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Abstract: This article proposes an improved model-free deadbeat predictive current control (MFCC)
method for permanent magnet synchronous motors (PMSMs) based on the ultralocal model and H∞
norm. Firstly, the traditional deadbeat predictive current control (DPCC) method is introduced and a
theoretical analysis is conducted on its sensitivity to parameters. Building upon this, the limitations
of model dependence and the limited robustness of the deadbeat predictive current control method
based on the extended state observer (ESO-DPCC) are theoretically analyzed. Furthermore, an
improved MFCC method based on the ultralocal model is proposed, and the influence of the observer
on MFCC is theoretically analyzed. This study combined the proposed method with the H∞ norm,
and the optimal coefficients of the observer were tuned to enhance the robustness and dynamic
performance of the current loop. Finally, the proposed algorithms were validated on a 400 W
PMSM platform.

Keywords: permanent magnet synchronous motors; deadbeat predictive current control; H∞ norm;
model free

1. Introduction
1.1. Motivation

Permanent magnet synchronous motors (PMSMs), benefiting from advantages such
as high power density, high efficiency, and high dynamic performance, have been widely
applied in fields such as robotics and electric vehicles [1,2]. The performance of PMSMs
in the above fields relies heavily on the design of high-performance controller algorithms.
Among these, the dual-closed-loop control strategy for speed and current, widely used in
motor control due to its excellent dynamic and steady-state performance, has continued to
be utilized [3]. However, due to the inner loop of the traditional dual-closed-loop control
structure, the performance of the current controller directly limits the control performance
of the outer speed loop, which is especially crucial for dynamic performance and robustness,
particularly in industrial applications such as robots [4]. Therefore, achieving fast and
robust current control performance for PMSMs is of great significance for their overall
high performance control. Additionally, compared to analog control, whose performance
is easily affected by environmental interference, digital control offers flexible controller
design and the ease of implementing various high-performance control algorithms. Hence,
in this study, digital control was used to design a current control algorithm for PMSMs.

1.2. Related Research

(1) PI Controller: Common current control strategies include the PI controller, model
predictive controller, and deadbeat predictive current controller (DPCC). Among them,
the traditional PI controller suffers from issues such as dq-axis cross-coupling and digital
delay. For the cross-coupling issue, common solutions include diagonalization decou-
pling, disturbance rejection decoupling, and inverse system decoupling techniques [5].
However, although the above algorithms can improve the performance of traditional PI
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current controllers, the complexity of the current controller is simultaneously increased.
Moreover, the improved PI current controller is still affected by digital delay, resulting in
limited bandwidth.

(2) Model Predictive Controller: To address the digital delay issue in the current loop,
the most common and effective solution is model predictive control (MPC). Common MPC
methods can be divided into finite control set model predictive control (FCS-MPC) [6,7]
and continuous control set model predictive control (CCS-MPC) [8]. FCS-MPC selects the
optimal voltage vector to achieve current control by designing a cost function to iterate
through inverter switch combinations. This algorithm offers faster dynamic performance
compared to PI control but suffers from inherent drawbacks such as high computational
complexity and torque ripple [9]. Introducing modulation strategies like space vector pulse
width modulation effectively suppresses torque ripple and fixes the switching frequency.
This approach is similar to CCS-MPC mentioned above; however, CCS-MPC still faces high
computational complexity, and both MPCs are sensitive to motor parameters, with control
performance strongly dependent on the accuracy of electromagnetic parameters [10].

(3) Deadbeat Predictive Current Controller: Compared to PI current control and MPCs,
DPCC has drawn considerable attention due to its advantages of a simple structure and fast
dynamic performance [11]. However, similar to MPCs, the model-driven nature of DPCC
also makes its response sensitive to models. In addition, a qualitative comparison of the
three controllers in terms of dynamic performance, robustness, and algorithm complexity
is shown in Table 1. To improve parameter robustness, there are two main approaches:
integrating online parameter identification algorithms and adding disturbance observers.

Table 1. Comparison table of different controllers.

PI Controller Model Predictive
Controller

Deadbeat Predictive
Current Controller

Fast Dynamic
Performance ⋆ ⋆⋆ ⋆⋆⋆

Strong Robustness ⋆⋆ ⋆ ⋆
Easy Implementation ⋆⋆ ⋆ ⋆⋆⋆

Regarding the first approach, its performance often depends on the convergence
accuracy and speed of the online parameter identification algorithm. Additionally, in cases
where initial parameter errors exist, severe current fluctuations in the DPCC current loop
due to errors can adversely affect the convergence performance of the online identification
algorithm, making the design and analysis of this approach more complex [12]. For
the second approach, the robust control of DPCC is achieved by designing observers to
observe and compensate for the aggregated disturbances caused by parameter errors [13,14].
Compared to online parameter identification, this approach still maintains the advantage
of a simple structure. Common observers include Internal Model Disturbance Observer,
Luenberger Observer, and Linear Extended Observer. ESO maintains current performance
in the absence of parameter errors, diminishes steady-state error, enhances robustness
in the presence of parameter errors, and ensures stable operation even with a twofold
increase in inductance error [15]. However, despite the advantages of observer-based
approaches, the design of controllers still requires motor models and parameters, and
the design process remains complex. Additionally, traditional pole-placement parameter
configuration methods have limited effectiveness in improving robustness.

To further decrease the reliance of current control algorithms on models and parame-
ters, the model-free theory based on intelligent algorithms like neural networks [16,17] and
the ultralocal model can be utilized for designing model-free controllers. The ultralocal
model, characterized by its simple structure and easy implementation, has been applied in
speed control and current control [18]. In speed control applications, the ultralocal model
can enhance the robustness of speed loop control and suppress torque ripple [19,20], while,
in current control applications, compared to ESO-DPCC, a model-free current controller
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only requires the tuning of two parameters: gain and disturbance, instead of four parame-
ters including resistance, inductance, flux linkage, and disturbance. The disturbance can
be estimated through an observer [21]. However, the initial values of controller coeffi-
cients are often set as the inverse of inductance, indicating that the design process still
cannot completely eliminate dependence on the parameter. Although the robustness of
the controller to inductance parameters can be improved through adaptive methods for
controller coefficients, this method requires additional signal injection, leading to additional
electromagnetic interference and high-frequency losses. Additionally, traditional observer
parameters are often simplified as overlapping poles, further limiting the robustness of
controllers to parameter variations [22].

1.3. Contributions and Organizations

The primary contributions of this article include (1) analyzing the impact of parameter
variations on multiple current controllers, (2) enhancing the dynamic performance of the
conventional controller based on the ultralocal model, (3) analyzing the influence of ESO
coefficients on controller robustness, and (4) proposing an improved ESO coefficient design
method for an ultralocal model-based current controller.

Furthermore, the structure of the subsequent sections of this article is organized as
follows. A brief introduction to the mathematical model of PMSMs and traditional DPCC
is provided in Section 2. Section 3 introduces traditional ESO-based DPCC and the MFCC.
Section 4 presents the optimal coefficients selection method for MFCC proposed in this
article, and experimental validation is described in Section 5. Finally, Section 6 concludes
this article.

2. PMSM Model and Traditional DPCC
2.1. Model of the PMSM

In the continuous domain, the voltage equation of the PMSM in the dq-axis can be
represented as follows:

udq = (Rs + jLmωe + Lm p)idq + jφmωe (1)

where udq represents dq-axis voltages, idq represents dq-axis currents, Rs is the resistance, Lm
is the inductance, ωe is the electrical angular speed, p is the differential operator, and φm is
permanent magnet flux. Based on the above voltage equation, the current controller can be
designed. However, in practical applications, the inherent delay of the control system will
affect performance. As shown in Figure 1, the update of PWM occurs at time k, and the
PWM sequence computed at time k needs to be loaded at time k + 1, with its corresponding
response sampled at time k + 2. Therefore, there exists an inherent delay of two cycles.
Taking this characteristic into account, the corresponding differential equation for PMSM
current is given as follows:

idq(k + 1) =
(

1 − RsTs

Lm
− jωeTs

)
idq(k) +

Ts

Lm
udq(k − 1)− j

ωe φmTs

Lm
(2)

where k designates the control interval and Ts is the control period.
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2.2. Traditional DPCC

The voltage model of the PMSM considering digital delay is provided above. Building
upon this foundation, the conventional DPCC can be formulated as follows:

udq(k) =
Lc

Ts
idq(k + 2)− Lc

Ts

(
1 − RsTs

Lc
− jωeTs

)
idq(k + 1) + jωe φc (3)

where Rs, Lc, and φc are the resistance, inductance, and permanent magnet flux of the
controller. To assess the control performance of DPCC, its closed-loop transfer function is
given as follows:

idq =
Lc
Lm

z2 + Lc
Lm

(1 − jωeTs)
2 − (1 − jωeTs)

2 idq(re f ) +

(
z−1 Ts

Lm
ω2

e Ts + j 2ωe Ts
Lm

)
z2 + Lc

Lm
(1 − jωeTs)

2 − (1 − jωeTs)
2 (φc − φm) (4)

It can be observed that when there is no parameter error in DPCC, it can achieve two-
cycle tracking of the reference signal with fast dynamic performance. However, due to its
dependence on several motor parameters during the controller design process, parameter
errors will affect its performance. Considering that the flux linkage, as shown in (4), does
not affect the robustness, the closed-loop pole trajectories of DPCC with different resistance
and inductance parameter errors are provided in Figure 2.
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It can be observed that when there is no parameter error (γR = Rc/Rm = 1), the
two closed-loop poles overlap at the origin, allowing the system to achieve deadbeat
performance. With low parameter error ratios (γR = 0.5, γR = 2), the pole positions slightly
deviate and exhibit minor movements with increasing speed, with negligible impact.
Even in extreme scenarios of almost impossible parameter error ratios (γR = 100), the
pole displacement range at rated speed remains within the unit circle, ensuring system
stability. Considering that under normal operating conditions, it is unlikely for the winding
resistance to vary by more than two times the normal value, the influence of resistance
parameters on traditional DPCC is minimal.

Regarding inductance parameters, the system achieves deadbeat performance when
there is no parameter error (γL = Lc/Lm = 1). Furthermore, even with twice the parameter
error, when the controller parameter is less than the actual inductance parameter (γL = 0.5),
the poles deviate from the origin but the system remains stable at rated speed, albeit with
affected dynamic performance. Conversely, when the controller parameter is greater than
the actual inductance parameter (γL = 2), the system poles are already at the critical stability
state at zero speed, and the system becomes unstable as the speed increases. It can be seen
that DPCC exhibits low robustness to parameters.

3. Introduction of the MFCC
3.1. Traditional ESO-DPCC

To address the sensitivity of DPCC to parameters, the most common approach is to
design an ESO to observe disturbances caused by parameter errors and compensate for
them. This aims to improve the robustness of traditional DPCC and reduce steady-state
errors. Traditional ESO-DPCC can be designed as follows:

udq(k) =
Lc

Ts
idq(ref) + (Rc −

Lc

Ts
− jωeLc)i

pre
dq (k + 1) + jωeψc + fdq(k + 1) (5)

where fdq(k + 1) represents the disturbance caused by parameter errors, idq(ref) is the current
reference, and ipre

dq is the current prediction. By comparing (3) and (5), it can be seen that
ESO-DPCC adds only one additional compensation term for disturbance to traditional
DPCC. Furthermore, in the prediction of the current value at time k + 1, ESO-DPCC also
considers the influence of disturbances. The ESO used to predict values at time k + 1 can be
rewritten as follows:

ipre
dq (k + 1) =(1 − jωeTs)idq(k) +

Ts

Lc
udq(k − 1)− Ts

Lc
fdq(k)− j

Tsωeψc

Lc
− β1e(k),

fdq(k + 1) = fdq(k)− β2e(k),

e(k) =idq(k)− ipre
dq (k).

(6)

where β1 and β2 are coefficients of the ESO and e is the current error. To analyze the control
performance of ESO-DPCC, the current closed-loop transfer function is also provided.
Substituting the predicted current value and disturbance value from (6) into (5) yields
the voltage vector reference. Subsequently, substituting it into (2) gives the relationship
between the current reference and sampled values. Finally, simplification yields the current
closed-loop transfer function of ESO-DPCC as follows:

idq

idq(ref)
=

Lc

Lm

z2 − (1 + β1)z +
Ts β2

Lc
+ β1

z4 + a1z3 + a2z2 + a3z
,

a1 =−β1 − 1,

a2 =
Tsβ2

Lm
+ β1 − β1(

Lc

Lm
− 1)(1 − jωeTs) + (

Lc

Lm
− 1)(1 − jωeTs)

2,

a3 =(
Lc

Lm
− 1)(1 − jωeTs)× (

Tsβ2

Lm
+ β1 − 1 + jωeTs).

(7)
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where a1, a2, and a3 are intermediate variables. For ease of analysis, it is common practice
to configure the two poles, p1 and p2, of the ESO such that they overlap within the unit
circle to ensure stability. In this case, the observer coefficients β1 and β2 can be expressed
as follows:

−1 < p1,2 < 1,
β1 = 2p1,2 − 1,

β2 = Lc
Ts

(
p2

1,2 − β1

)
.

(8)

where p1 and p2 are two poles of the observer. Considering that the flux linkage has no
effect on robustness and the influence of resistance is negligible, here, only the stability
of the system under different inductance errors and different speeds is analyzed. The
closed-loop pole trajectory of ESO-DPCC with p1,2 = 0.9 is shown in Figure 3.
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It can be observed that compared to the results shown in Figure 2 earlier, when the
inductance has an error of two times, ESO-DPCC can still ensure that all closed-loop poles
are located within the unit circle as the speed increases. However, it is worth noting that
the addition of ESO does not infinitely improve robustness. Despite configuring larger pole
positions for p1,2, when the inductance parameter error further increases to 3.3 times, the
poles deviate from the stable boundary at rated speed, and the system becomes unstable.
To further enhance the robustness of DPCC and reduce its dependence on motor models
and parameters, the following design of model-free DPCC based on the ultralocal model
was constructed.

3.2. Model-Free DPCC

(1) Ultralocal Model: For single-input single-output systems, the ultralocal model can
be used to describe any unknown complex mathematical model with inputs u and outputs
y as pvy = amu + φ. In this article, for ease of design and analysis, φ is rewritten as −amF,
and the ultralocal model can be rewritten as follows:

pvy = αmu − αmF (9)

where v is the differential order, u is the input, y is the output, p is the differentiation
operator, αm is the model gain coefficient, and φ = −amF represents the total unknown
disturbance in the model. Furthermore, based on (9), the current differential ultralocal
model can be designed as follows:

idq(k + 1) = idq(k) + αmTsudq(k − 1)− αmTsFdq(k) (10)
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where Fdq represents total disturbances. Comparing (2) and (10), it is easy to see that
the coefficient αm is essentially the reciprocal of Lm, and Fdq(k) = (jωe − Rm/Lm)idq(k) −
jωeψm/Lm. Furthermore, building on this, MFCC is formulated in the following sections.

(2) Design of MFCC: On the basis of the current differential ultralocal model given in
(10), considering the influence of speed, the predictive current controller can be designed
as follows:

idq(k + 1) = (1 − jωeTs)idq(k) + αmTsudq(k − 1)− αmTsFdq(k) (11)

Furthermore, building on this, MFCC can be formulated as follows:

udq(k) =
1

αcTs
[idq(re f )− (1 − jωeTs)i

pre
dq (k + 1)] + fdq(k + 1) (12)

where αc is gain in the controller. Similar to ESO-DPCC, the predicted current and distur-
bance terms at time k + 1 in MFCC are also observed using ESO. The ESO design in this
case is as follows:

ipre
dq (k + 1) =(1 − jωeTs)idq(k) + αcTsudq(k − 1)− αcTs fdq(k)− β1e(k),

fdq(k + 1) = fdq(k)− β2e(k),

e(k) =idq(k)− ipre
dq (k).

(13)

Thus, sampling the current at time k, predicting the current and disturbance at time
k + 1 using the ESO as shown in (13), and substituting them into the controller shown in
(12) yields the voltage vector at time k used to achieve deadbeat control. Furthermore,
to analyze the control performance of MFCC, the current closed-loop transfer function is
given as follows:

idq

idq(ref)
=

αm

αc

z2 − (1 + β1)z + αcTsβ2 + β1

z4 + a1z3 + a2z2 + a3z
,

a1 =−β1 − 1,

a2 =(
αm

αc
− 1)(1 − jωeTs)(1 − jωeTs − β1) + αmTsβ2 + β1,

a3 =(1 − αm

αc
)(1 − jωeTs)(1 − jωeTs − β1).

(14)

Correspondingly, the closed-loop pole trajectory of MFCC with p1,2 = 0.9 is shown in
Figure 4.
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As can be seen, two points of information can be obtained. First, as indicated by the
black pole positions, as analyzed above, when the controller coefficients match the ideal
model coefficients, the designed MFCC closed-loop poles overlap at the origin and are not
affected by changes in speed, proving that MFCC can achieve deadbeat control across the
entire speed range. Second, similar to ESO-DPCC, at γL = 2, as the speed increases, the
system poles move towards the boundary of the unit circle, until, at γL = 3.4, the system
poles move outside the unit circle.

4. H∞-Based Coefficient Design

The above analysis indicates that MFCC can enhance robustness without relying on
motor models and parameters. However, during the aforementioned design process, the
observer coefficients were simplified rather than being the optimal ones. To further improve
the robustness of MFCC, a parameter configuration method for MFCC based on H∞ norm
is proposed.

4.1. Influence Analysis of Coefficient on Robustness

Since configuring two observer gains β1 and β2 cannot arbitrarily set the poles, it is
necessary to optimize the selection of coefficients. Therefore, β1 and β2 are selected by
solving the optimization equation in this section.

To investigate the influence of observer pole selection on the system, in Figure 4, under
the condition of γL = 2 and running at rated speed, the distribution of MFCC closed-loop
system poles with different observer poles 0.5, 0.7, 0.9, and 0.95 is shown in Figure 5. The
blue dots in the figure represent the original operating conditions shown in Figure 4, where
the system remains stable. However, with the change in observer pole position under the
same operating conditions, the system poles also change accordingly. As shown by the red
and black poles, as the observer pole position decreases, the system bandwidth increases,
but the robustness decreases. When the observer pole is configured at 0.5, the system poles
move out of the unit stability circle, and the system becomes unstable. As indicated by the
green pole, as the observer pole increases to 0.95, system damping decreases and robustness
increases. From the above analysis, it can be concluded that the configuration of observer
poles significantly affects the bandwidth and robustness of the current loop. Therefore, it is
necessary to select the optimal observer pole position.
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4.2. Coefficient Design

Since the positions of closed-loop system poles are related to system stability and
damping, optimizing the closed-loop pole locations is essential. By selecting the observer
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gain, the maximum modulus of the closed-loop system poles can be minimized from the
origin. This optimization objective ensures that all closed-loop poles remain inside the unit
circle while reducing frequency amplification peaks. Additionally, ensuring the stability of
the observer allows for the calculation of the restricted range of observer gains as follows:

|1 + β1| < 2,
|β1 + β2αcTs| < 1.

(15)

Therefore, the optimization equation for selecting the observer gain is expressed
as follows:

min max(|pole( fclo)|),
s.t. |1 + β1| < 2, |β1 + β2αcTs| < 1,

max(|pole( fclo)|) < 1.
(16)

where fclo indicates the transfer function (14). According to (16), since it is difficult to obtain
an analytical solution for the modulus of the poles of fclo, offline traversal can be directly
performed within the feasible domain to obtain the optimal solution for (16). For a single-
input single-output system, its H∞ norm represents the maximum peak amplification in the
frequency domain. Therefore, in order to quantify the frequency amplification peak under
different observer gains, corresponding H∞ parameters are also provided as measures
of the amplification peak. Additionally, assuming that the maximum possible system
parameter errors are simultaneously present with a twice error in inductance, a 10 times
error in resistance, and a twice error in magnetic flux, based on the motor parameters
given in Section 5 and substituting them into (16) allows for the calculation of the effects of
different observer gains β1 and β2 on the H∞ norm and the maximum pole modulus. By
solving (16), the optimal parameter settings within the feasible domain can be determined
as P1. To compare the effects of different coefficients on system performance, Table 2
provides three sets of different coefficients.

Table 2. H∞ norm and maximum pole modulus under different coefficients.

β1 β2 H∞ Max(|pole(fclo)|)

P1 0.85 − 0.15 j 0.9 + 0.7 j 2.2257 0.9235
P2 0.85 − 0.15 j 0.15 + 0.2 j 2.1986 0.9913
P3 0.85 0.50625 3.518 0.9712

Where P1, P2, and P3 are three sets of coefficients. In Table 2, P1 provides the optimal
solution calculated based on (16), where the maximum pole modulus is the minimum value
within the feasible domain. P2 represents the optimal observer gains calculated for the H∞
norm within the feasible domain and P3 represents the gains calculated with the observer
poles fixed at 0.925. Comparing the parameters of P1 and P2, their H∞ norms are similar,
but there is a significant difference in the maximum pole modulus. To compare the system
responses under different pole modulus conditions, the bode plots of P1, P2, and P3 are
shown in Figure 6.

From Figure 6, it can be observed that when using the coefficients calculated from
optimization, the frequency range at low frequencies is higher than that of P2 and P3.
Additionally, since the infinity norm of P1 is greater than that of P2, its maximum peak
amplification in the frequency domain is slightly larger than that of P2. Therefore, theoreti-
cally, it is feasible to select observer coefficients by designing the maximum pole positions.
Furthermore, although increasing the observer coefficients can increase the stability margin
of the system, allowing the deadbeat controller to operate stably even when the inductance
error is doubled, at this point, the frequency response of the system exhibits uncontrollable
peaks at high frequencies. This will result in a significant overshoot and a longer transient
response in the current step response. However, compared to the traditional method of
overlapping poles, the poles configured via the H∞ norm can minimize peaks as much
as possible.
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As analyzed above, the proposed MFCC based on the ultralocal model and H∞ norm
can achieve high dynamic and robust control of the PMSM current loop. This aligns with
the requirements of motor drivers for industrial robot joints and servo drivers, effectively
enhancing the control performance of these drivers.

5. Experimental Verification
5.1. Test Bench Setup

To validate the effectiveness of the above algorithm, this article conducted experiments
based on the platform shown in Figure 7, where Figure 7a,b represent the motor platform
and controller, respectively. The motor platform in Figure 7a consists of two 400 W PMSM
motors with sinusoidal EMF. The main electromagnetic parameters of the test motor were
1.6 Ω, 9 mH, and 0.006 Wb. The encoder used was a TAMAGAWA absolute encoder
with a single-turn accuracy of 23 bits and a multi-turn accuracy of 16 bits, meeting the
requirements for high-performance positioning and speed measurement. A Sigma-7 motor
produced by YASKAWA from Kyushu City, Japan was used for the drag motor, which
primarily controlled the speed in this study, focusing on the verification of the current
loop performance.

Figure 7b shows the controller, which was designed with integrated driving and
sampling circuits. The main power device in the power circuit was an IM513-L6A intelligent
power module (IPM) produced by Infineon from Neubiberg, Germany. This IPM adopts
the traditional two-level voltage source inverter circuit topology. Additionally, the voltage
and current sensors in the experimental platform were LV25-P and LA25-NP, respectively.
The MCU employed was a TMS320F28335 chip, and space vector pulse width modulation
(SVPWM) was adopted to generate PWM signals with an update frequency of 10 kHz.

When verifying the performance of the current loop control using the aforementioned
control platform, the following steps were taken. First, the load motor was operated under
a speed model, while the controlled motor was operated with an open-loop speed and
closed-loop current model. Second, the voltage and current sensors, along with a position
sensor, were used to sample signals, which were then input into the TMS320F28335 via the
chip AD7606 produced by ADI from Wilmington, MA, USA. Furthermore, a step current
signal was provided, and the proposed current loop was used to generate the reference
voltage vector. Finally, SVPWM was employed to generate the corresponding PWM signals
to control the inverter and drive the motor.
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5.2. Comparative Study

To verify the performance of MFCC, steady and comparative experiments were con-
ducted to compare it with DPCC from multiple aspects. The experimental results are shown
in Figures 8–13.

(1) Steady Performance: Before comparing dynamic performance, the steady-state
performance of the motor was analyzed. The fast Fourier transform (FFT) results of the
steady-state waveforms for the back electromotive force (EMF) and phase current are shown
in Figure 8. It can be seen that the back EMF exhibited good sinusoidal quality, with a total
harmonic distortion (THD) of only 3.12%. When controlled using the method proposed in
this article, the current also exhibited good sinusoidal quality, with a THD of only 6.82%.
Additionally, it is worth noting that the fifth harmonic in the current waveform increased
to some extent due to the dead-time effect of the switching devices, but the overall impact
was minimal.
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(2) Comparison of Current Step Responses without Parameter Errors: The current step
response comparison between DPCC and MFCC with no parameter errors is presented
in Figure 9. It can be observed that without parameter errors, both traditional DPCC
and MFCC converged to the reference value after two control cycles, achieving deadbeat
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control. In other words, the proposed MFCC maintained its dynamic performance without
degradation in the absence of parameter disturbances.
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(3) Comparison of Current Step Responses with Resistance Error: To verify the robust-
ness of MFCC against resistance parameter disturbances, the experimental comparison
results under 10 times resistance error (i.e., γR = 10) are presented in Figure 10. From the
results, it can be observed that traditional DPCC was significantly affected by the resistance
parameter error, resulting in a noticeable DC bias. As traditional DPCC lacked the means
to suppress this bias, it did not converge to zero over time, severely affecting the accuracy
of the current control. In contrast, the proposed MFCC, equipped with ESO, effectively
suppressed the DC bias disturbance caused by resistance parameter errors. Moreover, due
to the relatively small proportion of resistance error, there was no significant adjustment
process even in the current response, demonstrating the excellent capability of MFCC in
suppressing disturbances caused by resistance parameter errors.
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(4) Comparison of Current Step Responses with Flux Linkage Error: Furthermore,
to verify the capability of suppressing disturbances caused by flux linkage errors, the
experimental comparison results under 10 times flux linkage error (i.e., γφ = φc/φm = 10)
are presented in Figure 11. As shown in the figure, similar to the case of resistance
parameter error, the presence of flux linkage error led to a noticeable DC bias in the
response current. However, since the impact of flux linkage on the current loop was higher
than that of resistance, the bias generated in the current was higher than that in the case
of resistance error. Similarly, from the experimental results of MFCC, it can be observed
that after introducing ESO, the DC bias in the current could be effectively compensated,
demonstrating the ability of MFCC to suppress flux linkage bias.
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(5) Comparison of Current Step Responses with Inductance Error: Moreover, the
performance of current response under the disturbance of inductance parameter error
was compared. The experimental comparison results are presented for the cases where
the controller inductance parameter was smaller or larger than the actual parameter, i.e.,
γL = 0.5 and γL = 2, as shown in Figure 12. From the results in Figure 12a,b, it can be
observed that when the controller parameter was smaller than the actual parameter, this
did not affect the robustness of the system. In this case, both traditional DPCC and MFCC
converged to the desired current after several cycles of adjustment. However, from the
results in Figure 12c,d, it can be seen that when the control parameter was larger than the
actual parameter, traditional DPCC lost stability due to its limited robustness, resulting
in severe oscillations in the actual current. In contrast, the proposed MFCC, due to its
enhanced robustness without compromising dynamic performance, could still converge to
a steady state after several cycles of adjustment even with inductance error, demonstrating
the stronger robustness of MFCC.
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(6) Comparison of Current Step Responses with Different Observer Parameters: Finally,
the current step response performance of MFCC under different observer parameters was
compared. The experimental results are shown in Figure 13, where Figure 13a,b present
the results for two sets of parameters, P1 and P3, from Table 1, with parameter errors
γL = 2 and γL = 2.5. From Figure 13a,b, it can be observed that compared to the tuning
based on overlapping poles P3, the current step response with the optimized tuning based
on H∞ norm P1 exhibited a smaller overshoot and shorter settling time, demonstrating
superior performance and validating the theoretical analysis in Figure 6. Additionally, from
Figure 13c,d, it can be seen that the ultimate robustness under the tuning of overlapping
poles was lower, with the system becoming unstable when the parameter error increased
to 2.5. In contrast, for the tuning based on the H∞ norm P1, the system could still maintain
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stability under the same conditions, with only a slight increase in overshoot compared to the
case of twice inductance error, demonstrating good robustness and dynamic performance
and confirming the effectiveness and correctness of tuning the MFCC parameters based on
the H∞ norm.
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on H∞ norm P1 exhibited a smaller overshoot and shorter settling time, demonstrating 
superior performance and validating the theoretical analysis in Figure 6. Additionally, 
from Figure 13c,d, it can be seen that the ultimate robustness under the tuning of overlap-
ping poles was lower, with the system becoming unstable when the parameter error in-
creased to 2.5. In contrast, for the tuning based on the H∞ norm P1, the system could still 
maintain stability under the same conditions, with only a slight increase in overshoot com-
pared to the case of twice inductance error, demonstrating good robustness and dynamic 
performance and confirming the effectiveness and correctness of tuning the MFCC pa-
rameters based on the H∞ norm. 

 
Figure 13. Step response comparison experiment results with kL = 2 and kL = 2.5 during different 
coefficients. (a) P3, γL = 2. (b) P1, γL = 2. (c) P3, γL = 2.5. (d) P1, γL = 2.5. 

  

Figure 13. Step response comparison experiment results with kL = 2 and kL = 2.5 during different
coefficients. (a) P3, γL = 2. (b) P1, γL = 2. (c) P3, γL = 2.5. (d) P1, γL = 2.5.

6. Conclusions

This article presented an improved MFCC method leveraging the ultralocal model
and H∞ norm. Building upon the analysis of the performance and limitations of traditional
DPCC and ESO-DPCC, MFCC was proposed based on the ultralocal model, enabling
model-free deadbeat current control without reliance on motor models and parameters,
significantly enhancing robustness. Furthermore, addressing the issues of reduced dy-
namic performance and low robustness limits in the presence of parameter disturbances,
a coefficient selection method based on the H∞ norm was proposed, aiming to improve
dynamic performance and robustness without altering the controller structure. Finally, the
proposed algorithms were validated on a 400 W PMSM experimental platform.
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