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Abstract: As renewable energies need to be extended massively, new concepts are necessary to
prevent land conflicts with other uses. Such concepts should have a high generality to offer a swift
expansion of renewables anywhere. Within the project, the Photovoltaic Road Roofing Concept
(PV-SÜD), a concept for the roofing of roadways with solar panels, was investigated. Its effects
on the road infrastructure were analyzed, and a demonstrator was built. The technical boundary
conditions and requirements resulting from the specific application type were determined regarding
the photovoltaic technology, the possible energy generation, and the supporting structure. The study
was completed for a technical solution of 10 m length, 17 m width, and 6.8 m height, with the option
of a pent roof (highways running east–west) or gable roofs (highways running north–south). The
main target aim was to investigate the potential for widespread use at any site, in contrast to previous
studies which mainly aimed at a singular site or demonstrator project. The final solution can support
a 38.5 kWp photovoltaic system with a specific annual yield of between 37.5 MWh and 44.0 MWh. The
yield variation in sites in Austria and Germany was 14.7% and 17.9%, respectively. One demonstrator
roofing was realized as a steel-frame construction with active glass–glass photovoltaic technology at
a highway in Hegau (GE).

Keywords: photovoltaic; PV roofing; integration; highways; decarbonization of vehicles

1. Introduction

Energy generation by photovoltaics (PV) is one of the key technologies for increasing
the share of renewable energy sources in primary energy production [1,2]. However, this
requires the availability of corresponding areas. In highly populated countries with large
shares of PV generation, the available area for PV is becoming increasingly scarce, and
societies are exploring technologies where already concealed land mass can be used for
PV generation [3]. The high-ranking road network and the associated areas in Germany,
Austria, and Switzerland currently represent a largely untapped potential [4–7]. More
demonstration plants are already planned (e.g., in Switzerland [8]).

The technical possibility of integrating PV into the high-ranked street network is still a
matter of discussion and open discourse. One argument in favor of PV roofing is that sealed
surfaces (e.g., building surfaces) are especially useful for solar photovoltaic installations
and are needed to match climate goals [9].

Energies 2024, 17, 3991. https://doi.org/10.3390/en17163991 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en17163991
https://doi.org/10.3390/en17163991
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-9431-8057
https://orcid.org/0000-0003-4547-259X
https://orcid.org/0000-0002-5314-1304
https://orcid.org/0000-0003-2735-8056
https://doi.org/10.3390/en17163991
https://www.mdpi.com/journal/energies
http://www.mdpi.com/1996-1073/17/16/3991?type=check_update&version=2


Energies 2024, 17, 3991 2 of 17

It is assumed that the total infrastructure costs of housing or roofing highways with
PV systems will always be significantly higher than installing PV systems in other sites.
This, combined with the need for resources (e.g., steel and concrete), is one of the strongest
arguments against this type of installation.

Other studies argue that it is not technically or economically possible to activate
all potential in buildings to be activated and that BIPV installations will not allow us to
meet national installation goals [10]. This would increase the need to activate other areas,
preferentially already-sealed ones, such as high-ranked road networks. A strong argument
for PV installation on the high-ranking road network is the increasing electrification and
rise of electric energy consumption along the road network [11]. This demand may be from
lighting, communication, or tunnel ventilation. Another need arises from electric vehicle
charging demand at highway gas stations, especially those stations located far away from
strong grid infrastructure.

In this study, the main focus was put on the investigation of a useful, applicable
solution with the potential to be multiplied (i.e., by using standardized components). The
central research questions included the structural stability and agreement to the standards
and regulations of the PV elements and the supporting structure. The sensitivity of the
electric yield to a variety of sites and orientations was also observed. Investigations
have shown that PV roofing in the high-ranking road network is technically feasible with
currently available technology (ideally using industrially standardized components and not
tailor-made parts) and can make a relevant contribution to sustainable energy production
in the related energy sector. The technical feasibility of roofing sealed street road areas has
been demonstrated in principle by a live demonstrator. This study uses a more general
approach and identifies a modular concept for flexible use in the high-level road network
that can increase its energy yield potential while providing further beneficial effects.

2. PV-SÜD Concept

In the PV-SÜD project, the concept for photovoltaic road roofing was developed and a
demonstrator was built, taking into account the diverse requirements of the high-ranking
road application area, both for the solar modules and for the supporting structure.

2.1. Supporting Structure Constraints

The following goals were used as a guideline for the technical developments and
analysis:

• Energy generation through photovoltaics based on suitable PV module technology;
• Utilization of existing sealed street areas;
• Flexible use in the high-level road network;
• Flexible integration with minimum yield variety for different sites and geographical

orientation;
• Increase the durability of the roadway by protecting against overheating and precipi-

tation;
• Positive effects on road surface properties.

The main goal was to develop a concept that could be easily multiplied (to allow
for the mass manufacturing of components) using established concepts from other road
constructions (to operate on a high technology readiness level) and provide a simple scheme
for planners. Basic decisions in the design of the supporting structure were made regarding
structural safety and were chosen in agreement with the needs of the end-user stakeholders
in the D-A-CH (Germany, Austria, Switzerland) region:

• The canopy structure had to be easily adaptable to the existing road layout.
• The design of the basic geometry should be optimized for power generation, aesthetics,

and road operation requirements.
• The design in terms of geometry, length, and cross-section should be in such a way

that no rules and regulations for tunnel structures have to be mandatorily applied.
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• The supporting structure should be designed in such a way that no system failure can
occur in the exceptional load case of fire or impact.

2.2. PV Systems Constraints

The main decisions in the design for the PV generator were examined with regard to
the safety, yield optimization, and later scalability of the solution. The plant should meet
the following requirements:

• The PV solution should be scalable on highways with two and three lanes with and
without a shoulder and should be duplicable, i.e., not require a site-specific special
solution.

• Regular commercially designed products should be preferred versus specially de-
signed solutions.

• The energy generation should be optimized and maximized with regard to the struc-
tural conditions, i.e., the entire covered area should be used by PV if possible, excluding
openings for lighting or ventilation.

• Energy generation should be as independent as possible from the direction of travel
of the roadway (north–south (N-S), or east–west (E-W), etc.) due to the type of
construction and structural solution.

• Facilities should be constructed to eliminate or minimize self-shading.

Further constraints related to PV design as well as construction design were fire
protection on high-ranked roads, rainwater drainage, icicle formation protection, wind-
and snow-load, load from traffic noise, low impact on maintenance work, and safety and
security in agreement with road network regulations (e.g., a fire or accident impacting the
construction) [12–15].

2.3. Evaluation of Different Geometric Shapes

In the design process, possible shapes were evaluated against common and suc-
cessfully implemented technical designs. Particular attention was paid to the designs’
satisfaction. Figure 1 shows four variants for possible designs.
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Figure 1. The four variants considered in the discussion on the design of the roofing in the transverse
direction: (1) a completely flat roof, (2) a pent roof inclined at an indeterminate angle, (3) a gable roof
inclined at an indeterminate angle, and (4) roofing with an arched cross-section.

All of them were evaluated and also assessed in terms of their flexibility for different
lane widths and PV module mounting types.

Depending on the east–west or north–south course of the traffic axis, pent or gable
roofs are more suitable due to the energy yield. Flat roofs have a disadvantage in drainage,
while an energy-efficient elevation of photovoltaic modules could always be realized on
them. Constructions with an arch shape are not suitable due to an unsatisfactory impact on
the energy yield and the manufacturing costs, as well as shifting the roofing towards the
regulatory restrictions of road tunnels.

The evaluation of different support structure forms in the longitudinal direction
showed that a design with four supports and a cantilevered roof is the most suitable (for
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variants, see Figure 2). It was assumed that a structure with four columns will not collapse
immediately in the case of the failure of one column.
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Figure 2. Three variants of roofing in the longitudinal direction: (1) supports in the corners,
(2) supports in the center, (3) cantilever with supports in the perimeter.

A certain distance between the supports has a disadvantage in terms of the number
of foundations, but there is an advantage of the lower material consumption of the steel
structure due to the reduced spans.

2.4. PV-SÜD Concepts

The result is a concept that provides a 10 m long base element consisting of a sup-
porting structure made of steel, which is arranged either in a gable roof or pent roof form,
depending on the street orientation. It is used to mount overhead-certified silicon PV mod-
ules, with a glass/glass configuration. A gable roof for road sections with a predominantly
north–south course and a pent roof for road sections with a predominantly east–west
course (see Figures 3–5, and Figure 6, respectively) were chosen.
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Figure 6. Visualization of the pent roof variant.

They offer a very flexible solution and do not negatively affect the traffic and allow
the stability of the influence of orientation on the energy yield.

Most requirements can be met with (certified) components suitable for overhead
installations, currently in a growing supply for e.g., building integrated PV applications
(BIPV). The performance of different PV module setups was investigated following the
results of [16]. This concept was analyzed in detail regarding the achievable solar yields as
well as the expected side effects on the roadway and propagation.

For the given geometries, pent roof or gable roof, the useful area of PV modules was
the same, as well as for the footprint and the external dimensions of the sub-structure.
Table 1 shows the planning parameters including the technical planning specifications of
the PV system.

Table 1. Planning parameters for PV-SOL.

Component Techn. Data Unit

Structure ca. 10 × 17 m, L × W

PV generator 11.88 × 16.8 m, L × W

PV area 199.6 m2

No. modules 120 #

Power p. module 315 Wp

PV nominal power 37.8 kWp

Inclination 5 ◦

Inverter, 3-phase 2 × 17.5 kW AC

3. Results

3.1. Yield Sensitivity of PV-SÜD

Various locations were analyzed for a potential positioning of the PV-SÜD demon-
strator on highways in Austria and Germany, to prove the yield stability of the design.
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For this purpose, energy yield simulations were carried out for the different distinct
locations on highways with a design and simulation software (PV-SOL premium, valentin-
software.com/en/products/pvsol-premium) using the planning parameters from Table 1.

If the road runs north–south, a gable roof with east/west (E/W) orientation of the roof
surfaces and thus of the PV module arrays was selected. If the street runs from west to
east, a pent roof was selected with the roof surfaces and thus the PV module fields were
oriented to the south (S).

The sites for the sensitivity study, distributed in various regions of Austria and Ger-
many in the south as well as in the north, respectively, were the following.

• ASFINAG Rastplatz Leobersdorf A2,

coordinates: 47.910139◦ N, 16.208328◦ E;

• A1 Raststation St. Pölten SÜD,

coordinates: 48.177632◦ N, 15.555647◦ E;

• A2 Klagenfurt am Wörthersee,

coordinates: 46.648452◦ N, 14.253953◦ E;

• Parken mit WC-Anlage “Brandbühl” an der B 33 (Radolfzell am Bodensee, LK Kon-
stanz),

coordinates: 47.770195◦ N, 8.965138◦ E;

• Park and Ride Anlage Engen an der A 81 (Engen, LK Konstanz),

coordinates: 47.856474◦ N, 8.794141◦ E;

• Petrol and Ride Anlage Hegau an der A 81 (Engen, LK Konstanz),

coordinates: 47.862292◦ N, 8.785754◦ E;

• Hamburg Seevetal, Rastplatz Sunderblick A1,

coordinates: 53.377801◦ N, 9.951588◦ E.
Figure 7 gives the results for the yield calculation for all sites. Note that they are

geographically distributed in two countries from the sea in the north to the south of the
Alps. Further, they represent the two solutions in different orientations. It can be seen
from the table that two main influencing factors are the geographical altitude and also the
orientation (design).
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Figure 8 shows a map of Central Europe, where the calculated sites are marked with
blue dots.
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In terms of latitude, the annual specific yields vary for about 25% for the (S)-orientation
from the maximum in Klagenfurt with 1166 kWh/kWp to the minimum in Hamburg with
872 kWh/kWp. The comparison of the (E/W)-orientation gives almost the same result with
a variation of 26% from Klagenfurt with 1132 kWh/kWp to Hamburg with 836 kWh/kWp.

The (S)-orientation compared to the (E/W)-orientation gives a variation per site of
between 2.8% more yield for (S) than (E/W) in Hegau to 4.4% in Hamburg. Nevertheless,
the variation in latitude must also be seen in a regional context. Comparing sites only
in Austria, the total variation between all sites and orientations results in a maximum of
only 15% (Klagenfurt (S) vs. St. Pölten (E/W)). In Germany, the same calculation gives a
maximum total variation of about 5% (Brandbühl (S) vs. Engen (E/W)) excluding Hamburg.
The result including Hamburg would show 18% less and 22% less than Brandbühl (S) for
the (S)-orientation and the (E/W)-orientation, respectively.

The yield values for one unit of PV-SÜD (10 m roofing of road network) lie be-
tween 37.5 MWh/year (St. Pölten (E/W) and 44.0 MWh/year (Klagenfurt (S))—except
31.6 MWh/year and 33.0 MWh/year for Hamburg (E/W) and Hamburg (S), respectively.
The regional annual energy yield planning values for Austria therefore would be between
37.5 MWh and 44.0 MWh with a mean value of 40.4 MWh. The regional annual energy
yield planning values for Germany would be between 38.3 MWh and 40.2 MWh with a
mean value of 39.1 MWh which is only 1.3 MWh or 3.2% lower than the Austrian site eval-
uation. The total mean annual energy yield planning value of all sites (except Hamburg) is
39.7 MWh/year and 10 m units.

Concluding, the results give a low variation even under wide regional variation in
sites within a similar latitude and a very low variation between different orientations. This
proves that the PV-SÜD design is very robust towards the impact of site and orientation
for its final yield values. This finding makes the planning of energy output for several 10
m-units at different sites easier for the final implementation of the stakeholders hosting the
road network.
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3.2. Results for the Demonstration Site (Hegau)

The positioning of the system for the purpose of the calculation is shown in Figure 9.
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For both roof types (see Figures 10 and 11), the energy yield calculation was performed
over the course of the year. The monthly yield of the system in both configurations can be
found in Figure 12.
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Figure 11. PV-SÜD demonstrator at the Hegau site: The roof-type variant is the pent roof.

The Hegau site (A 81, Engen, LK Konstanz, with the GIS-coordinates: 47.82292◦ N,
8.785754◦ E) was chosen as the location for real demonstration because it has sufficient
consumers and suitable access and infrastructure.

At the Hegau site, the PV system on the pent roof with 40◦ orientation to the west
generates between 1% (August) and 14% (December) more energy over the year (in total
~3%) than the variant with the gable roof (E/W orientation); see Figure 12.

Further, different PV module technologies were compared at the Hegau site. The
37.8 kWp system (pent roof and gable roof) composed of monofacial modules was com-
pared to a system of bifacial modules of the same nominal generator capacity. The yield
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predictions and system performance indicators for both technologies are summarized in
Table 2 and Figure 13.
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Table 2. Comparison of different configurations and module technologies for the Hegau location.

A81 Hegau (Engen)
47.82292◦ N, 8.785754◦ E

Gable Roof Pent Roof
Unit

Monofacial Bifacial

PV Generator Output 37.8 37.8 37.8 kWp

Generator Surface 199.6 199.6 201.8 m2

Number of Modules 120 120 120 Quantity

Module
60 cells

Module size:
1680 mm × 990 mm

60 cells
Module size:

1680 mm × 990 mm

60 cells
Module size:

1682 mm × 1000 mm

Annual Yield 1013.31 1041.17 1058.89 kWh/kWp

Performance Ratio 87.8 88.0 89.8 %

Grid Feed-in 38 326 39 379 40 048 kWh/year
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Figure 13. Yield forecast per month over the course of the year in comparison between monofacial
(gable roof and pent roof) and bifacial PV modules (pent roof).

The bifacial variant only increased the yield by about 0.67 MWh/year (1.7%) and the
performance ratio by about 2.0%. Concluding, this simulation showed that the bifacial
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PV modules only provide a small additional yield in this case. The main reason might be
the general system’s almost horizontal design and sizing and the low albedo values of the
bitumen pavement.

3.3. Realization of PV-SÜD Demonstrator (Hegau)

After comparing all of the results, the roof-type variant pent roof was selected for the
realization of the PV-SÜD demonstrator and the demonstrator was built roofing one of the
exit lanes of the motorway station at the Hegau site (see Figures 14 and 15).
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Figure 15. Final PV-SÜD demonstrator at the Hegau site, with the view from below showing the over-
head proof of glass–glass PV modules with the dedicated water draining supporting structure @AIT.

The demonstrator consists of a 12 m × 14 m roof surface made of photovoltaic modules,
which stands about 5.50 m above the roadway on a steel structure. The demonstrator is
located in the area of the heavy goods lane running parallel to the A81 freeway at the “Im
Hegau—Ost” service station near Singen in Baden-Württemberg.

The structure and the construction layout of the demonstrator are shown in Figure 16.
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The total investment for the final installation were 225.000 EUR (demonstrator costs
of 2023). Assuming an electricity retail price range for Germany, in the years 2023–
2024, between 25 EUR/MWh and 40 EUR/MWh, payback time would be achieved after
14.2 years–22.7 years, respectively. Please note that the investment costs include the costs
for the total installation, whereas the PV system alone sums up to a maximum of 30% of
this cost, depending on the modules’ types and configuration.

3.3.1. PV Module Used for the PV-SÜD Demonstrator

For the PV-SÜD demonstrator, glass–glass modules with PERC solar cells from SO-
LARWATT GmbH were used. The electrical module data are given in Table 3.

Table 3. Data from SOLARWATT Vision 60 M construct.

Electrical Module Data (STC) Value/Unit

Nominal power 315 W

Nominal voltage 33.3 V

Nominal current 9.5 A

Open circuit voltage 41.1 V

Short circuit current 9.95 A

Module efficiency 19.1%

General Module Data: Vision 60 M construct.
Module technology: Glass-glass laminate, aluminum frame, black.
Covering material: Tempered solar float glass 2 mm, anti-reflective finish.
Encapsulant: Solar cells in polymer encapsulation, transparent.
Backing material: Tempered float glass, 2 mm.
Solar cells: 60 monocrystalline high-power PERC solar cells, 157 mm × 157 mm.
Module dimensions: L × W × H/Weight: 1.680 ± 2 × 990 ± 2 × 40 ± 0.3 mm/weight:
appr. 22.8 kg
Protection class: II (acc. to IEC 61140).
Fire class: A (acc. to IEC 61730/UL 790), E (acc. to EN 13501-1), BROOF (t1) (acc. to EN
13501-5).
Certified mechanical ratings as per IEC 61215: Suction load up to 2.400 Pa (test load 3.600 Pa),
Pressure load up to 5.400 Pa (test load 8.100 Pa).
Qualifications: IEC 61215 (incl. LeTID)|IEC 61730|IEC 61701|IEC 62804|IEC 62716 [17–25].

At AIT, additionally an insulation test was successfully performed on two modules.

3.3.2. Inverter Used for the PV-SÜD Demonstrator

The three-phase Fronius Eco in the power category 27 kW was used for the demon-
strator (see Table 4). The transformer-less inverter is of the IP 66 protection class.

Table 4. Inverter data.

Inverter Data Value/Unit

Max input current 47.7 A

Number of MPP trackers 1

Max PV generator output 37.8 kWp

Max efficiency 98.3%

Dimensions (h × w × d) 725 × 510 × 225 mm

Weight 37.7 kg
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3.3.3. Vibration Test of the PV-SÜD Demonstrator

Vibration tests of two PV modules were performed using a mechanical shaker and
vibrational testing setup to prove the mechanical stability for highway roofing integration.
Representing the PV-SÜD installation, the modules were tested using the same distance
and mounting structure. Figures 17 and 18 show images of the vibration test setup in
bottom and top views.
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Figure 18. Vibration-test setup, top view.

Three distance sensors were mounted to measure the deflection and a shaker was
mounted on the bottom of the modules. Loads up to +73 Pa (133 N) were applied to the
test modules. The maximum module-deflection was 2.2 mm (Sensor 1 : 2.2 mm, Sensor 2:
1.1 mm; and Sensor 3: 0.38 mm). In total, 8 million cycles were performed. The fundamental
frequency measured at a tunnel ceiling, with large and fast trucks passing underneath, is
around 1 Hz.

The vibration testing in the experiment was performed at a much higher frequency
of 37.5 Hz, so that the module’s force to deflection ratio equals the one measured at
1 Hz [26,27].

Figures 19 and 20 depict the EL images of Module 1 and Module 2 before and after the
performed vibration tests. Module 2 was the stimulated module and Module 1 resonated.

The EL images of Module 1 before and after the vibration test seem to be almost
similar.

Figures 21 and 22 depict the IV curves of Module 1 and Module 2 before and after
the vibration testing. Figure 21 shows an overlap of the curves, while in Figure 22 a slight
decrease in the open circuit voltage Voc is visible.
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Figure 22. IV curves of Module 2, before and after vibration tests.

Only Module 2 resulted a different EL image after the vibration test. More dark cells
and thus a slight degradation were visible.

No further degradation was observed; only after the test was an abrasion along the
module edge noticed (see Figure 23), likely due to the mounting of the modules for the test.
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Figure 23. Abrasion along the module edge.

Table 5 depicts the relative decrease in the maximum power point (Pmax = Vmpp ×
Impp), of the open circuit voltage (Voc), of the short circuit current (Isc), and of the fill factor
(FF) in %. Module 2 shows a slight decrease in the Voc of −1.4% and thus of the Pmax of
−2%, which could be regarded within the measurement uncertainty of our measurement
setup.

Table 5. Relative decrease in the modules’ maximum power point under vibration testing.

After Vibration Pmax Voc Isc FF

Module 1 −0.4% −0.2% −0.2% −0.0%

Module 2 −2.0% −1.4% −0.7% −0.4%
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4. Conclusions

In this study, the integration of PV systems as roofing for high-ranked street networks
was investigated and demonstrated. The importance of the presented study lies in investi-
gating, developing, and demonstrating a possibility to integrate PV systems for a future
electric energy systems of high PV penetration. Solutions like PV-SÜD might also allow us
to systematically exploit already-sealed surfaces for electric generation. The project offers a
design concept and demonstrates the technical feasibility in real life. The created designs or
similar further developments may enable fostering the development of blueprint solutions
to be industrially multiplied. In the given demonstration, it was also proven that a PV
system of this type conforms to standards by only using standardized components from
the stock. In detail, the investigation results include the following findings.

The boundary conditions and challenges of different locations were taken into account
regarding the solar energy production of the roofing and the design of the structure. A
design was possible based on standards and regulations for the condition of the road
surface and traffic safety and security. Optimized design parameters of a robust concept
were presented as one self-sustained unit of 12 m length and 14 m width and 37.8 kWp solar
capacity. The site-specific and orientation-specific analysis of the PV electric yield showed
that using the flat pent-roof design, the yield is between 37.5 MWh and 44.0 MWh per unit
with a maximum variation of only 17.9%. The reliability and durability of the PV elements,
their supporting structure, and their structural suitability and efficiency were proven by
laboratory testing. A demonstrator was built at Hegau (Engen, Germany) which has been
in operation since 10/2023. It will enable researchers to investigate in more detail how
such a structure can meet the diverse requirements of the high-level road network with
respect to drainage, wind and snow loads, stability and impact resistance, maintenance
procedures, and traffic safety [28–31].

The presented work not only shows that a lot of engineering and scientific questions
could be solved, but it also opens a new set of questions and routes for future investigations,
which could not be covered in this work. One is to study the long-time development of the
electric yield in detail. This is of interest regarding the site and orientation dependency, as
well as the degradation of the PV systems due to traffic interaction. In addition, the impact
of the PV system roofing on the street surface is also of interest concerning important
road parameters. These are, e.g., the surface temperature, moisture, rain, snow or ice, and
soiling. From these parameters, conclusions on the lifetime impact of the road surface can
be deduced. Finally, economic evaluations for different user-scenarios and for multiplied
or up-scaled application would be of importance.
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