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Abstract: The effective utilization of medium-high temperature geothermal energy is pivotal in
reducing carbon emissions and plays a crucial role in developing clean energy technologies. The
MiDu geothermal field, situated in the southeastern region of Dali Prefecture, Yunnan Province, lies
within the Mediterranean–Himalayan high-temperature geothermal belt and is characterized by
abundant geothermal resources. However, due to its considerable depth, exploration poses significant
risks, resulting in a total utilization rate of less than 0.5% of the total reserves. This study employs
natural seismic data to perform a tomographic analysis of the geothermal system in the Midu basin.
By examining the P-wave velocity (Vp) and the velocity ratio of P-waves and S-waves (Vp/Vs)
at various depths, the findings reveal that the basin comprises two distinct structural layers: the
thrust basement of the Mesozoic and Paleozoic eras and the strike–slip extensional sedimentary
layer of the Cenozoic era. A low-velocity anomaly in the central basin corresponds to the loose
Cenozoic sedimentary layer. In contrast, high-velocity anomalies at the basin edges correlate with
boundary faults and the Mesozoic–Paleozoic strata. Below a depth of 4 km, the Red River Fault and
MiDu Fault continue to dominate the basin’s structure, whereas the influence of the Malipo Fault
diminishes. The MiDu Fault exhibits higher thermal conductivity than the Yinjie Fault. It interfaces
with multiple carbonate and basalt formations characterized by well-developed pores and fractures,
making it a crucial conduit for water and a control point for geothermal storage. Consequently, the
existence of medium-high temperature (>90 ◦C) geothermal resources for power generation should
be concentrated around the Midu fault on the western side of the basin, while the Yinjie fault area is
more favorable for advancements in heating and wellness.

Keywords: seismic tomography imaging; geothermal resources; Midu basin; water-conducting;
genesis mechanism

1. Introduction

In recent years, the term geothermal resources has been used to refer to geothermal
energy, geothermal fluids, and their valuable components that humans can use economi-
cally [1]. They are characterized by their cleanliness, renewability, large resource volume,
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and strong stability. Based on temperature, they can be divided into low-temperature
geothermal resources (<90 ◦C), medium-temperature geothermal resources (90–150 ◦C),
and high-temperature geothermal resources (≥150 ◦C) (Terminology of Geothermal Energy,
2018). China’s mainly hydrothermal middle-to-low temperature geothermal resources
are equivalent to 1.25 trillion tons of standard coal; each year, there is an extractable
amount equivalent to 1.865 billion tons of standard coal. China’s geothermal resources
account for one-sixth of the global resources and have enormous development potential.
Using underground hot water resources efficiently could save up to 750 million tons of coal
equivalents annually, reduce greenhouse gas emissions, and improve the ecological environ-
ment [2]. However, in the future development of clean energy sources, geothermal energy
must occupy a significant place and the generation of electricity using high-temperature
geothermal sources is essential. Firstly, geothermal power generation is zero-emission and
pollution-free, which can effectively reduce its environmental impacts. Second, heating,
wellness, and other cascade utilization applications are more viable near the Yinjie Fault.
The exceptionally high stability provides a continuously available power supply with
more than 8000 operating hours per year, three to five times higher annual utilization
rates than that provided by solar or wind power in southwestern China. The distribu-
tion of geothermal resources is significantly controlled by tectonics. Globally, there are
four major high-temperature geothermal belts: the Circum-Pacific Geothermal Belt, the
Mid-Atlantic Ridge Geothermal Belt, the Red Sea–Aden Gulf–East African Rift Geothermal
Belt, and the Mediterranean–Himalayan Geothermal Belt. The Midu geothermal field is
located in southeastern Dali, Yunnan Province (Figure 1A), and tectonically belongs to
the Mediterranean–Himalayan high-temperature geothermal belt. It possesses abundant
geothermal resources, with a high terrestrial heat flow value of 75 mW/m2, above China’s
national average, indicating good prospects for geothermal energy development [3]. How-
ever, the overall utilization rate is less than 0.5%. Besides this factor, deep burial depths
exceeding 2000 m pose significant risks [4]. Detailed geological exploration and evaluation
are essential when developing and utilizing geothermal resources in the Midu area. Pre-
vious studies have discussed and analyzed the characteristics of geothermal reservoirs and
the formation patterns and water–rock interactions typical of hot springs in this region [5–9].
However, research on subsurface geological structures, groundwater bodies, and the migra-
tion of geothermal fluids remains insufficient. Some scholars have analyzed the relationship
between the Honghe Fault and hot springs using a macro-analysis approach, but it is not yet
sufficiently focused [10]. This gap hinders a comprehensive description of the geothermal
reservoir’s characteristics, including its location, depth, capacity, temperature, and additional
heat sources. Therefore, it is crucial to employ economical and effective geophysical methods
to investigate the deep structure of the basin and the geothermal system.

Seismic tomography imaging technology detects underground structures, revealing
changes in subsurface structures by analyzing the propagation of seismic waves under-
ground. Passive seismic tomography imaging technology has been proven effective in
applications such as imaging volcanic structures [11–15], geothermal fields [16], geothermal
springs [17], and faults [18]. By recording and analyzing seismic waves, velocity models
of underground media can be obtained, enabling inference of characteristics such as the
position, thickness, and temperature of thermal reservoirs. Additionally, seismic tomogra-
phy imaging can reveal channels and pathways for the movement of thermal fluids within
geothermal systems, guiding the development of hydrothermal resources. Local seismic
tomography imaging [19] focuses on inverting local seismic propagation to address joint
problems of seismic source location and velocity model determination. It has been applied
to characterize intrusive body distribution, fluid pathways, and accumulation zones within
active volcanic systems [14,20–22]. Researchers typically deploy seismic arrays and collect
seismic data for local seismic tomography imaging studies. By analyzing the propagation
and reflection paths of seismic waves in conjunction with the velocity information of sub-
surface media, three-dimensional models of underground structures can be established
in study areas. The velocities of compressional waves (Vp), shear waves (Vs), and the
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ratio of Vp/Vs vary with fluid composition, rock porosity, and temperature changes. By
comparing Vp and Vp/Vs, the distribution patterns of thermal reservoirs and thermal
conductivity structures underground can be determined. Therefore, local tomographic
imaging methods can be used to image the structure of underground geothermal systems in
regions with active local seismicity. As a crucial adjustment zone for crustal material escape
and deformation on the southeastern margin of the Qinghai–Tibet Plateau, conducting
seismic tomography imaging studies in the Midu basin is of significant importance for
understanding the characteristics of neotectonic movements, the genesis mechanism of
geothermal systems, and their inherent connections with the Mediterranean–Himalayan
high-temperature geothermal belt in western Yunnan Province(Figure 1).
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2. Geological Setting

The Midu basin is located at the southeast margin of Dali Bai Autonomous Prefecture,
Yunnan Province, China (Figure 1), at the northwest end of the Red River Fault Zone (F1).
It is a significant extensional deformation zone between a series of sizeable arcuate strike-
slip fault systems at the southeastern margin of the Qinghai–Tibet Plateau. The basin is
characterized by the development of numerous Neogene extensional rift basins, making it
a key area for revealing the formation mechanism of the northwest Yunnan rift zone [24,25],
and it is also one of the most seismically active regions in China. The basin is 26 km wide
east–west, 82 km long north–south, covering an area of approximately 1523 km2 (Figure 2).
It is controlled by the Yinjie Fault (F3), a right-lateral strike–slip fault trending NW-SE, the
Maolipo Fault (F4), a left-lateral strike–slip fault trending NNE-SSW, and the Midu Fault
(F2), which collectively form a blunt-angled triangular shape trending northwestward. The
boundary faults on the southwest and northeast sides of the basin exhibit typical fault
characteristics. The left-lateral Maolipo Fault marks the boundary on the northwest side,
while the Yinjie Fault constitutes the boundary on the southeast side, both converging with
the Red River Fault (F1) in the southern part of the basin. The structural style of the Midu
Basin is similar to that of the Xiangyun Basin to its east (Figure 2), with a Miocene-present
Xiangyun nappe structure between them. Paleozoic strata have been thrust northeastward
over Mesozoic strata, forming several north-eastward imbricate thrust faults [6]. Since the
late Eocene, the study area has been dominated by extensional fault activity, accompanied
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by significant clockwise rotation, which has disrupted the Upper Eocene sedimentary strata
while controlling Quaternary alluvial deposits.
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The basement of the Midu area is composed of a Proterozoic metamorphic complex.
The cover mainly includes Devonian to Permian shallow marine limestones, mudstones,
and siliceous rocks, with a thickness of 3481 m for the Devonian and 6875 m for the Permian
rocks. The Triassic to Cretaceous shallow marine limestones and terrestrial conglomerates
are rich in water-bearing fractures, with a thickness of 4785 m for the Triassic and more than
2169 m for the Cretaceous rocks. In the Cenozoic area, there are bottom sandstone deposits
with strong water-bearing properties, overlying volcaniclastic rock with a thickness greater
than 1884 m, and the Quaternary area is predominantly conglomeratic sandstone with
medium to water-bearing solid properties and a thickness ranging from 86 to 238 m.
Cambrian, Ordovician, and Silurian systems were not observed. Demarcated by the Midu
basin, the eastern side is dominated by Paleozoic marine carbonate deposits and purple-
red tuffaceous rocks, andesitic porphyrites, as well as pebble-like basalts from eruption
deposits. In contrast, the western side mainly consists of Mesozoic sandstones and coal-
bearing fluvio-lacustrine deposits. Within the basin, there are predominantly Neogene and
Quaternary alluvial deposits. The basin extends in a narrow NW-SE direction, with terrain
in the northeast higher than the southwest. There are five typical natural hot springs within
the basin. The geothermal water, stored in the Cenozoic basin, has surface temperatures
ranging from 40 to 72.5 ◦C. The reservoir temperature, calculated by SiO2 geothermometers,
ranges from 93.5 to 116.9 ◦C, with depths ranging from 2537 to 3374 m [26]. Due to the
inception of basin water systems, the thickness of loosely porous Cenozoic formations
generally ranges from hundreds to thousands of meters, with relatively high cold water
mixing in the hot springs, suggesting the presence of deep high-temperature springs.

Based on the development conditions of the basin and surrounding areas, it is inferred
that there should be thick layers of Paleozoic and Mesozoic strata beneath the Cenozoic
strata. Among them, the loose Cenozoic sedimentary layers and easily eroded carbonate
rocks and porous basalt of the Paleozoic are favorable areas for the development of geother-
mal reservoirs in the region. Previous studies suggest that the Jinsha River–Red River fault
has reached the depth of the Moho discontinuity [27], and the Midu basin belongs to a deep
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fault-circulation geothermal system [6]. Theoretically, heat sources include mantle-derived
heat, magmatic heat within the crust, and radiogenic heat from intrusive rocks in the crust,
with surface-measured geothermal flux values reflecting the combined effects of these three
heats. The proportion of these three heats varies in different regions. In Midu, the heat
contribution from the mantle and radiogenic heat from radioactive elements in the crust
dominate, with granite outcrops along the Midu fault indicating evidence of large-scale
intrusive bodies in the basin’s depths. The Curie depth in Midu is approximately 24 km [28],
with an average Moho depth of 45 km [29,30], and the average Moho temperature is refer-
enced around 1068–1122 ◦C [31]. The geothermal gradient is slightly higher than normal,
generally 25–30 ◦C/km [6]. The heat production rate of Midu’s medium-acidic rock ranges
from 1.62 to 2.83 µW/m3, with a geothermal gradient of 2.5–5 ◦C/100 m. In sedimentary
rock areas, the geothermal gradient is around 2.5 ◦C/100 m, roughly equivalent to the
average geothermal gradient above the Curie depth of 2.42 ◦C/100 m; in areas where
medium-acidic rocks with concentrated radioactive elements exist, the geothermal gradient
can reach 5 ◦C/100 m [32].

3. Data Acquisition and Processing
3.1. Data Acquisition

The study used the smarsolo-IGU-BD3C-5 three-component seismometer with ap-
proximately 2–3 km station spacing. A total of eighty-seven stations were deployed (with
two stations losing data), covering an area of about 28 × 28 km, which essentially spans
the entire Midu basin (Figure 3). Data were sampled at 4 ms intervals and continuously
monitored for one month, during which 294 local earthquakes were observed (Figure 4a).
Through high signal-to-noise ratio waveform phase picking, 10,713 initial P-wave phases
and 6022 initial S-wave phases were obtained (Figure 4b), showing a dense distribution
throughout the study area, conducive to reliable tomographic imaging results.
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3.2. Data Processing

In this study, an initial Vp/Vs value of 1.75 was estimated by minimizing the RMS of S-
wave arrival times, as shown in Figure 5a. This method utilizes the time difference between
different seismic events at various stations for statistical analysis, using the following
formula:

Pij = tPi − tPj =
xi − xj

VP
(1)

Sij = tSi − tSj =
xi − xj

VS
(2)

VP
VS

=
Sij

Pij
(3)

where Pij, Sij, tP, tS, VP, and VS represent the time differences in the P-waves and S-waves,
the arrival times of P-waves and S-waves, and the velocities of P-waves and S-waves,
respectively, between different stations (i and j) for the same event. xi and xj are the
epicentral distances corresponding to the different stations (i and j) for the event.

Considering the limited previous research in this region and the extensive seis-
mic tomography experiments on crustal velocity structures conducted close to this area
in Binchuan, we drew upon the research of predecessors [33,34]. We utilized a one-
dimensional initial P-wave velocity model from the Binchuan region (Figure 5b) and
adopted an initial Vp/Vs ratio of 1.75 for local earthquake 3D tomographic inversion. The
inversion employed the simul2000 program [35–38], which is widely applied in small-scale
imaging. Since S-wave arrivals are generally fewer and less reliably picked than P-wave
arrivals, simul2000 utilizes P-wave and S-P time differences to invert Vp and Vp/Vs, which
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is more stable and reliable than direct Vs inversion [38]. Additionally, Vp/Vs is directly re-
lated to Poisson’s ratio and better reflects physical properties than Vs alone. In sedimentary
basins, saturation of sediments, high porosity, and low compactness lead to reduced P-wave
velocities. These sediment characteristics influence S-wave propagation more, resulting in
more pronounced decreases in S-wave velocity, hence the anomalously high Vp/Vs ratios.
This integrated effect reflects the physical and fluid properties of basin sediments. The
structural type in the study area belongs to a typical faulted basin, characterized by low Vp
and high Vp/Vs ratios. Through a comparison of these two parameters, the basin extent
and aquifer structures can be identified, dissecting the spatial configuration of the Midu
Basin geothermal system.
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Figure 5. This figure depicts the average Vp/Vs and the selection of the initial P−wave velocity
model, where (a) shows the yellow line as the Vp/Vs fitting line, and (b) shows the green line as
the initial P−wave velocity model by Chen et al., 2016 [33] and the black line represents the initial
velocity model used by Zhang et al., 2020 [34] for the dense station tomographic imaging in Binchuan,
which is also the initial velocity model used in this study.

A grid size of 5 km × 5 km was set laterally, and depths were defined at 0 km, 3 km,
6 km, and 9 km in the inversion process. We balanced the choice of damping parameters
by analyzing the trade-off between data misfit and model variance [39–41]. The optimal
damping parameters were selected by searching over a wide range of damping values
(10 to 9000), as shown in Figure 6a,b. Initially, the damping coefficient for Vp/Vs was set
to 9000 to minimize the influence of S-wave velocity according to the distribution of the
L-curve for Vp damping set at 90 (Figure 6a). Then, with the Vp damping fixed at 90, the
damping for Vp/Vs was selected and set to 60 (Figure 6b). It can be observed that the
inversion converged after 13 iterations. Before inversion, residual distribution ranged from
−1.5 to 0 s, indicating an overall bias between the initial and true velocity models. After
inversion, both P-wave and S-wave travel time residuals centered around 0 s and exhibited
Gaussian distributions (Figure 6c,d).

We used the checkerboard testing method to evaluate the quality of the inverted model.
Based on the initial one-dimensional model, perturbations of ±5% for Vp and ∓5% for
Vp/Vs were applied to adjacent grids. The evaluation revealed that all inverted parameters
matched those obtained from the actual data inversion. The results of the checkerboard
testing are shown in Figure 7 (where 1.0 represents the best resolution, 0 indicates no
resolution, and the blue contour lines envelope areas with a resolution greater than 0.1).
From 0 km to 3 km depth, both Vp and Vp/Vs exhibit good resolution in the study area.
Beyond a 3 km depth, the imaging resolution in the study area deteriorates. Below a 6 km
depth, anomalies are observed only in the northern part of the dense array.
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4. Result and Geological Interpretation

According to the inversion results, the distributions of P-wave velocity (Vp) and the
velocity ratio (Vp/Vs) at different depths in the study area are shown in Figure 8. The
basin can be divided into two structural layers: the Mesozoic overthrust basement and
the Cenozoic strike–slip and extensional sedimentary layer. The Mesozoic overthrust
basement formed during the compression period of the Indian Plate, while the Cenozoic
sedimentary layer mainly formed during the escape period of the western Yunnan Plate.
From the Vp and Vp/Vs distribution, the velocity structure beneath the Midu basin shows
certain lateral zoning rules and significant vertical inheritance. The central part of the basin
exhibits a low-velocity anomaly in Vp, while the margins show high-velocity anomalies.
The distribution of anomalous belts is related to fault structures, with the Honghe and
Midu faults marking the eastern and western boundaries, respectively, and the Malipo
fault controlling the northern part. At depths greater than 3 km, Vp generally continues
to exhibit a northwestward trend, indicating that the Honghe and Midu faults remain
the primary controlling faults of the basin. However, the influence of the Malipo fault
on the basin is largely diminished, suggesting that its cutting depth is relatively shallow.
The significant westward shift of the Vp low anomaly indicates that the main Midu fault
extends westward at depth. Moreover, the thickness of Cenozoic porous formations in the
Midu basin is less than 3 km, extending downward into the Mesozoic basement. At a depth
of 6 km, the Vp anomaly section shows good vertical inheritance, with persistent high-
value anomalies east of the Honghe fault, suggesting favorable targets for deep geothermal
resources such as basalt or Carboniferous–Permian porous formations, similar to those east
of the Yinjie fault. Effective imaging becomes challenging beyond a depth of 6 km.
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The Vp/Vs anomaly features, on the contrary, show a high-speed northwest-oriented
band from 0 to 3 km, sandwiched by middle to low-speed zones. The boundary of the high-
speed band coincides with the location of the controlling basin faults, which is consistent
with Vp observations. Below 3 km, there is a significant change in the slice characteristics
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of both Vp/Vs parameters, but the overall pattern still forms a northwest-oriented band.
As the basin enters the Mesozoic basement, the aquifer properties decrease. The liquid
responses east of the Red River fault and the Midu fault zone become more pronounced.
At a depth of 6 km, there is a significant change in the distribution of Vp/Vs anomalies
on the slice, with a distinctive inverted “T” anomaly appearing in the central part of the
study area. The anomaly shows less response between faults, indicating attenuation and
extinction of the Midu fault at this depth (Figure 8).

By using velocity inversion, the epicenter can be repositioned. The distribution of
earthquake locations before and after velocity structure inversion is shown in Figure 4. In
the figure, black triangles represent the effective stations used, while red dots represent the
relocated results of local earthquake inversions retrieved from the Midu earthquake data
catalog. Compared to before relocation (Figure 4a), the seismic distribution after relocation
is more reasonable, with a closer relationship to the fault. The depth positioning of the
epicenter is more consistent with the characteristics of natural earthquakes (Figure 4b). The
accuracy of tomographic imaging also improves after relocation.

According to the longitudinal section of the tomographic imaging (Figure 9, the Vp
inversion profile shows low values shallower than 2 km, with low-value areas extending
beyond 3 km in the Midu basin region. Below the basin, at depths exceeding 4 km, high-
value anomalies appear, notably higher than both the eastern and western sides. It is
inferred that there exists a magmatic intrusion body at the bottom of the basin, distinct from
the Mesozoic basement, although the reflection of boundary faults is rather indistinct. The
Vp/Vs inversion profile provides a more precise characterization of the basin and boundary
faults. Regions with Vp/Vs values > 1.85 generally correspond to the development range
of Cenozoic basins, while blocks with values < 1.6 correspond to rigid intrusive bodies
such as granite, divided into eastern and western parts by the Midu fault, with the western
part being more significant and uplifted. Values between 1.6 and 1.85 correspond to the
basement from Mesozoic to Paleozoic.
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5. Discussion

Through relocation findings, it is discovered that the boundary faults of the Midu
basin do not constrain the seismogenic faults. Earthquakes are mainly distributed in the
northern part of the basin, providing relatively stable seismic sources for fine tomographic
imaging in the study area. With the finer 3-D seismic velocity model, we resolve the
subsurface structure beneath the Midu basin. The velocity of seismic waves is influenced
by lithology, structure, pore pressure, and fluid saturation. By analyzing and comparing
Vp and Vp/Vs slices, the spatial configuration relationships between the deep structure,
thermal reservoirs, and thermal-conductive structures of the Midu basin can be inferred
and characterized.

5.1. Faults System

Based on the distribution of seismogenic faults, the Yinjie Fault and the Midu Fault
have exhibited relative stability with minimal activity since the Quaternary period. The
Vp/Vs profile distinctly delineates the extent of the Cenozoic basin and its basement, with
the Midu Fault displaying distinct segmentation. At depths shallower than 2 km, the
fault is characterized by low Vp and high Vp/Vs ratios, with the high Vp/Vs boundary
demarcates the edge of the Cenozoic basin. This boundary corresponds to an east-dipping
normal fault converging with the Red River Fault. Tectonic reconstruction indicates that
the Midu Fault, as part of the Red River Fault, was subjected to left-lateral shear from the
Maolipo Fault during its right-lateral strike–slip movement, forming a strike–slip basin
with a Paleo-Mesozoic basement, upon which the Cenozoic sediments were deposited.

At depths greater than 4 km, high Vp and low Vp/Vs characteristics indicate a
substantial acidic intrusive body. This velocity characteristic is divided into two segments,
indicating a deep-seated fault, likely representing the deep extension of the Midu Fault.
However, its orientation is opposite to that of the Cenozoic layer, and it formed concurrently
with the Xiangyun Thrust as a west-dipping compressional shear fault.

The seismic characteristics in the vicinity of the Yinjie Fault on the eastern side of
the basin are consistent with those of the Midu Fault, indicating the presence of deep
compressional-shear faults. Following the Pliocene epoch, extensional tectonics within the
Midu basin induced structural inversion of these faults, transforming them into normal
faults. Despite this inversion, their activity levels remain low. Together with the Midu
Fault, the Yinjie Fault exerts control over the structural framework of the Cenozoic basin.

5.2. Geothermal System

The geothermal system comprises a heat source, heat reservoir, conductive structures,
and water-controlling structures. Tomographic imaging reveals that both the Vp and Vp/Vs
ratios respond significantly to deep-seated faults. However, Vp/Vs more clearly delineates
porous media and basin boundaries. While the Cenozoic basin and the Cretaceous to
Triassic sediments are predominantly composed of sandstone and mudstone, differential
compaction results in significant variations in Vp/Vs ratios.

At depths shallower than 2 km, low Vp and high Vp/Vs characteristics indicate a
high porosity and water content in the Cenozoic formations, making this layer one of the
primary heat reservoirs in the basin. In the 2–4 km depth range, seismic velocity features
are less pronounced, but geological analyses suggest that the widely developed basalt and
limestone in this interval represent potential heat reservoirs. The circulation depths of the
hot springs exposed within the basin are all shallower than 4 km (Table 1), corresponding to
this thermal reservoir. At depths greater than 4 km, acidic intrusive rocks act as favorable
radiogenic heat sources. Deep-seated faults cutting through these intrusive rocks serve as
convective pathways for deep heat sources, and are crucial conductive faults in the study
area. However, due to the segmentation of the Midu Fault, the thermal energy conducted
through these fault channels does not directly surface, but instead migrates to the base of
the Cenozoic basin. This heat is then exposed near NE or nearly E-W trending faults, such
as the Maolipo Fault, that intersect the Cenozoic formations.
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Table 1. Parameters related to thermal anomalies in the Midu basin.

Number Name TOutlet Type TSiO2 TNa-K TNa-K-Ca Altitude/m D/m

1 BZQ 57.0 HCO3-Na 96.1 201 209 1800 3287
2 XSD 47.3 HCO3-Na 91.7 160 202 1750 2537
3 SZ 36.1 HCO3-Na 107.3 187 306 1700 2804
4 GQ 53.2 HCO3-Na 116.9 166 270 1696.5 3374
5 JL 72.5 HCO3-Na 110.4 218 185 1675 3098

Among the deep faults, the Midu Fault exhibits a higher thermal conductivity capacity
compared to the Yinjie Fault. This is primarily because the western side of the basin directly
interfaces with heat-generating granitic rocks, while the eastern Yinjie Fault intersects mul-
tiple carbonate and basalt formations with well-developed pores and fractures, functioning
as a major water-conducting and storage-controlling fault.

Therefore, high-temperature geothermal resources suitable for power generation
should be sought near the Midu Fault on the basin’s western side. In contrast, applications
such as heating and wellness resorts are more feasible near the Yinjie Fault due to its
water-conducting properties (Figure 10).
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while the secondary heat flow radiates from the granite body to the surrounding areas.

6. Conclusions

(1) Through data analysis and epicenter relocation, it is confirmed that the boundary
faults of the Midu basin do not strictly control the seismic faults. Currently, the seismic
activity in the basin is not strong, with earthquakes mainly distributed in the northern
part of the basin. The active faults include the northeast-trending Maosupo Fault,
which is more active than the northwest-trending Midu Fault, and the Yinjie Fault.
These faults provide a relatively stable seismic source for tomographic imaging in the
study area.

(2) Both Vp and Vp/Vs reflect the velocity stratification of different geological units and
layers in the Midu basin. They respond significantly to the major faults at depth, with
Vp/Vs delineating porous media and basin boundaries more clearly. The sedimentary
rocks from the Neogene basin to the Cretaceous to the Triassic are primarily sandstone
and mudstone, but their velocity ratios vary significantly due to different compaction
effects. The Neogene basin, with higher porosity and water content, serves as the main
thermal reservoir in the basin. Large-scale mildly acidic rock bodies at the bottom and
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western part of the basin constitute potential heat sources, while extensive basalt and
limestone in the eastern basin basement serve as potential thermal reservoirs.

(3) The development of the Midu Fault is segmented. The current fault, known as the
controlling basin fault, primarily controls the sedimentation range of the Neogene
basin and serves as the main conduit and storage structure for water. Below the
Neogene, early formed west-dipping reverse faults exist, with the Midu Fault cutting
through the acidic rock bodies at the basin bottom during this stage. This fault serves
as the main thermal control structure in the basin, providing deep thermal sources.

(4) Seismic tomography indicates effective spatial relationships among heat sources,
thermal control structures, water-conducting structures, and thermal reservoirs in
the geothermal system of the Midu basin. These relationships correlate with the
segmented nature of the Midu Fault. The geothermal system of the basin can be di-
vided into two layers: a medium-low-temperature geothermal system in the Neogene
porous media and a medium-high-temperature geothermal system in the Paleogene-
Mesozoic basin underlying the Neogene basin. The western side of the Midu basin is
a favorable target for exploring medium-high-temperature geothermal resources.
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