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Abstract: An air-based photovoltaic thermal collector (PVTC) is a system that generates both electric-
ity and heat using air flowing over a photovoltaic (PV) module. This system offers the advantage
of easy maintenance; however, it suffers from lower thermal efficiency compared to other PVTCs,
mostly owing to the low heat capacity of air. Thus, this study introduces a novel PVTC incorporating
dual ducts and semicircular turbulators, which were experimentally evaluated under actual weather
conditions in the Republic of Korea. The proposed PVTC was compared with two other types of
PVTC: one is a single-duct PVTC with semicircular turbulators, and the other is a dual-duct PVTC
without turbulators. The results showed that the thermal efficiency of the proposed PVTC increased
by approximately 88.7% compared to the single-duct PVTC with a turbulator and by 9.3% compared
to the dual-duct PVTC without a turbulator. The electrical efficiency showed a slight decrease of
about 7.2% compared to the single-duct PVTC but an increase of 1.4% compared to the dual-duct
PVTC without a turbulator. Overall, the total efficiency of the proposed PVTC increased by 54.2% and
7.7% compared to the single-duct PVTC and the dual-duct PVTC without a turbulator, respectively.
These experimental results demonstrate that attaching dual ducts and semicircular turbulators to an
existing PVTC increases the daily thermal energy output, which ultimately enhances the total daily
energy output.

Keywords: solar energy; photovoltaic thermal collector; experiment; dual duct; turbulator

1. Introduction

As climate change and industrial development have driven a surge in energy demand,
the importance of energy has been increasingly recognized. The use of renewable energy
systems has expanded significantly to address these issues. Among them, photovoltaic
(PV) systems, which are easy to install and have simple structures, are the most widely
used. However, PV systems have a low solar energy conversion efficiency of approximately
10–20% and suffer from a decrease in power generation efficiency as the temperature of the
solar cells increases [1,2].

To address these issues, Wolf [3] first proposed the concept of a photovoltaic thermal
collector (PVTC). The PVTC cools the surface of the PV modules by circulating a fluid,
thereby preventing a reduction in the power output due to overheating of the PV module.
In addition, the heat recovered through this fluid can be utilized as another heat source.
Among the various types of PVTCs, air-based PVTCs are preferred because of their low
cost and easy maintenance, although they have a lower thermal efficiency than the others.
Therefore, several studies have been conducted on enhancing the performance of air- based
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PVTCs. One method involves installing structures such as ribs, baffles, or turbulators on
the rear of the PV module to promote turbulence, thereby enhancing the overall efficiency.

Yadav and Bhagoria investigated a two-dimensional computational fluid dynamics
(CFD) model for PVTCs that incorporated equilateral triangular [4] and square [5] turbu-
lators on an absorber plate. They analyzed the effects of the turbulator’s variables such
as the relative installation spacing, relative installation height, and coolant flow rate on
heat transfer and friction. The thermo-hydraulic performance (THP) is significantly in-
fluenced by the relative installation height, and the friction factor increases with height.
Kumar et al. [6] evaluated the THP by attaching multiple V-shaped perforated baffles to
the air channels of PVTCs. In order to reduce the friction factor of the thermal fluid, the
optimal shape of the baffle was proposed through CFD, and the heat transfer performance
according to the flow rate was evaluated through actual experiments by applying circular
holes to the baffle. Kumar et al. [7] conducted a CFD analysis on triangular PVTC air
channels using forward-facing chamfered rectangular ribs and confirmed that these ribs
enhanced both the heat transfer performance and friction factor. Recently, Kim et al. [8]
assessed the pressure drop and heat transfer performance of turbulator shapes within
PVTCs using CFD analysis. The performance was compared with triangular, square, and
semicircular turbulator shapes with increasing turbulator ratios, and it was verified that,
based on the THP, semicircular shapes provided the highest performance, followed by
triangular and square shapes. Kim et al. [9] applied semicircular turbulators to a PVTC
simulation model to evaluate its performance under various flow conditions and turbulator
shape configurations. They presented correlation formulas related to the flow and geo-
metrical conditions of semicircular turbulators. Additionally, various studies have shown
that installing turbulators on a flat plate under constant heat flux conditions can enhance
performance [10–13].

Based on the above studies, it was confirmed that installing structures such as turbulators
can enhance the performance of PVTCs. Other methods to improve PVTC performance
include changing the fluid flow or creating additional flow paths. Several researchers [14–16]
have compared and evaluated the performance of dual-duct PVTCs, where air enters
through an upper channel and exits through a lower channel. It was found that this dual-
duct configuration performed better than single-duct PVTCs. Amori et al. [17] compared
PVTCs in which air flows in the same direction through both the upper and lower channels
with PVTCs in which air enters the upper channel and exits the lower channel. It was
verified that the dual-flow-path PVTC with the same airflow direction performed better
than the PVTC with opposite airflow. Hegazy [18] conducted a comparative study on the
performance of flat-plate PVTCs for four different designs: air flowing over the absorber,
under the absorber, on both sides of the absorber in a single pass, and in a double pass. The
results indicated that the models with dual ducts exhibited better energy efficiency than
those with single ducts. Hussain et al. [19] evaluated single- and dual-channel structures
for air-based PVTCs and examined the performance differences between parallel- and
counter-flow configurations within a dual channel. They compared different types of
designs and described their performance characteristics. Ooshaksaraei et al. [20] conducted
indoor experiments using a solar simulator to compare the energy and exergy efficiencies
of four PVTC designs. Their findings showed that the dual-channel parallel flow model
exhibited the highest energy efficiency, ranging between 51% and 67%, whereas the single-
channel path model displayed the best exergy efficiency, with values ranging between
8.2% and 8.4%. These results confirm that if the goal is to maximize the thermal energy
output, dual-channel designs are advantageous, whereas single-channel designs are more
appropriate when the main objective is electrical output. Additionally, various studies
have been conducted to explore the enhancement of heat transfer performance in PVTCs
by modifying the fluid flow paths [21].

The studies reviewed above improved the heat transfer performance of PVTCs by
either attaching turbulators or changing the airflow path. Nevertheless, there has been
very limited research that simultaneously considers both factors. Othman et al. [22] experi-
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mentally assessed the electrical and thermal performance of PVTCs with dual air channels
and fins attached to the back of an absorber plate. They confirmed that the addition of
fins to the dual-duct PVTC improved the overall efficiency. Choi et al. [23] experimentally
evaluated the performance of a single-pass double-flow PVTC with non-uniform cross-
sectional transverse ribs under actual meteorological conditions by varying the air mass
flow rate. Alam et al. [24] conducted numerical analyses to determine the optimal shape
for the protrusion of triangular ribs and applied this ribbed design to a dual-duct PVTC
for performance evaluation. However, studies that simultaneously apply dual ducts and
turbulators are rare, and the shapes of these turbulators are limited to triangular forms.
This gap in the literature motivates the current research.

Therefore, this study proposes an air-based PVTC that is integrated with a semicircular
turbulator and a dual duct, which was experimentally evaluated. The collector featured a
semicircular turbulator installed at the back of the PV module, and glass was placed over
the PV module to form a dual duct. The main objective of this study was to verify the
performance of the proposed PVTC by specifically assessing the effects of dual ducts and
turbulators. Therefore, to confirm the performance enhancement of the proposed design,
two other types of PVTCs were evaluated under the same conditions: a single-duct PVTC
equipped with semicircular turbulators and a dual-duct PVTC without turbulators. This
study provides fundamental data for improving PVTCs’ performance and can serve as
crucial information to enhance solar energy conversion efficiency in the future.

2. Experimental Setup and Procedure
2.1. Description of Air-Based PVTC

Figure 1 shows a schematic of a dual-duct PVTC that was integrated with a semicircu-
lar turbulator. The air-based PVTC consisted of a commercial photovoltaic module, a lower
air channel equipped with semicircular turbulators, and an upper channel made of glass.
Semicircular turbulators were attached to the back of the PV module. The PV system used
was a commercial product (LG electronics Inc., LG450S2W-U6, Republic of Korea), and its
characteristics are listed in Table 1.
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Figure 1. Schematic of dual-duct PVTC integrated with semicircular turbulator.

Table 1. Characteristics of the PV module under standard conditions.

Parameters Value

Size of module (mm) 2011 × 1042 × 40
Electrical efficiency (%) 20.2

Temperature coefficient (%/◦C) −0.27
Maximum output power (W) 450

Output voltage at maximum power (V) 40.91
Output current at maximum power (A) 11.01

Figure 2 shows a schematic of the two-dimensional dual-duct PVTC coupled with
semicircular turbulators. The total width, length, and height of the proposed PVTC were
1042 mm, 2017 mm, and 200 mm, respectively. The lower and upper air channels have a
height (h) of 80 mm.
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Figure 2. Schematic of two-dimensional dual-duct PVTC coupled with semicircular turbulator.

The turbulators were designed with a semicircular shape, and parameters such as
height (e), pitch (p), and increase ratio (α) were specified based on definitions established
in previous studies [11]. The increase ratio (α), representing the rise in height (e) and
pitch (p) of the turbulators installed in the previous array, enhanced the heat transfer
performance while reducing the pressure drop. To make the shape conditions of the
turbulators dimensionless, the relative height (e/h) and relative pitch (p/e) were used.
Table 2 summarizes the geometric conditions of the PVTC and semicircular turbulator.

Table 2. Geometric conditions of PVTC and semicircular turbulator.

Parameters Value

PVTC Width (mm) 1042
Length (mm) 2017
Height (mm) 200

Upper- and lower channel height (h) (mm) 80
Semicircular turbulator α (-) 1.11

e/h (-) 0.116
p/e (-) 17.94

In addition, two other types of PVTCs were fabricated to verify the performance
improvement of the proposed PVTC: a single-duct PVTC with semicircular turbulators
(Type A) and a dual-duct PVTC without any turbulence (Type B). Figure 3 shows schematic
side views of the three different types of PVTCs. The single-duct PVTC with semicircular
turbulators, designated as Type A, featured a semicircular turbulator attached to the rear of
the PV module. Additionally, the dual-duct PVTC without any modifications, known as
Type B, incorporated glass positioned above the PV module to create an upper air channel.
The dual-duct PVTC with semicircular turbulators, referred to as Type C, combined a
dual-duct design with semicircular turbulators, as proposed in this study.
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2.2. Experimental Procedure

Figure 4 shows an actual view of the experimental apparatus. The experiments were
conducted under actual weather conditions on the same day for the PV and the three
different types of PVTCs. The experimental setup was located at the Pukyong National
University’s Yongdang Campus in Busan, Republic of Korea (latitude: 35◦6.98′, longitude:
129◦5.39′). The installation angle was 21◦. Each PVTC maintained a constant airflow rate of
0.077 kg/s using ambient air as the inlet. The experiments were conducted from 10:30 a.m.
to 2:30 p.m. on 12 April 2023.
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Figure 4. Actual view of experimental setup.

Figure 5 illustrates the schematic of the experimental setup and the measuring device
locations. The experimental system included the PVTC, along with a fan (INNOTECH
Corporation, TIS-140FS, Japan) and a battery (Hankook AtlasBX Co., Ltd., SB1000, Republic
of Korea) to facilitate air flow within the PVTC. The fan provided an air flow rate of
0.077 kg/s, and the battery had a capacity of 1 kW. The data collected included solar
irradiance, as well as current and voltage generated by the PV, ambient temperature, PV
surface temperature, and outlet air temperature from the PVTC. The voltage and current
were measured with a voltmeter (Autonics Corporation Co., Ltd., MT4Y-DV-43, Republic
of Korea) and an ampere meter (Autonics Corporation Co., Ltd., MT4Y-DA-43, Republic
of Korea), respectively. The solar radiation was measured with a pyranometer (EKO
Instruments Co. Ltd., MS-802, Japan), while air temperatures were measured with T-type
thermocouples. Additionally, an anemometer (Kanomax Japan Inc., 6531-2G, Japan) was
used to measure air velocity. The detailed specifications of each measurement are listed in
Table 3.

Energies 2024, 17, x FOR PEER REVIEW 6 of 14 
 

 

Korea), respectively. The solar radiation was measured with a pyranometer (EKO 
Instruments Co. Ltd., MS-802, Japan), while air temperatures were measured with T-type 
thermocouples. Additionally, an anemometer (Kanomax Japan Inc., 6531-2G, Japan) was 
used to measure air velocity. The detailed specifications of each measurement are listed in 
Table 3. 

  
Figure 5. Schematic of the experimental setup and the measuring device locations. 

Table 3. Specifications of measuring devices. 

Device Model Range Uncertainty 
Pyranometer MS-802 0–4000 W/m2 ±2% 

Voltmeter MT4Y-DV-43 0–50 V ±0.56% 
Ampere meter MT4Y-DA-43 0–5 A ±0.56% 
Thermocouple T-type −281–370 °C ±1 °C 
Anemometer Kanomax 6531-2G 0.01–9.99 m/s ±2% 
Data logger Agilent 34972A - - 

2.3. Uncertainty Analysis 
In the experimental data related to the PVTC, errors may appear due to a sensor 

measuring various elements and introducing uncertainties. Thus, to accurately evaluate the 
primary performance of the PVTC, assessing the error associated with each performance 
value is necessary [25]. The uncertainty of a parameter is obtained as follows: y = f(𝑥ଵ, 𝑥ଶ, ⋯ , 𝑥௡). (1)

𝛿𝑦 = ටቀ ఋ௬ఋ௫భ 𝛿𝑥ଵቁଶ + ቀ ఋ௬ఋ௫మ 𝛿𝑥ଶቁଶ + ⋯ + ቀ ఋ௬ఋ௫೙ 𝛿𝑥௡ቁଶ
, (2)

where 𝛿𝑥ଵ , 𝛿𝑥ଶ , ⋯ , 𝛿𝑥௡  represent the uncertainties in the directly measured values. The 
main factors of the PVTC’s performance assessed in this research are 𝑄௔௜௥, 𝜂௧௛, W௣௩, 𝜂௘௟, and 𝜂௢. The uncertainties and parameters are detailed in Table 4. 

Table 4. Parameter uncertainties for each experimental setup. 

Parameter Uncertainty 𝑄௔௜௥ ±2.26% 𝜂௧௛ ±3.02% W௣௩ ±0.97% 𝜂௘௟ ±2.22% 𝜂௢ ±3.17% 
  

Figure 5. Schematic of the experimental setup and the measuring device locations.



Energies 2024, 17, 2752 6 of 13

Table 3. Specifications of measuring devices.

Device Model Range Uncertainty

Pyranometer MS-802 0–4000 W/m2 ±2%
Voltmeter MT4Y-DV-43 0–50 V ±0.56%

Ampere meter MT4Y-DA-43 0–5 A ±0.56%
Thermocouple T-type −281–370 ◦C ±1 ◦C
Anemometer Kanomax 6531-2G 0.01–9.99 m/s ±2%
Data logger Agilent 34972A - -

2.3. Uncertainty Analysis

In the experimental data related to the PVTC, errors may appear due to a sensor
measuring various elements and introducing uncertainties. Thus, to accurately evaluate the
primary performance of the PVTC, assessing the error associated with each performance
value is necessary [25]. The uncertainty of a parameter is obtained as follows:

y = f(x1, x2, · · · , xn). (1)

δy =

√(
δy
δx1

δx1

)2
+

(
δy
δx2

δx2

)2
+ · · ·+

(
δy

δxn
δxn

)2
, (2)

where δx1,δx2, · · · , δxn represent the uncertainties in the directly measured values. The
main factors of the PVTC’s performance assessed in this research are Qair, ηth, Wpv, ηel , and
ηo. The uncertainties and parameters are detailed in Table 4.

Table 4. Parameter uncertainties for each experimental setup.

Parameter Uncertainty

Qair ±2.26%
ηth ±3.02%

Wpv ±0.97%
ηel ±2.22%
ηo ±3.17%

2.4. Performance Index

To evaluate the performance of the PVTC, the main factors considered were power
generation, electrical efficiency, heat gain, thermal efficiency, and total efficiency [17]. The
electricity generation of the PV system (Wpv) can be calculated using Equation (3).

Wpv = Vpv Ipv, (3)

where Vpv and Ipv are the voltage and current produced by the PV module, respectively.
The electrical efficiency of the PVTC (ηel) can be obtained using Equation (4).

ηel =
Wpv

GAPVTC
, (4)

where G is the solar radiation, and Ac is the area of the PVTC. The heat gain (Qair) of the
PVTC can be calculated using Equation (5).

Qair =
.

mairCp,air(Tair,out − Tair,in), (5)

where
.

mair, Cp,air, Tairout, and Tairin denote the mass flow rate of air, specific heat of air,
outlet air temperature, and inlet air temperature, respectively. The thermal efficiency (ηth)
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of a PVTC is the ratio of incoming solar radiation and heat gain of the PVTC and can be
obtained using Equation (6).

ηth =
Qair

GAPVTC
. (6)

The overall efficiency (ηo) of a PVTC is calculated using Equation (7):

ηo = ηel + ηth. (7)

3. Results and Discussion
3.1. Weather Conditions

Figure 6 shows the ambient temperature and solar radiation during the test period.
The ambient temperature ranged from 15.32 ◦C to 17.64 ◦C, and the solar radiation var-
ied between 915.15 W/m2 and 1017.70 W/m2. The average ambient temperature was
16.45 ◦C, and the average solar radiation was 993.50 W/m2 during the test period. Peak
solar radiation was observed at 12:20 p.m. local time, and the highest ambient temperature
was recorded at 1:00 p.m. local time in the Republic of Korea. The graph also indicates that
the experiment was carried out on a clear day, which is ideal for assessing the performance
of PVTCs under optimal sunlight conditions.
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3.2. Thermal Performance

Figure 7 shows the air temperature increase for the different types of PVTCs. The
air temperature increased from 4.90 ◦C to 6.50 ◦C, 8.59 ◦C to 11.11 ◦C, and 9.25 ◦C to
12.23 ◦C for Type A, Type B, and Type C, respectively. The average air temperature increase
during the experiment period was 5.76 ◦C, 9.94 ◦C, and 10.87 ◦C for Type A, Type B, and
Type C, respectively. These results show that Type C, featuring semicircular turbulators,
experienced an average air temperature increase of 0.92 ◦C compared to Type B, which
does not have semicircular turbulators. In addition, it was observed that Type C, equipped
with a dual duct, showed an increase of 5.11 ◦C in temperature compared to Type A,
which features a single duct. The outlet air temperature increased with increasing solar
radiation and then decreased with decreasing solar radiation. Throughout this period, Type
C consistently maintained a higher outlet temperature than the other types. This confirms
that PVTCs equipped with semicircular turbulators and dual ducts offer enhanced heat
transfer performance in the air flow channel compared with other types of PVTCs.
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Figure 8 illustrates the PV surface temperatures for different types of PVTCs. The
solar cell temperature ranged from 41.1 ◦C to 48.1 ◦C, 32.0 ◦C to 38.6 ◦C, 60.5 ◦C to 70.6 ◦C,
and 52.7 to 61.6 ◦C for PV, Type A, Type B, and Type C, respectively. The average solar cell
surface temperature was 44.8 ◦C, 35.7 ◦C, 66.8 ◦C, and 57.9 ◦C for PV, Type A, Type B, and
Type C, respectively. Throughout the experimental period, Type B consistently exhibited
the highest surface temperature, whereas Type A consistently exhibited the lowest. The
PV surface temperature increased with increasing solar radiation and then decreased with
decreasing solar radiation. In addition, Type A had a lower surface temperature than PV,
because the forced convection of air by the fan removed more heat from the PV module.
In the case of Type C, which includes turbulators, these devices promote air turbulence,
leading to lower temperatures compared with Type B, which does not include turbulators.
Furthermore, both Type B and Type C, which utilize a dual-duct system, exhibited higher
temperatures than the other types. This is because the glass prevents the heat generated by
the PV module from radiating to the outside air.
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Figure 9 shows the heat gain and thermal efficiency for the different types of PVTCs.
The heat gains of Type A, Type B, and Type C ranged from 378.8 W to 502.1 W,
663.6 W to 858.9 W, and 714.8 W to 945.1 W, respectively. The average heat gains for Type A,
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Type B, and Type C were 445.0 W, 768.4 W, and 839.7 W, respectively. The thermal effi-
ciencies of Type A, Type B, and Type C ranged from 20.5% to 24.1%, 35.7% to 39.9%, and
39.1% to 43.9%, respectively. The average thermal efficiencies of Type A, Type B, and Type
C were 21.9%, 37.7%, and 41.2%, respectively. It was confirmed that the average thermal
efficiency of Type C was improved by 88.1% and 9.3% compared with Type A and Type B,
respectively. The above results confirmed that the average heat gain and thermal efficiency
of Type C were higher than those of Type A and Type B. It was confirmed that in the
dual-duct structure, most of the heat lost upward was not dissipated outside because of the
glass, leading to an increase in thermal efficiency. In addition, the installation of turbulators
enhanced the turbulence in the air channels, which enhanced the efficiency of the heat
transfer between the heated surfaces of the PV module and the blowing air.

Energies 2024, 17, x FOR PEER REVIEW 9 of 14 
 

 

 
Figure 8. PV surface temperature for different types of PVTCs. 

Figure 9 shows the heat gain and thermal efficiency for the different types of PVTCs. 
The heat gains of Type A, Type B, and Type C ranged from 378.8 W to 502.1 W, 663.6 W to 
858.9 W, and 714.8 W to 945.1 W, respectively. The average heat gains for Type A, Type B, 
and Type C were 445.0 W, 768.4 W, and 839.7 W, respectively. The thermal efficiencies of 
Type A, Type B, and Type C ranged from 20.5% to 24.1%, 35.7% to 39.9%, and 39.1% to 
43.9%, respectively. The average thermal efficiencies of Type A, Type B, and Type C were 
21.9%, 37.7%, and 41.2%, respectively. It was confirmed that the average thermal efficiency 
of Type C was improved by 88.1% and 9.3% compared with Type A and Type B, 
respectively. The above results confirmed that the average heat gain and thermal efficiency 
of Type C were higher than those of Type A and Type B. It was confirmed that in the dual-
duct structure, most of the heat lost upward was not dissipated outside because of the glass, 
leading to an increase in thermal efficiency. In addition, the installation of turbulators 
enhanced the turbulence in the air channels, which enhanced the efficiency of the heat 
transfer between the heated surfaces of the PV module and the blowing air. 

 
Figure 9. Heat gain and thermal efficiency for different types of PVTCs. 

3.3. Electrical Performance 
Figure 10 shows the power generation and electrical efficiency of the different types of 

PVTCs. The power generation of PV, Type A, Type B, and Type C were in the range of 245.9 

Figure 9. Heat gain and thermal efficiency for different types of PVTCs.

3.3. Electrical Performance

Figure 10 shows the power generation and electrical efficiency of the different types
of PVTCs. The power generation of PV, Type A, Type B, and Type C were in the range
of 245.9 W to 248.5 W, 252.5 W to 255.3 W, 227.1 W to 238.3 W, and 234.9 W to 241.4 W,
respectively. The average power generation for each type was 247.3 W, 253.5 W, 231.9 W,
and 236.8 W, respectively. The power generation efficiencies of PV and Type A, Type B,
and Type C ranged from 13.4% to 16.1%, 13.7% to 16.5%, 12.6% to 15.4%, and 12.7% to
15.5%, respectively. The average electrical efficiencies of PV, Type A, Type B, and Type C
were 14.5%, 14.8%, 13.6%, and 13.8%, respectively. Type A, with a single duct, exhibited
the highest efficiency, with average increases of 2.07%, 8.82%, and 7.2% over PV, Type
B, and Type C, respectively. The electrical performance of the PVTC was closely related
to the PV surface temperature, as shown in Figure 8. It was observed that a decrease in
the PV module’s surface temperature owing to air cooling within the PVTC occurred in
Type A. Type B and Type C exhibited a lower electrical efficiency than Type A, which
was attributed to the dual-duct structure preventing heat from escaping through the glass
above the PV module. Additionally, when a dual-duct structure is used, the addition of
glass introduces its own reflectivity and absorptivity, which reduces the incoming solar
radiation to the PV module in the PVTC. Consequently, both the power generation and
the electrical efficiency of dual-duct PVTCs decrease. Furthermore, Type C demonstrated
a higher efficiency than Type B did. This was attributed to the installation of turbulence
promoters in the air channels, which enhanced the air turbulence and reduced the PV
surface temperature, thereby increasing the generation efficiency.
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3.4. Overall Efficiency

Figure 11 shows the overall efficiency of different types of PVTCs. The overall effi-
ciency is the sum of thermal and power generation efficiencies. The overall efficiencies of
Type A, Type B, and Type C ranged from 32.9% to 36.2%, 46.9% to 51.4%, and 50.6% to
55.7%, respectively. The average overall efficiencies of the PVTCs were 34.3%, 49.1%, and
52.9% for Type A, Type B, and Type C, respectively. The average overall efficiency of Type
C was improved by 54.23% compared to that of Type A using a dual duct. In addition, the
average overall efficiency of Type C was improved by 7.74% compared to that of Type B by
using semicircular turbulators.
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3.5. Total Energy Output

Figure 12 shows the total energy outputs of the different types of PVTCs during the
experiment. The electrical outputs of Type A, Type B, and Type C were 528.2 Wh/m2,
483.3 Wh/m2, and 493.3 Wh/m2, respectively, and the thermal outputs were 927.2 Wh/m2,
1600.7 Wh/m2, and 1749.3 Wh/m2, respectively. The total daily energy outputs were
1455.4 Wh/m2, 2084.0 Wh/m2, and 2242.6 Wh/m2, respectively. Type C had a 54.1%
increase in the total daily energy output compared to Type A owing to the effect of the
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dual ducts. In addition, the total daily energy output of Type C was 7.61% higher than
that of Type B owing to the semicircular turbulator. As a result, the dual duct produced
88.7% additional thermal energy, with a 6.60% decrease in the electrical output, whereas
the semicircular turbulator increased the electrical output by 2.07% and thermal output
by 9.28%. Based on this, it was found that the installation of dual ducts and semicircular
turbulators increased the total daily energy output compared with the conventional single-
duct PVTC.
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4. Conclusions

In this study, a dual-duct PVTC with semicircular turbulators (Type C) was evaluated
experimentally and compared with a single-duct PVTC with semicircular turbulators (Type
A) and a dual-duct PVTC without turbulators (Type B). The following conclusions can be
drawn from the results:

(1) The average inlet and outlet air temperature difference was highest for Type C at
10.87 ◦C, compared to Type A at 5.76 ◦C and Type B at 9.94 ◦C. The average PV surface
temperature was lowest in Type A at 35.7 ◦C, whereas for PV, Type B, and Type C, they
were lowest at 44.8 ◦C, 66.8 ◦C, and 57.9 ◦C, respectively.

(2) Among the PVTCs, Type C with semicircular turbulators and dual-duct structures
exhibited significant improvements in both thermal and electrical efficiency. The thermal
efficiency of Type C increased by 9.3% compared to Type B and by 88.1% compared to Type
A due to the installation of semicircular turbulators and the dual-duct structure. However,
the electrical efficiency of Type C showed a decrease of 4.83% compared to Type A but
increased by 1.47% compared to Type B.

(3) The average overall efficiencies were 34.3%, 49.1%, and 52.9% for Type A, Type B,
and Type C, respectively. Type C exhibited a 54.23% increase in average overall efficiency
compared to Type A, which utilized a single duct, and a 7.74% increase compared to Type
B, which lacked semicircular turbulators.

(4) The electrical output of Type C was 6.60% lower than that of Type A; however, it
was 2.07% higher than that of Type B. Additionally, the thermal output of Type C was 88.7%
higher than that of Type A and 9.28% higher than that of Type B. Consequently, the total
energy output of Type C was 54.1% higher than that of Type A and 7.61% higher than that
of Type B.

This study confirmed that the simultaneous application of dual ducts and semicircular
turbulators to PVTCs significantly increased both the thermal and overall efficiencies.
Based on these results, we can provide foundational data for enhancing PVTC performance.
The primary objective of creating such high-efficiency PVTCs is to facilitate their use in
various fields, such as hot water supply, space heating, and drying systems, to reduce
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energy consumption and assess their economic benefits. Therefore, future research should
focus on analyzing the energy savings and economic benefits of the proposed PVTCs.
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Nomenclature

Symbols
A Area (m2)
Cp Specific heat capacity (J/kg◦C)
G Solar radiation (W/m2)
I Ampere (A)
Q Heat transfer rate (W)
T Temperature (◦C)
V Voltage (V)
W Power (W)
e Height of semicircular turbulator (m)
h Height of air channel (m)
p Pitch of turbulator (m)
e/h Relative height of semicircular turbulator (-)
p/e Relative pitch of turbulator (-)
.

m Mass flow rate (kg/s)
Greek symbols
η Efficiency (%)
α Increase ratio of semicircular turbulator (-)
Subscripts
in Inlet
out Outlet
pv Photovoltaic module
pvtc Photovoltaic thermal collector
th Thermal
e Electrical
o Overall
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