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Abstract: When wind generation systems operate under weak grid conditions, synchronization
stability issues may arise, restricting the wind farms’ power transfer capacity. This paper aims to
address these challenges on the grid side. Firstly, a clear exposition of the coupling mechanism
between the grid-connected inverters (GCI) of wind generations and the weak grid is provided. Then,
an equivalent parallel compensation method integrated into the PLL to enhance synchronization
stability is proposed. The method changes the reference of the PLL and equivalently parallels the
virtual resistance with the grid impedance, which alters the strength of the grid. It reshapes the
inverter qq-axis impedance at the impedance level. And the proper design of the virtual resistance will
enhance the system’s stability without compromising the dynamic performance of PLL. In addition,
the proposed method is robust to the parameter changes of the grid-connected system and the grid
impedance measurement error. Experimental results are presented to validate the effectiveness of the
compensation method.

Keywords: wind generation; weak grid; synchronization stability; coupling mechanism; equivalent
parallel compensation; stability analysis

1. Introduction

The development of wind generation has gained significant momentum as a solution to
environmental pollution in recent years. Given the decentralized nature of wind resources,
power plants are often situated in remote locales. And it relies on GCI to access the
conventional grid.

However, employing PLL as synchronization units in wind generation systems can
potentially introduce synchronization instability problems, particularly under weak grid
conditions [1]. The sub-synchronous resonance (SSR) was observed in the Xinjiang Type-IV
wind generation plant [2].

The impedance-based stability criterion combined with the generalized Nyquist crite-
rion (GNC) is extensively adopted to address the synchronization instability issues [3]. The
dq-frame impedance model of GCI is established in [4], and the qq-axis negative resistance
is considered as the fundamental factor contributing to synchronization instability. Ref. [5]
analyzes the PLL feedforward effect on the control of GCI and concludes that the PLL cur-
rent feedforward effect has a more adverse impact on system stability. Ref. [6] simplifies the
MIMO impedance model to the SISO model to assess the impacts on the synchronization
stability of PLL, current control, voltage feedforward, and DC voltage controller. Addition-
ally, ref. [7] derives a SISO impedance model related to the synchronization loop, with PLL
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loop shaping employed to enhance stability. In [8], a d-axis current error is feedforward to
current control to damp the resonance based on the steady-state relationship.

The stability improvement methods are proposed for both the motor side [9] and the
grid side. On the grid side, the widely adopted method is a feedforward method to reshape
the impedance characteristic [10].

Since the PLL is pivotal for synchronization, several studies have focused on modifying
the PLL [11,12]. Recent efforts have predominantly focused on changing the PLL input.
Ref. [13] enhances the passivity of a GCI by multiplying the output impedance phase
regulator of normalized magnitude with the phase-locked loop inputs. Ref. [14] introduces
a compensation frame to achieve current control by phase lag compensation, which is
employed in PLL. By modifying the PLL input, ref. [15] introduces a series resistance in the
grid impedance to increase damping in the studied system. However, this method entails a
complex impedance model. Ref. [16] analogous to the back electromotive force observer in
DC motor control, the input ofthe PLL is readjusted by state estimation.

Some of the literature achieves oscillation suppression by employing novel control
methods. The literature [17] points out that the grid-forming control has more stability
under weak grids compared to the grid-following control, but it will be a risk of instability
under strong grids. Ref. [18] controls the GCI without adopting PLL implemented by
the voltage-modulated direct power control. And it can also be utilized in weak grids
by employing a band-pass filter [19]. The adaptive dual-mode control is suggested for
oscillation suppression, i.e., current source mode under a weak grid and voltage source
mode under a strong grid [20]. Ref. [21] proposes a grid voltage feedforward control
strategy based on multi-objective objective constraint to broaden the adaptation range of
the system to the grid impedance.

In addition, ref. [22] analyzes the stability range of PLL parameters under weak grid,
finding suitable parameters by iterative adjustment method to enhance the power transfer
capability. Ref. [23] concludes that the guideline that the PLL bandwidth should not exceed
one-tenth of the current loop may not be applicable under weak grid. Ref. [24] proposes
a control parameter design method considering the fluctuation of the grid impedance to
improve the dynamic stability under weak grid. The supplementary damping controllers,
such as TCSC, have also been adopted to damp the SSR of wind generations [25].

However, stability enhancement methods based on optimizing system parameters
sacrifice the bandwidth of the PLL or current control, increasing the coupling between
the current control and PLL. The supplementary damping controllers are limited in their
promotion by their high cost and complex operation control modes. Therefore, optimizing
the grid-side or motor-side control system for the studied system is more appropriate.

But the current study of the coupling mechanism of a grid-connected system is still in-
complete, resulting in the existing stability control strategies mainly relying on feedforward
compensation based on the q-axis voltage. And the compensation term is complicated.
When the grid impedance changes and the parameter changes during the actual operation
of the system, it brings new challenges for the stability control methods. Hence, there is
a pressing need to introduce novel stability control methods derived from the coupling
mechanism of grid-connected systems.

This article proposes an equivalent parallel resistance compensation method on the
grid side employed in the PLL, which is based on comprehending the root of instability.
The highlights are summarized as below:

(a) A clear exposition of the coupling mechanism among the PLL, weak grid, and current con-
trol is provided, laying the groundwork for forthcoming stability enhancement techniques.

(b) An equivalent parallel resistance compensation method integrated into PLL is pro-
posed to improve synchronization stability. It reshapes the qq-axis impedance and will
not decrease the dynamic performance of PLL with a proper design of virtual resistance.

(c) The compensation method demonstrates robustness against system parameter varia-
tions and grid impedance measurement errors.
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The subsequent sections are structured as follows: Section 2 derives the investigated
system’s impedance model and analyzes the coupling mechanism between the PLL, weak
grid, and current control. Section 3 presents the proposed equivalent parallel resistance
compensation method, including its design and performance analysis. Section 4 conducts
the experimental verification. Section 5 concludes and outlines future work.

2. Impedance Model and Stability Analysis of the Grid-Connected System
2.1. Description and Model of System

Because the dynamic of the DC capacitor is slow, the motor side and the grid side are
decoupled in type-IV wind generation. Thus, the rotor side is represented by DC-source.
The topology is shown in Figure 1. Filter inductor Lf is utilized to filter the GCI output
voltage Viabc to PCC voltage Vabc. By controlling the dq-component (ic

d, ic
q) of the current Iabc

and synchronizing with the voltage of PCC, the grid-following control based on PLL can be
achieved. Table 1 lists the introduction and the value of system parameters. SCR is usually
used to define the grid strength, and the equation of SCR can be expressed as:

SCR =
3V2

g

ZgS
(1)

where Vg is the grid voltage magnitude, Zg is the grid impedance, and S is the rated capacity
of the grid-connected system. When SCR > 3, it is considered a strong grid; 2 < SCR < 3, it
is considered a weak grid; and SCR < 2, it is considered a very weak grid.
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Figure 1. System topology and control diagram. 
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Proportional gain of Gi kpi 5.24 

Figure 1. System topology and control diagram.

Table 1. System parameters.

Parameter Values

DC-link voltage Vdc 400 V
Grid voltage RMS value Vg 130 V

Rated power Pn 2 kW
Filter inductors Lf 3 mH
Filter capacitors Cf 20 µF

Damping resistors Rf 10 Ω
Grid inductors Lg 9/16 mH

Switching frequency fsw 10 kHz
Sampling frequency fs 10 kHz

Proportional gain of Gi kpi 5.24
Integral gain of Gi kii 1370

Proportional gain of Gpll kppll 4.2
Integral gain of Gpll kipll 384
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The input of the PLL is Vabc rather than Vgabc under the weak grid case. This leads to
distinct system frames and control frames. The dq-component of variables in the system
and control frame are equal in steady state, namely xs

dq = xc
dq, where the control frame and

the system frame are designated with “c” and ”s”.
Figure 2a illustrates the control block of the GCI with PLL effects. The relationship

between the current ∆idq and modulated voltage ∆edq in different frames is as follows [8]:

∆ic
dq = ∆is

dq +

[
0 −Iqre f
0 Idre f

]
︸ ︷︷ ︸

Gi
pll(s)

Hpll(s)∆vs
dq (2)

∆ec
dq = ∆es

dq +

[
0 −Viq
0 Vid

]
︸ ︷︷ ︸

Gv
pll(s)

Hpll(s)∆vs
dq (3)
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Gi
pll(s) and Gv

pll(s) represent the PLL feedforward effects on current and modulated
voltage. Idqref and Vidq denote the steady-state values [8]. Hpll(s) describes the relationship
from the ∆vs

q to the ∆θ:

Hpll(s) =
Gpll(s)

s + Vs
d Gpll(s)

(4)

Gpll(s) = kppll + kipll · s−1 (5)

Gi(s) represents the matrix of current control, Gdec(s) is the matrix of decoupling term,
and I is the unit matrix.

Gi(s) = Gi(s) · I =
(

kpi + kii · s−1
)
· I (6)

Gdec(s) =
[

0 −ωL f
ωL f 0

]
(7)
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The impedance matrix Zf corresponds to the inverter side filter inductance Lf and is
expressed as:

Z f =

[
sL f −ωL f
ωL f sL f

]
(8)

The time delay matrix Gdel(s) accounts for the digital control delay, with Tdel = 1.5 Ts.
It is defined as:

Gdel(s) =
(

1 − 0.5Tdel · s
1 + 0.5Tdel · s

)
· I (9)

Figure 2a can be further converted to Figure 2b, where Gm
pll(s) can be given by:

Gm
pll = Gdel((Gi − Gdec)G

i
pll − Gv

pll) (10)

Considering that the capacitor branch has a more significant influence on the high-
frequency dynamics, while the oscillation of the studied system primarily occurs at frequen-
cies less than 200 Hz, the filter capacitor branch is simplified. Consequently, the expression
for the inverter impedance Zout can be obtained as:

Zout =

[
Zout,dd Zout,dd
Zout,qd Zout,qq

]
= (Z f + (Gi − Gdec)Gdel) · (I + Gm

pll Hpll)
−1 (11)

The grid impedance, denoted as Zg, can be obtained as follows:

Zg =

[
sLg −ωLg
ωLg sLg

]
(12)

2.2. Stability and the Coupling Mechanism Analysis

Based on (8), the Zout can be presented in a more intuitive way:

Zout = (I · (Z f + (Gi − Gdec)Gdel)
−1︸ ︷︷ ︸

Zplant
−1

+ Gm
pll Hpll · (Z f + (Gi − Gdec)Gdel)

−1︸ ︷︷ ︸)
Zm

pll
−1

−1
(13)

Zout denotes the impedance of the GCI incorporating the PLL feedforward effect, while
Zplant refers to the GCI impedance when the PLL feedforward path is not taken into account.
Zm

pll(s) represents the impedance formulated by the feedforward effect.

Figure 3 shows the GNC plot of the Lp(s) = Zg · Z−1
plant when Lg = 16 mH and the

Lo(s) = Zg · Z−1
out when Lg = 9 mH, Lg = 16 mH. The eigen-traces λ1p, λ2p correspond to

Lp(s), and the eigen-traces λ1o, λ2o correspond to Lo(s).
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Figure 3. The GNC plot under weak grid (a) Lg = 16 mH, without PLL effect (b) Lg = 9 mH, with PLL
effect (c) Lg = 16 mH, with PLL effect.
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As depicted in Figure 3, when the PLL effect is not taken into account, and Lg = 16 mH,
the λ1p, λ2p do not intersect (−1, j0), where the stable operation can be maintained. When
taking into account the PLL effect, it is evident that the system remains stable when
Lg = 9 mH, whereas instability arises when Lg = 16 mH. Therefore, the system’s stability is
primarily influenced by both the PLL and the grid impedance. The coupling between the
weak grid and the PLL will be explored in the following.

The Bode plot of the GCI impedance in qq-axis when considering PLL effects and
not considering PLL effects is shown in Figure 4. It can be deduced that Zout,qq exhibits
capacitive impedance characteristics in qq-axis due to the PLL effect, which may couple
with a weak grid and further contribute to instability. Thus, the PLL affects the stability of
the studied system via current control by the feedforward effect.

Energies 2024, 17, x FOR PEER REVIEW 6 of 15 
 

 

Figure 3. The GNC plot under weak grid (a) Lg = 16 mH, without PLL effect (b) Lg = 9 mH, with PLL 

effect (c) Lg = 16 mH, with PLL effect. 

The Bode plot of the GCI impedance in qq-axis when considering PLL effects and not 

considering PLL effects is shown in Figure 4. It can be deduced that Zout,qq exhibits capaci-

tive impedance characteristics in qq-axis due to the PLL effect, which may couple with a 

weak grid and further contribute to instability. Thus, the PLL affects the stability of the 

studied system via current control by the feedforward effect. 

10

20

30

40

50

10
1

10
2

10
3

 150
 100
 50

0
50
100
150

10
0

Frequency(Hz)

A
m

p
li

tu
d
e(

d
B

)
A

n
g
le

(D
eg

re
e) Capacitive

impedance

 180°～ 90°

Zplant,qq Zout,qq

 

Figure 4. Bode plot of GCI impedance in qq-axis. 

Further exploration of the coupling between the weak grid and PLL will be con-

ducted subsequently. The steady-state relationship between the 𝒗𝑑𝑞
𝑠 , 𝒗𝑔𝑑𝑞

𝑠  and Zg can be 

formulated as: 
s s s

g
dq gdq dq
= + v v Z i  (14) 

Linearizing Formula (14) and assuming negligible variation in the grid voltage 𝒗𝑔𝑑𝑞
𝑠  

at steady state: 
s s

g
dq dq

 = v Z i  (15) 

Based on Formula (15), the small signal model of the PLL can be represented in Figure 

5a. This depiction clearly reveals the interconnection between the Zg and PLL. PLL further 

feedforwards the current control, resulting in the formulation of the qq-axis capacitive im-

pedance area. 

Gpll(s)

dq
s

dqc
s 1

s

di
c

du

c

qu Δθ

(a)

Gi Gdel- ++

PLL&Grid 

Coupling path

Gdec

s
dq

i
+- +-

G

1

f g+Z Z

(b)

sLg

sLg

-ωLg

ωLg

++

++

s

qi

s

du

s

qu

Zg

 

Figure 4. Bode plot of GCI impedance in qq-axis.

Further exploration of the coupling between the weak grid and PLL will be con-
ducted subsequently. The steady-state relationship between the vs

dq, vs
gdq and Zg can be

formulated as:
vs

dq = vs
gdq + Zg · is

dq (14)

Linearizing Formula (14) and assuming negligible variation in the grid voltage vs
gdq at

steady state:
∆vs

dq = Zg · ∆is
dq (15)

Based on Formula (15), the small signal model of the PLL can be represented in
Figure 5a. This depiction clearly reveals the interconnection between the Zg and PLL.
PLL further feedforwards the current control, resulting in the formulation of the qq-axis
capacitive impedance area.
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Figure 5b further provides an intuitive representation of the coupling, where G denotes
the coupling term, which can be mathematically obtained as:

G = Gm
pll HpllZg (16)

3. Analysis and Design of Equivalent Parallel Compensation Method
3.1. Analysis of the Equivalent Parallel Compensation Method

When a virtual resistance is parallel with Zg, it leads to a modification in the reference
of the PLL, consequently changing the coupling method. It results in a reduction in the
coupling degree between the qq-axis capacitive impedance of the GCI and the inductive
weak grid. Meanwhile, the damping of the studied system can be improved by the
virtual resistance.

To achieve the stability control of the grid-connected system, an equivalent paral-
lel compensation method integrated into PLL is proposed. The Zg in complex space is
expressed as follows [26]:

Zg = (s + jω1)Lg (17)

Assuming the virtual resistance Rv is parallel with Zg, the expression for the grid
impedance Zg,com after parallel connection can be expressed as:

Zg,com =
Rv

(s + jω1)Lmg + Rv︸ ︷︷ ︸
Gvr,dq

(s + jω1)Lg (18)

where Lmg is the grid impedance value measured by the impedance measuring device, G
can be expressed as another expression:

G(s) =
Gm

pll(s)

Hpll(s)
· Gvr,dq · Hpll(s)︸ ︷︷ ︸

Hpll,com

· (s + jω1) · Lg (19)

The specific implementation of the virtual resistance will be discussed below. Due to
the difficulty of paralleling the resistance with the grid impedance in practical applications,
it can modify Hpll to Hpll,com, namely modify the input of the PLL as shown in Formula (18).
Where Gvr,dq in dq domain can be converted to Gvr,αβ in αβ domain:

Gvr,αβ(s) = e−jθGvr,dq(s + jω)ejθ =
Rv

sLmg + Rv
(20)

According to Formula (19), when multiplying the transfer function Gvr,αβ with the PLL
input in the αβ domain, the transfer function of Hpll becomes Hpll,com, which equivalently
parallels the virtual resistance Rv with the grid impedance. The equivalent parallel resis-
tance compensation method alters the coupling method in the studied system. Adopting
the equivalent parallel resistance compensation method, the coupling degree will decrease,
which theoretically improves the damping of the studied system.

Expanding on the above analysis, the modified PLL structure is shown in Figure 6.
Here, Gvr,αβ = Gvr,αβ·I, and Gbpf = Gbpf·I. Gbpf is the band-pass filter aimed at preserving
high-frequency characteristics and suppressing additional harmonics, expressed as:

Gbp f (s) =
2ξω1s

s2 + 2ξω1s + ω1
2 (21)

where ξ = 0.707, ω1 denotes the grid angular frequency. The introduction of Gvr,αβ changes
the phase reference of PLL input, consequently altering the stable operational point. This
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leads to an undesirable reactive power. Therefore, the dq transform angle should be
modified, formulated as:

Tαβ,dq = ejθpll,com =

[
cos(θpll,com) − sin(θpll,com)
sin(θpll,com) cos(θpll,com)

]
(22)

where θpll,com represents the corrected dq transform angle. Since the phase shift of the Gbpf
is 0 at the fundamental frequency, θpll,com can be formulated as:

θpll,com = −∠Gvr,αβ + θpll (23)
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Consequently, the impedance of GCI with the proposed compensation method can be
modified as follows:

Zout,com = (Z f + (Gi + Gcom)Gdel) · (I + Gm
pllGvr,dqHpll)

−1 (24)

3.2. Dynamic Performance of Compensation Method

The compensation method is utilized in the PLL without impacting the current track-
ing dynamic performance. The impact of the compensation method on PLL dynamic
performance is assessed through MATLAB R2021b/Simulink.

The dynamic performance of the frequency tracking for both the conventional PLL and
the improved PLL with different values of Rv (Rv = 4 and Rv = 1) is illustrated in Figure 7.
The improved PLL exhibits reduced undershoot compared to the conventional PLL. Fur-
thermore, as Rv decreases, the undershoot is further minimized. Therefore, the improved
PLL effectively mitigates the overshoot and undershoot observed in the conventional PLL.
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conventional PLL.

The dynamic response time is slightly changed with the improved PLL when Rv = 4.
But it will further decrease with improved PLL when Rv = 1. Thus, the Rv will not be
designed too small for a better dynamic response time of the PLL.

Thus, with a well-designed Rv, the proposed compensation method effectively main-
tains the stability while preserving minimal impact on the dynamic performance of the
frequency tracking. For the selection of Rv, if Rv is too high, the coupling degree cannot be
decreased. Conversely, if Rv is set too low, it may adversely affect the dynamic performance
of the PLL.
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3.3. Design and Stability Analysis

The stable range of the Rv is (0, 6) by employing the GNC to Lc(s) = Zg · Z−1
out,com. In

this study, Rv is chosen as 2, as it offers appropriate damping while preserving the dynamic
performance of the PLL. Figure 8 illustrates the GNC plot for Lg = 16 mH and Rv = 2. The
GNC plot clearly indicates that (−1, j0) lies outside the λ1oc, λ2oc, indicating the stable
operation of the interconnection system.
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3.4. Robustness Analysis 

The different operation modes of the grid-connected system may further decrease the 

stability. Factors such as the introduction of reactive power, increased PLL bandwidth, 

and grid impedance variations can destabilize the system. The errors of the estimated grid 
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Figure 8. The GNC plot with proposed compensation method when Lg = 16 mH.

Figure 9 showcases the Bode plots of the GCI output impedance with and without
compensation. Because the magnitude of the dq-axis impedance and the qd-axis impedance
are relatively small, which can be omitted. The primary influence of the compensation
method is located on the qq-axis impedance. With the implementation of the compensation
method, the positive resistance area of qq-axis impedance expands. This signifies a reduction
in the coupling degree between the PLL and the weak grid.
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3.4. Robustness Analysis

The different operation modes of the grid-connected system may further decrease
the stability. Factors such as the introduction of reactive power, increased PLL band-
width, and grid impedance variations can destabilize the system. The errors of the esti-
mated grid impedance Lmg of Gvr,dq also influence the effect of the compensation method.
Therefore, it is imperative to conduct further analysis on the robustness of the proposed
compensation method.

To validate the robustness of the equivalent parallel resistance compensation method,
a series of test cases listed in Table 2 were investigated. Depicted in Figure 10, the grid-
connected system exhibited instability under cases I, II, and III. However, with the equiva-
lent parallel resistance compensation method, stability was achieved in the grid-connected



Energies 2024, 17, 4450 10 of 15

system for all three cases. It demonstrates the robustness of the equivalent parallel resis-
tance compensation in accommodating reactive power introduction, fluctuations in PLL
bandwidth, and grid impedance.

Table 2. Test cases.

Cases Lmg (mH) Lg (mH) PLL Parameters dq-Axis Current (A)

I 16 16 kppll = 4.2, kipll = 384 Idref = 10, Iqref = 2
II 16 16 kppll = 4.2, kipll = 484 Idref = 10, Iqref = 0
III 16 17.5 kppll = 4.2, kipll = 384 Idref = 10, Iqref = 0
IV 4.8 (−70% Lg) 16 kppll = 4.2, kipll = 384 Idref = 10, Iqref = 0
V 41.6 (+160% Lg) 16 kppll = 4.2, kipll = 384 Idref = 10, Iqref = 0
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The proposed compensation method relies on obtaining grid impedance information.
However, in practice, the unavoidable error of the grid impedance measurement device
will lead to a deviation between the Lmg and the Lg. Therefore, it is necessary to analyze
whether the equivalent parallel resistance compensation can achieve stable control when
there are errors in grid impedance measurement.

The impacts of grid impedance estimation value Lmg, as revealed by Equation (19),
on the compensation method can be inferred. Case IV and case V demonstrate that the
compensation method can maintain stability even when the error in grid impedance
measurement reaches −70% Lg and +160 Lg.

Compared with [27], the proposed compensation method is highly tolerated for
grid impedance measurement errors. In addition, compared with the series resistance
compensation method in [15], the impedance model of the proposed compensation method
is not complicated.

4. Experiment and Simulation Verification

To verify the proposed equivalent parallel compensation method, a 2 kW grid-connected
system is built up, employing a PM50CLA20 inverter made by Mitsubishi in Tokyo, Japan,
and YXSPACE-SP2000 made by YANXU in Nanjing, China. Additionally, IT6535C serves
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as the DC power source, which is made by ITCH in Nanjing, China. And GCT33060 func-
tions as the grid simulator, which is made by HANSUN in Shanghai, China. The weak
grid is realized by connecting the inductor between the converter and grid simulator. The
experimental setup is depicted in Figure 11.
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Figure 11. Experimental setup.

Figure 12 shows the waveforms with different Lg. It can be observed from Figure 12b
that when the SCR is switched from 4.6 to 2.59, the oscillations will occur. Notably, a
positive-sequence frequency of 111.25 Hz and a negative-sequence frequency of 11.25 Hz
are observed due to the mirror frequency effect, as illustrated in Figure 12c.
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Figure 13 showcases the waveforms with the compensation method when Rv = 1,
Rv = 2, Rv = 4. As depicted in Figure 13, the utilization of the compensation method
reduces voltage and current distortion. Consequently, the studied system demonstrates
stable operation with the utilization of the compensation method. Additionally, Figure 14
presents the fast Fourier transform (FFT) analysis of the current, indicating the damping of
oscillation frequencies in all three cases.
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Figure 14. FFT of current under Figure 13 (a) Rv = 1, (b) Rv = 2, and (c) Rv = 4.

Figure 15 exhibits the waveforms with the compensation method for Rv = 2 under
case I. The parameter variations of the studied system alter the oscillation frequency. From
Figure 15a, when the compensation is not utilized, the investigated system experiences
resonance. When the compensation method is adopted, the resonance can be mitigated.
But the reference of PLL will be changed. Thus, there is a transient current overshoot and
reactive power before the phase lock process, as depicted in Figure 15c. Figure 16 shows
the damping process of ia, which is based on discrete Fourier transformation (DFT). The
oscillation frequency of 16 Hz and 116 Hz will be attenuated after the adoption of the
compensation method.
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Figures 17 and 18 present the waveforms when Rv = 2 under case II and case III. It can
be deduced that the compensation method effectively dampens the resonance even when
the oscillation frequency has shifted, indicating the robustness of the method against the
introduction of reactive power, fluctuations in PLL bandwidth, and grid impedance. These
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experimental results provide further evidence of the effectiveness and robustness of the
compensation method.
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Figure 19 illustrates the waveforms of when Rv = 2 under case IV and case V. Given
Formula (23), the error in grid impedance measurement does not affect the effectiveness of
the phase correction. In addition, the error of grid impedance measurement can be up to
−70% and +160%, demonstrating the robustness of the compensation method to errors in
grid impedance measurement, as verified experimentally.
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Moreover, the waveforms of when the frequency of the grid changes 0.5 Hz and
−0.5 Hz and Rv = 2 are shown in Figure 20, which is conducted in MATLAB/Simulink. The
system can maintain stability in both cases, which indicates the proposed compensation
method can deal with the change of grid frequency.
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5. Conclusions and Future Work

This paper provides a clear exposition of the coupling mechanism in the grid-connected
system. Based on this coupling mechanism, an equivalent parallel compensation method
is proposed by altering the structure of PLL. This method introduces a virtual resistance
in parallel with the grid impedance, which achieves the decouple of the studied system.
It reshapes the inverter qq-axis impedance at the impedance level. By carefully designing
the virtual resistance, the PLL dynamic performance can be maintained. Additionally, the
method also has robustness to the parameter variations, such as the introduction of reactive
power, the fluctuations of the PLL bandwidth, and grid impedance. And the error of grid
impedance measurement can be up to −70% Lg and +160% Lg. Experimental waveforms
further validate the effectiveness of this method.

The outlook of future work on this topic can be directed towards the following aspects:

(1) The instability mechanism of the grid-connected system can be deeply analyzed,
which enables us to propose a more effective stability control method.

(2) The effectiveness and implementation of the equivalent parallel resistance compensa-
tion method in scenarios such as multiple inverters should be explored.
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