conservation equations (Navier–Stokes equations). The
processes of diffusion of chemical substances in laminar flow are described by Fick’s law.

When modeling gas flows in fluid zones, the laws of the conservation of mass, mo-
mentum, and energy of incompressible laminar flows are applied. For a finite volume dV,
the fundamental equations are applied under stationary conditions ∂⁄∂t = 0.

In the case of carbon-containing fuels such as synthesis gas containing methane or
carbon monoxide, the forward electrochemical conversion rate of CH4 is quite low. A rapid
vapor shift reaction is also observed at the SOFC operating temperature to form CO/H2 and
CO2/H2O, which reach equilibrium almost instantly. Thus, the electrochemical conversion
of CO is indirectly modeled by the additional electrochemical conversion of hydrogen and
includes the rate of the carbon monoxide conversion reaction.

The steam-reforming reaction of methane is endothermic, and the electrochemical
oxidation of hydrogen is an exothermic reaction. This results in a temperature gradient
within the stack. Therefore, the model must include the corresponding homogeneous gas
methane steam reforming and steam shift reactions.

In this work, a numerical model was developed based on the commercial software
package Ansys Fluent. The model simultaneously took into account thermophysical and
electrochemical effects to study the performance of SOFC operating on reformed synthesis
gas. The reactions of the steam reforming of methane, steam reforming of carbon monoxide,
and electrochemical reactions in the porous anode were also taken into account.

2.2. Mathematical Equations

For all chemical substances, mass is stored in liquid regions, and the composition
changes due to electrochemical reactions.

mi,in + ∑ kci, kvk = mi,out (1)

where mi,in—inlet mass flow of substances, kg/m3·s;

ci, k—stoichiometric coefficient of component i in reaction k;
vk—reaction k rate.

Mass Conservation Equation
∇(ερϑ) = m (2)

where ε—porosity;

∇—the Nabla operator;
ϑ—velocity, m/s;
m—mass of the substance, kg/s;
ρ—density, kg/m3.

The total consumption of substances consists of

m = mH2 + mO2 + mH2O (3)

where the flow rate of each component (i) is calculated as follows

mi = −(
Ja

2F
)Mi (4)
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where Mi—molar mass;

Ja—current density at the anode.

Due to the low Reynolds number and steady state, the conservation equation can be
written as:

∇(ερϑϑ) = −ε∇ρ +∇
[
εµ
(
∇ϑ +

(
∇ϑ)T

)]
+

µε2

kg
ϑ (5)

kg—gas phase permeability, m2;
M—gas viscosity, kg/m·s.

The equation for the transfer of substances inside SOFC has the following form

∇
(
−ρyi∑ n

j ̸=iDe f f , ij∇xj+ρϑyi

)
= mi (6)

where yi—mass fraction of the substance;

De f f , ij—effective diffusion coefficient between substances i and j, m2/s;
xj—mole fraction of substance j.

The energy conservation equation will take the form:

∇
(
ερcpϑT

)
= ∇

(
ke f f∇T

)
+ Qv (7)

where cp—specific heat capacity, J/kg·K;

ke f f —thermal conductivity coefficient, W/m·K;
Qv—heat flow, W/m3.

The transfer of both electrons and ions contributes to the electrical balance calculation.
The electronic charge arises in the electrodes and connections, while the ionic charge is
present only in the electrodes and the electrolyte melt.

According to Ohm’s law, the electronic charge balance is calculated as follows:
At the anode side:

∇(σa∇∅e) = −Ja AV (8)

At the cathode side:
∇(σc∇∅e) = −Jc AV (9)

According to Ohm’s law, the ionic charge balance is calculated as follows:
In electrolyte:

∇(σel∇∅i) = 0 (10)

At the anode side:
∇(σa∇∅i) = Ja AV (11)

At the cathode side:
∇(σc∇∅i) = Jc AV (12)

where ∅—exchange potential, i—ionic, e—electronic, el—electrolyte, V;

σa and σc—electrical conductivity of the anode and cathode, respectively, S/m;
Ja and Jc—volumetric current densities of the anode and cathode, respectively, A/m2;
AV—reaction area per unit volume, m2/m3.

The cell voltage is calculated from the following equation

Vяч = ЕN − ηOhm − ηact − ηconc (13)

where ЕN—Nernst voltage (open circuit voltage), V;

ηOhm, ηact, ηconc—ohmic, activation, and concentration overvoltage, respectively
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The value of the Nernst voltage is related to the gas composition, operating pressure,
operating temperature, etc., and is determined using the following equation

EN = −∆G
2F

+
RT
2F

ln(
PH2 × P0.5

O2

PH2O
) (14)

where T is temperature, K;

P—pressure, Pa;
R—gas constant, J/mol·K;
F—Faraday constant, Cul/mol;
∆G—Gibbs energy, J.

Activation voltage loss is calculated using the Butler–Volmer equation

J = J0

{
exp
(

azFact

RT

)
− exp

[
− (1 − a)zFact

RT

]}
(15)

where J—current density at the electrodes, A/m2;

a—charge transfer coefficient;
J0—represents the exchange current density, A/m2;
z—electrons number.

It is difficult to directly calculate the activation voltage loss according to the Butler–
Volmer equation in most cases. At high-activation polarization, the second term in the
Butler–Volmer equation will be much smaller compared to the first term and can be
eliminated. The resulting expression is the Tafel expression

ηact =
RT
azF

ln
(

j
j0

)
(16)

At low-activation polarization, the well-known linear current potential relation is obtained

ηact =
RT

zFj0
j (17)

Concentration polarization occurs when the fuel is consumed at the electrode–electrolyte
interface, and the gas concentration decreases at the reaction sites. Concentration polar-
ization becomes a significant loss at high current densities and low concentrations. The
main factors contributing to concentration polarization are the diffusion of gases through a
porous medium and the dissolution of reactants and products. For typical SOFC operating
conditions, diffusive transport will dominate, and convective transport can be neglected.
Molecular diffusion and Knudsen diffusion describe diffusive transport through a porous
electrode. Their contribution to diffusive transport is closely related to the microphysical
characteristics of the porous material (i.e., porosity, tortuosity, pore size, and permeability).

The concentration voltage loss is expressed as the following equation

ηconc = −RT
zF

ln
( yH2·XH2O

yH2O·XH2

)
(18)

where X—concentration at the inlet, y—concentration at the outlet.
Ohmic polarization occurs in the electrode materials (anode and cathode), intercon-

nections, and electrolytes. These losses represent the resistance to the flow of electrons in
the electrodes and ions in the electrolyte.

Ohmic voltage losses are described as follows:

ηOhm = ROhm × j (19)
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It is possible to model these losses over a wide temperature range using the Arrhe-
nius equation

ROhm(T) =
T

BOhm
exp
(

Eact

RT

)
(20)

where BOhm—electrical materials conductivity depending on temperature, S·K/m2;

Eact—activation energy, kJ/mol.

In the case of carbon-containing fuels such as synthesis gas containing methane or
carbon monoxide, there is a fairly low forward electrochemical conversion rate of CH4
and a rapid vapor shift reaction in the SOFC operating temperature to form CO/H2 and
CO2/H2O, which reach equilibrium almost instantly. Thus, the electrochemical conversion
of CO is indirectly modelled through the additional electrochemical conversion of hydrogen
and includes the rate of the carbon monoxide conversion reaction.

Since the methane steam reforming reaction is endothermic and the electrochemical
oxidation of hydrogen is an exothermic reaction, it is the main cause of the temperature
gradient within the stack. The model must include the corresponding homogeneous gas
methane steam reforming reactions and the steam shift reaction. The steam reforming
reaction is implemented as a direct volumetric gas reaction with a reaction rate of ϑCH4.

ϑ = k × pm
CH4

× pn
H2O × exp

(
−Eact

RT

)
(21)

where k—reaction rate constant;

m, n—experimental reaction orders for substances

The steam shift reaction rate ϑCO can be calculated as follows [31]:

ϑ = k1

(
pH2O pCO −

pH2 pCO2

k2

)
(22)

k1 = Aexp
(
−Eact

RT

)
(23)

where A—experimental pre-exponential factor;

k1—forward reaction rate constant;
k2—reverse reaction rate constant.

The Nernst potential in a gas mixture of equilibrium composition is equivalent for
each oxidation reaction considered.

VN = −∆RG(T, p0, {pi})
nel F

=
RT
4F

ln

(
panode

O2

pcathode
O2

)
(24)

As a consequence, the hydrogen oxidation reaction provides the same Nernst voltage
as the oxidation of carbon monoxide in a gas mixture at equilibrium.

VN = −
∆RGH2

0 (T)
zel

H2
F

= − RT
zel

H2
F

ln

(
pH2O·p0.5

0

pH2 ·p0.5
O2

)
(25)

VN = −∆RG(T, p0, {pi})
zel

COF
= − RT

zel
COF

ln

(
pCO2 ·p0.5

0

pCO·p0.5
O2

)
(26)

3. Results

The current density versus voltage dependence of the numerical model showed
acceptable accuracy with the data obtained from the manufacturer, as shown in Figure 2.
The correlation coefficient is 0.998.
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Figure 2. Current–voltage characteristics for hydrogen fuel based on the results of experimental data
and numerical simulation. 1—Results from the experimental model. 2—Digital model results.

The results of the numerical modeling of electrochemical and heat-mass transfer
processes in SOFCs make it possible to predict the influence of initial parameters, such as
fuel composition, consumption, and the temperature of the fuel, air, and water (steam) on
technical characteristics for more efficient electricity generation. Hydrogen was considered
as the reference fuel for the fuel cell. Methane is also the base fuel for high-temperature
solid oxide fuel cells due to its ability to reform within the fuel cell. The synthesis gas used
for calculations is a product of reformed fuel gas from oil refineries after desulfurization.
The composition of the synthesis gas is presented in Table 2.

For three types of fuel (hydrogen, methane, synthesis gas), current–voltage and watt–
ampere characteristics were obtained (Figure 3).
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Figure 3. Current–voltage and watt–ampere curves of various SOFC fuels. Power density:
hydrogen—1, methane—2, synthesis gas—3. Current density: hydrogen—4, methane—5, synthesis
gas—6.

The maximum power density can be obtained when operating on hydrogen fuel.
Synthesis gas contains a large amount of hydrogen in its composition and shows a high
power density comparable to methane.

An analysis of the thermodynamic and electrical characteristics of SOFC operation
on synthesis gas in comparison with hydrogen fuel, as a reference, was carried out. To
simulate the SOFC operation in various modes, characteristics such as cell voltage, reagent
supply rate, and fuel and air inlet temperatures were sequentially changed.
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3.1. The Influence of the Supplied Reagents Temperature on the Electrical Characteristics of the
Fuel Cell

As the temperature at the anode and cathode input increases, the current density
increases linearly (Figure 4). This is due to the fact that high temperature facilitates the
steam-reforming reaction of methane and increases the molar fractions of H2 and CO
(Figure 5). It must be emphasized that hydrogen and carbon monoxide are the main
reagents that produce electric current.
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Figure 4. Dependence of the change in current density on temperature when operating on synthe-
sis gas.
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Figure 5. Dependence of changes in reagent utilization on temperature changes when operating on
synthesis gas. Hydrogen utilization rate—1. Carbon monoxide utilization rate—2.

3.2. The Influence of Voltage Applied to the Cell on the Thermodynamic Characteristics of SOFC

As the voltage decreases, the temperature at the anode and cathode outlet and the
maximum temperature gradient increase for both synthesis gas (Figure 6) and hydrogen
(Figure 7). It should be noted that the operating temperatures of the fuel cell are in the range
of 900–1300 K. At the same time, it is undesirable to allow a high-temperature rise due
to the possible degradation of the fuel cell. Therefore, determining the operating voltage
based on a numerical simulation in which the temperature will not exceed permissible
limits is a primary task.
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Figure 6. Dependence of temperature change on voltage when operating on synthesis gas. Maximum
temperature—1, cathode outlet temperature—2, anode outlet temperature—3.
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Figure 7. Dependence of temperature change on voltage when operating on hydrogen fuel. Maximum
temperature—1, cathode outlet temperature—2, anode outlet temperature—3.

The inflection of the curves is noted at a voltage of 0.6–0.7 V. At this voltage, the tempera-
ture difference for the synthesis gas is 70 K from the anode outlet and 117 K from the cathode
outlet. When operating on hydrogen, the temperature difference is 27 K from the anode outlet
and 112 K from the cathode outlet. The maximum temperature gradient at these voltages for
synthesis gas is 139 K; for hydrogen, it is 150 K. This is due to the thermodynamic features of
the reactions. The reactions of hydrogen oxidation and steam reforming of carbon dioxide are
exothermic. Steam methane reforming is an endothermic reaction. Therefore, the observed
temperature gradient is lower for synthesis gas than for hydrogen fuel. The temperature
gradient magnitude is important in understanding the amount of useful heat, which can be
produced using SOFC operations. Useful heat is a product of a fuel cell, which can be used
for heating needs when operating in the mini-thermal power station mode.

The temperature distribution during SOFC operation along the cell for synthesis gas
and hydrogen is shown in Figure 8a,b, respectively. It can be noted that if synthesis gas is
used as a fuel, several simultaneous reactions with multidirectional thermal effects occur
and the temperature distribution along the cell is complex (Figure 8a). When pure hydrogen
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is supplied, a rise in temperature is observed almost immediately after the fuel enters the
cell (Figure 8a).
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Figure 8. Temperature distribution for synthesis gas (a); for hydrogen fuel (b) at 0.6 V. The input
temperature is 998 K.

3.3. The Influence of Fuel Supply Rate on the Electrical and Thermodynamic Characteristics
of SOFC

The rate of the reagent supply has a significant impact on the operating parameters of
the electrochemical cell. Thus, with a decrease in airflow, an increase in the outlet temperature
from the anode and cathode, as well as the maximum temperature difference across the cell,
is observed (Figure 9). This is because insufficient air supply can lead to a high-temperature
gradient. Therefore, the ratio of air to fuel must be selected in such a way as not to cause
thermal stresses along the cell, while ensuring a sufficient oxygen utilization rate. According
to the calculation results, the optimal molar ratio of air and fuel for synthesis gas was 6.74.

Energies 2024, 17, x FOR PEER REVIEW 14 of 23 
 

 

3.3. The Influence of Fuel Supply Rate on the Electrical and Thermodynamic Characteristics  
of SOFC 

The rate of the reagent supply has a significant impact on the operating parameters of the 
electrochemical cell. Thus, with a decrease in airflow, an increase in the outlet temperature 
from the anode and cathode, as well as the maximum temperature difference across the cell, 
is observed (Figure 9). This is because insufficient air supply can lead to a high-temperature 
gradient. Therefore, the ratio of air to fuel must be selected in such a way as not to cause ther-
mal stresses along the cell, while ensuring a sufficient oxygen utilization rate. According to the 
calculation results, the optimal molar ratio of air and fuel for synthesis gas was 6.74. 

 
Figure 9. Dependence of the outlet temperature of gases and the temperature gradient along the cell 
on the flow rate of air supplied to the cathode. Maximum temperature—1, cathode outlet tempera-
ture—2, anode outlet temperature—3. 

In contrast to SOFC operating on hydrogen (Figure 10), this study shows that the reagent 
utilization coefficient decreases slightly with an increasing synthesis gas supply rate (Figures 
11 and 12). This is due to the fact that high gas velocity inhibits the increase in the molar frac-
tions of H2 and CO in the steam methane reforming reaction according to Le Chatelier’s prin-
ciple. For SOFCs running on hydrogen, a high gas supply rate makes it possible to maintain a 
high molar fraction of the fuel, which would otherwise decrease along the channel due to the 
electrochemical reaction. 

 
Figure 10. Dependence of changes in reagent utilization when operating on hydrogen fuel on the 
feed rate. Fuel utilization—1. Air utilization—2. 

975

1025

1075

1125

1175

1225

1275

1325

1375

0E+00 1E-05 2E-05 3E-05 4E-05 5E-05 6E-05

Te
m

pe
ra

tu
re

, K

Air consumption, kg/s

1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0E+00 1E-06 2E-06 3E-06 4E-06

Re
ag

en
t u

til
iz

at
io

n,
 x

10
0%

Fuel consumption, kg/s

1

2

2 
3 

Figure 9. Dependence of the outlet temperature of gases and the temperature gradient along the
cell on the flow rate of air supplied to the cathode. Maximum temperature—1, cathode outlet
temperature—2, anode outlet temperature—3.

In contrast to SOFC operating on hydrogen (Figure 10), this study shows that the
reagent utilization coefficient decreases slightly with an increasing synthesis gas supply
rate (Figures 11 and 12). This is due to the fact that high gas velocity inhibits the increase in
the molar fractions of H2 and CO in the steam methane reforming reaction according to
Le Chatelier’s principle. For SOFCs running on hydrogen, a high gas supply rate makes
it possible to maintain a high molar fraction of the fuel, which would otherwise decrease
along the channel due to the electrochemical reaction.
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Figure 10. Dependence of changes in reagent utilization when operating on hydrogen fuel on the
feed rate. Fuel utilization—1. Air utilization—2.
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Figure 11. Dependence of changes in reagent utilization when operating on synthesis gas on the fuel
supply rate. Hydrogen utilization rate—1, methane utilization rate—2, oxygen utilization rate—3,
carbon monoxide utilization rate—4.

Thus, high gas velocity makes it possible to achieve high electrical power for SOFCs
when operating on hydrogen but slightly reduces the electrical power of SOFCs when
operating on hydrocarbon fuels. However, as fuel consumption increases, the current
density increases. The increase in current density when operating on hydrogen is greater
than for synthesis gas (Figure 13).
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Figure 12. Dependence of changes in carbon dioxide formation when operating on synthesis gas on
the fuel supply rate.
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Figure 13. Dependence of changes in SOFC current density on different types of fuel on consumption.
Нydrogen—1, synthesis gas—2.

As the reagent utilization rate increases, the current density and specific power increase
(Figure 14). For synthesis gas, the maximum power density is achieved with a utilization
coefficient of hydrogen—0.43, methane—0.36, carbon monoxide—0.4, and oxygen—0.11.
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Figure 14. Dependence of the change in power density on the utilization of reagents in the synthesis
gas supplied to the SOFC. Oxygen utilization rate—1, methane utilization rate—2, carbon monoxide
utilization rate—3, hydrogen utilization rate—4.
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The distribution of reagents along the cell when synthesis gas is supplied at a voltage
of 0.6 V is shown in Figures 15–21.

Energies 2024, 17, x FOR PEER REVIEW 17 of 23 
 

 

 
Figure 15. Distribution of reagents along the channels of the cell when operating on synthesis gas. 

Mass transfer in the fuel cell channels is presented in Figures 16–21. 
The current density distribution along the cell is shown in Figure 22. 

 
Figure 16. Oxygen distribution along the cathode channels. 

 
Figure 17. Distribution of CH4 along the channels and anode electrode. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60 70 80 90 100

M
ol

e 
fr

ac
tio

n 
of

 a
 su

bs
ta

nc
e,

 х
10

0%

Cell length, mm

Н2

О2

СО2
СН4

Н2О 

СО 

Figure 15. Distribution of reagents along the channels of the cell when operating on synthesis gas.

Energies 2024, 17, x FOR PEER REVIEW 17 of 23 
 

 

 
Figure 15. Distribution of reagents along the channels of the cell when operating on synthesis gas. 

Mass transfer in the fuel cell channels is presented in Figures 16–21. 
The current density distribution along the cell is shown in Figure 22. 

 
Figure 16. Oxygen distribution along the cathode channels. 

 
Figure 17. Distribution of CH4 along the channels and anode electrode. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60 70 80 90 100

M
ol

e 
fr

ac
tio

n 
of

 a
 su

bs
ta

nc
e,

 х
10

0%

Cell length, mm

Н2

О2

СО2
СН4

Н2О 

СО 

Figure 16. Oxygen distribution along the cathode channels.

Energies 2024, 17, x FOR PEER REVIEW 17 of 23 
 

 

 
Figure 15. Distribution of reagents along the channels of the cell when operating on synthesis gas. 

Mass transfer in the fuel cell channels is presented in Figures 16–21. 
The current density distribution along the cell is shown in Figure 22. 

 
Figure 16. Oxygen distribution along the cathode channels. 

 
Figure 17. Distribution of CH4 along the channels and anode electrode. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60 70 80 90 100

M
ol

e 
fr

ac
tio

n 
of

 a
 su

bs
ta

nc
e,

 х
10

0%

Cell length, mm

Н2

О2

СО2
СН4

Н2О 

СО 

Figure 17. Distribution of CH4 along the channels and anode electrode.
Energies 2024, 17, x FOR PEER REVIEW 18 of 23 
 

 

 
Figure 18. CO2 formation in the channels of the anode part. 

 
Figure 19. Distribution of CO across the channels and anode electrode. 

 
Figure 20. Distribution of H2 along the channels and anode electrode. 

 
Figure 21. Formation of H2O vapor in the channels and anode electrode. 

Figure 18. CO2 formation in the channels of the anode part.



Energies 2024, 17, 2452 17 of 22

Energies 2024, 17, x FOR PEER REVIEW 18 of 23 
 

 

 
Figure 18. CO2 formation in the channels of the anode part. 

 
Figure 19. Distribution of CO across the channels and anode electrode. 

 
Figure 20. Distribution of H2 along the channels and anode electrode. 

 
Figure 21. Formation of H2O vapor in the channels and anode electrode. 

Figure 19. Distribution of CO across the channels and anode electrode.

Energies 2024, 17, x FOR PEER REVIEW 18 of 23 
 

 

 
Figure 18. CO2 formation in the channels of the anode part. 

 
Figure 19. Distribution of CO across the channels and anode electrode. 

 
Figure 20. Distribution of H2 along the channels and anode electrode. 

 
Figure 21. Formation of H2O vapor in the channels and anode electrode. 

Figure 20. Distribution of H2 along the channels and anode electrode.

Energies 2024, 17, x FOR PEER REVIEW 18 of 23 
 

 

 
Figure 18. CO2 formation in the channels of the anode part. 

 
Figure 19. Distribution of CO across the channels and anode electrode. 

 
Figure 20. Distribution of H2 along the channels and anode electrode. 

 
Figure 21. Formation of H2O vapor in the channels and anode electrode. Figure 21. Formation of H2O vapor in the channels and anode electrode.

Mass transfer in the fuel cell channels is presented in Figures 16–21.
The current density distribution along the cell is shown in Figure 22.
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high content of the substance; by contrast, green denotes low content. Methane and oxygen
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(Figures 16 and 17) are the main active reagents and enter the fuel cell, where they are
consumed to produce hydrogen, CO, CO2, and water. Moreover, methane is not completely
consumed and partially remains in the outlet gas mixture. Hydrogen is supplied to the
fuel mixture in fairly large quantities and is also formed in the steam reforming reaction.
Therefore, it is present in large quantities until the middle of the channel, and then it begins
to be consumed in the electrochemical reaction (Figure 20). Carbon monoxide also enters
the fuel mixture and reacts with oxygen to form carbon dioxide (Figure 19). Carbon dioxide
is practically absent from the initial fuel mixture but is formed in significant quantities
as a result of methane steam reforming reactions and the oxidation of carbon monoxide
(Figure 18). The presence of water at the fuel cell inlet is necessary for the methane steam
reforming reaction to occur. Therefore, it is consumed as the gas mixture moves in the
fuel cell. At the same time, the resulting hydrogen reacts with oxygen to form water. The
combination of these processes leads to a slight increase in the yield of water vapor from
the fuel cell (Figure 21). Thus, simultaneously occurring chemical reactions lead to the
emergence of an electric current with an increase in charge density from input to outlet and
the dark blue color changes to light blue (Figure 22).

The fuel utilization rate is one of the main factors affecting the dynamic performance
and service life of SOFC. The electrical efficiency of the cell is increased by more than 25%
by changing fuel consumption from 40% to 90%. Such sharp changes are associated with
the strong dependence of efficiency and fuel utilization on the inlet fuel flow rate. It can
be seen that increasing fuel use significantly affects the efficiency of fuel cells (Figure 23).
However, in practice, fuel cells operating at high fuel utilization rates (>95%) suffer from
rapid reductions in current density and efficiency [40]. Therefore, despite the increase in
efficiency, the fuel utilization rate should be maintained within an acceptable range from
0.7 to 0.9 to prevent fuel depletion, sudden voltage rise, and associated irreversible damage,
as recommended by manufacturers [41].
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Figure 23. Dependence of electrical efficiency on fuel utilization rate.

The results of SOFC operation on various types of fuel, obtained using a numerical
simulation, are summarized in Table 3.

The results of the study show that the highest electrical efficiency can be obtained
when operating SOFCs on hydrogen. Synthesis gas from industrial waste obtained through
reforming also shows good results in terms of productivity, fuel consumption, and reagent
utilization rate due to its high content of hydrogen, methane, and carbon monoxide. The
steam-to-methane ratio is 2.5 and is within the range (2.0–3.0) reported in the literature at
which carbon deposition does not occur. In the case of using synthesis gas, additional water
is formed in the reaction of hydrogen with oxygen, which can also be spent on methane
reforming. Therefore, the required steam-to-methane ratio is less, specifically, 2.0.
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Table 3. Calculated efficiency parameters for SOFC operation on various types of fuel.

Parameter Hydrogen Methane Synthesis Gas

Electrical efficiency,% 64.2 55 49.8

Fuel consumption per 1 W, mol/h 0.0003 0.024 0.03

Molar ratio of water and fuel - 2.5 2

Air to fuel mole ratio 1.24 10 6.74

Reagent utilization rate 0.66 Н2
0.68 О2

0.71 CН4
0.3 О2

0.36 CН4
0.4 CО
0.43 Н2
0.11 О2

Temperature gradient in the channel, K (at 0.6 V) 150 131 139

Temperature gradient at the anode outlet, K (at 0.6 V) 27 56 70

Temperature gradient at the cathode outlet, K (at 0.6 V) 112 115 117

Thermal power, W 98.7 68.5 54.6

Net calorific value of fuel, MJ/kg 120.9 50 46

The heat generated by the fuel cell can be used to carry out a pre-reforming reaction or
to hybridize the cycle with other power units. The maximum temperature gradient can be
obtained at the outlet of cathode gases when operating on synthesis gas. However, the total
thermal power of the cell is higher for hydrogen fuel because its calorific value exceeds that
of other fuels. The temperature difference along the channel is also highest for hydrogen
fuel and is intermediate for synthesis gas. High-temperature differences along the channel
increase equipment degradation.

4. Conclusions

A digital model of a high-temperature solid oxide fuel cell has been developed based
on the commercial Ansys Fluent 2020 R2 software package. The developed model allows
for the simultaneous calculation of hydrodynamic, electrochemical, and heat and mass
transfer processes in a fuel cell.

The calculation results were verified using the developed digital model with the
performance characteristics of a real solid oxide fuel cell. According to the results of digital
modeling, the predicted dependence of the current density on voltage for the constructed
3D model showed acceptable accuracy with data received from the manufacturer with a
correlation coefficient of 0.998.

Using the method of numerical modeling of SOFC, the influence of changes in initial
parameters, such as the composition of the fuel used, consumption and temperature of the
fuel, air, and water (steam) on the outlet characteristics of the fuel cell for more efficient
generation of electricity, was studied.

Fuel cell operating temperatures ranged from 900 to 1300 K. Such temperatures cor-
respond to a cell operating voltage of 0.6–0.7 V for all types of fuel and are necessary to
prevent fuel cell degradation. Chemical reaction thermodynamics allows one to obtain a
thermal outlet power of the cell of nearly 98.7 W for hydrogen, 68.5 W for methane, and
54.6 W for synthesis gas. This thermal power can be used for heating needs when operating
in the mini-CHPP mode.

Using mathematical modeling optimal flow rates of air and reagents were selected
that do not cause temperature stress along the cell while ensuring a sufficient coefficient of
fuel and oxygen utilization. Air must be supplied in some excess and be at a molar ratio of
1.24 when operating on hydrogen, 10 when operating on methane, and 6.74 when operating
on synthesis gas. Fuel utilization coefficients (hydrogen, methane, and carbon monoxide)
for all types of fuel are selected in such a way that the maximum specific power is achieved.
At the same time, the fuel utilization rate should be maintained within an acceptable range
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from 0.7 to 0.9 to prevent fuel depletion, sudden voltage rises, and associated irreversible
damage, as recommended by manufacturers. The utilization rate of hydrogen is 0.66 in
hydrogen fuel, methane 0.71 in natural gas, and the main combustible reagents in synthesis
gas are methane, CO, and hydrogen—0.36, 0.4, and 0.43, respectively.

The molar ratio of water is also important for ensuring the kinetics and thermody-
namics of chemical reactions and, according to the calculations performed, corresponds to
practical results: 2.5 for methane and 2.0 for synthesis gas.

The obtained results make it possible to achieve an electrical efficiency of the fuel cell,
which is 64.2% for hydrogen fuel, 55% for methane, and 49.8% for synthesis gas.

The effectiveness of the proposed digital model has been proven. The developed model
expands the possibilities of creating a decarbonized process for producing energy from
hydrogen-containing gas waste from deep oil refining for utilization in a high-temperature
fuel cell.

It was demonstrated that, for social facilities and small industries, such technology
can be an effective solution for obtaining electrical power of no more than 100 kW. A
high-temperature fuel cell can provide consumers with heat and electricity, as well as the
industrial sector with high-tech heat and steam when operating in the mini-CHPP mode.
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