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Abstract: To address the issue of excessive grid-connected power fluctuations in wind
farms, this paper proposes a capacity optimization method for a hybrid energy storage
system (HESS) based on wind power two-stage decomposition. First, considering the
susceptibility of traditional k-means results to initial cluster center positions, the k-means++
algorithm was used to cluster the annual wind power, with the optimal number of clusters
determined by silhouette coefficient and Davies–Bouldin Index. The overall characteristics
of each cluster and the cumulative fluctuations were considered to determine typical daily
data. Subsequently, improved complete ensemble empirical mode decomposition with
adaptive noise (ICEEMDAN) was used to decompose the original wind power data for
typical days, yielding both the grid-connected power and the HESS power. To leverage
the advantages of power-type and energy-type storage while avoiding mode aliasing, the
improved pelican optimization algorithm—variational mode decomposition (IPOA-VMD)
was applied to decompose the HESS power, enabling accurate distribution of power for
different storage types. Finally, a capacity optimization model for a HESS composed
of lithium batteries and supercapacitors was developed. Case studies showed that the
two-stage decomposition strategy proposed in this paper could effectively reduce grid-
connected power fluctuations, better utilize the advantages of different energy storage
types, and reduce HESS costs.

Keywords: power fluctuations; hybrid energy storage system; k-means++; improved
complete ensemble empirical mode decomposition with adaptive noise; variational mode
decomposition; improved pelican optimization algorithm

1. Introduction
With the increasingly severe issue of global climate change, reducing carbon emissions

has become a global consensus and an urgent task. Wind energy, as a clean and renewable
energy source, has gradually become a key force in the global energy transition because of
its environmental friendliness and abundant resources [1]. Renewable energy, represented
by wind power, has experienced rapid development in recent years, especially driven by
technological innovations and large-scale applications. The cost of wind power generation
has significantly decreased, its efficiency has continuously improved, and it has gradually
gained the ability to compete with traditional fossil fuels. However, because of the ran-
domness and volatility of wind power, a series of challenges have arisen to the safe and
stable operation of the power system, requiring higher levels of system flexibility, load
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matching, and other adjustments [2]. To meet the safety and technical requirements of the
grid, countries have set clear limits on the fluctuations of wind farm grid integration, as
shown in Table 1, requiring that the active power variations of wind generation within a
certain time scale should not exceed the specified limits to ensure the safety and stability of
the power system.

Table 1. Wind power grid integration standards for different countries.

Country Wind Power Grid Integration Standards

United States The 1 min ramp-up rate is less than 10% of the installed capacity
Canada The 1 min ramp-up rate is less than 10% of the installed capacity

Denmark The 1 min ramp-up rate is less than 5% of the installed capacity
Germany At startup, the 1 min ramp-up rate is less than 10% of the installed capacity

United Kingdom The 1 min variation is less than 10 MW, and the 1 min average ramp-up rate must not
exceed three times the 10 min average ramp-up rate

China

Installed capacity < 30 MW: Variation within 10 min is less than 10 MW, and variation
within 1 min is less than 3 MW

Installed capacity 30–150 MW: Variation within 10 min is less than 1/3, and variation
within 1 min is less than 1/10

Installed capacity > 150 MW: Variation within 10 min is less than 50 MW, and variation
within 1 min is less than 15 MW

Traditional thermal power units, because of limitations such as startup and shutdown
times and ramp-up rates, have difficulty effectively responding to the rapid changes and
random fluctuations caused by wind power generation [3]. However, the rapid development
of energy storage technology in recent years has provided crucial technical support to address
this issue. The hybrid energy storage system (HESS) composed of lithium batteries and
supercapacitors, with its flexible charging and discharging and fast response speed, has been
proven to have significant effects in smoothing wind power fluctuations [4]. By deploying
energy storage stations on the generation side, the active power fluctuations at wind power
grid connection points can be effectively smoothed. However, the huge initial investment
cost remains the main factor limiting its large-scale application. Therefore, the capacity opti-
mization of the HESS, while ensuring compliance with wind power fluctuation requirements,
urgently requires further in-depth research and discussion.

Scholars have proposed numerous effective methods for addressing uncertain vari-
ables in power systems. Reference [5] proposed a wind energy scenario generation method
based on spatiotemporal covariance functions. Reference [6] combined stochastic pro-
gramming and rolling horizon methods to design a two-stage operational structure based
on copula to address various uncertainties of onboard multienergy loads and renewable
energy. Reference [7] established an intraday correction method based on an opportunity-
constrained model and multiagent deep reinforcement learning to determine a revised
scheduling plan, addressing the uncertainty of renewable energy generation. In the research
on energy storage system capacity optimization, because of the time-varying and uncertain
nature of wind power data, directly utilizing all data for optimization is both complex and
difficult to achieve. Therefore, using typical-day data has become an effective solution [8].
Typical-day data significantly reduce the amount of data required for optimization cal-
culations, thus lowering computational costs and time. Furthermore, typical-day data
can represent the characteristics of the power system during different periods, facilitating
long-term planning. Currently, commonly used clustering analysis algorithms include
k-means [9], fuzzy C-means (FCM) [10], and hierarchical clustering (HC) [11]. The k-means
algorithm is known for its efficiency, ease of implementation, and wide applicability, but it
is susceptible to the initial centroid position and is sensitive to noisy data.
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Currently, research on wind power fluctuation smoothing has made some progress,
with the main methods involving wavelet decomposition (WD), the moving average (MA)
algorithm, empirical mode decomposition (EMD), and variational mode decomposition
(VMD) to decompose wind power and extract fluctuation signals. Reference [12] used the
MA algorithm to determine the grid-connected power and fluctuating power to be smoothed
by the HESS, but it introduced time delays, and the energy storage system may not respond
in time to sudden changes in wind power. Reference [13] used WD to separate high- and
low-frequency power components, but the choice of wavelet basis and decomposition level
influences the result of the wavelet transform. At the same time, WD denoising can produce
pseudo-Gibbs phenomena. Reference [14] utilized model predictive control to obtain the wind
power and the power of HESS. However, because of its high computational complexity, it may
be difficult for this method to adjust quickly under rapidly changing wind conditions. Unlike
traditional linear methods such as MA and WD, EMD and its variants are more suitable for
processing nonlinear and nonstationary signals such as wind power [15]. However, EMD is
prone to mode mixing, which leads to unclear decomposition results.

To fully leverage the complementary advantages of energy-type and power-type en-
ergy storage, a reasonable distribution of HESS power is critical. Reference [16] used the
discrete Fourier transform (DFT) to decompose imbalanced power, dividing the power
fluctuations into high-frequency and low-frequency bands. However, the DFT may not
effectively capture instantaneous changes and nonlinear characteristics for nonstationary,
time-varying power fluctuations. Reference [17] used an adaptive MA to smooth wind
power and applied EMD to divide internal power, selecting the boundary point with mini-
mal mode mixing. Although EMD can effectively decompose signals into multiple modes,
mode mixing is likely to occur when processing complex nonlinear signals. Reference [18]
proposed a capacity configuration method based on VMD, which decomposes photovoltaic
output into power that meets grid integration requirements, along with its high- and low-
frequency components. However, in the VMD method in the literature, the number of
modes K and the secondary penalty factor α are often subjectively determined based on
empirical values, which can lead to unreasonable decomposition and affect the smoothing
effect. Reference [19] used particle swarm optimization (PSO) to search for the optimal
parameter combination for VMD, enabling automatic parameter adjustment for power data
with different characteristics. However, PSO is prone to getting stuck in local optima.

Considering the deficiencies in the above studies, the framework of this paper is shown
in Figure 1. First, the k-means++ algorithm was used to cluster the wind power data for the
entire year, determining the output of each typical day scenario based on the magnitude of
the fluctuations. Improved complete ensemble empirical mode decomposition with adap-
tive noise (ICEEMDAN) was then applied to decompose the original wind power signal
into grid-connected power and HESS power. Next, the improved pelican optimization
algorithm (IPOA) was used to optimize the number of modes K and the penalty factor α
in VMD, adaptively adjusting the parameters to decompose HESS power and accurately
allocate internal HESS power. Finally, a HESS capacity optimization configuration model
was established, and the model was solved based on typical-day data to determine the
optimal configuration scheme for the HESS.

The innovations and advantages of this paper can be summarized in the following
three aspects:

1. A novel method for selecting typical daily wind farm output based on an improved
k-means is proposed. This method optimizes initial centroids using k-means++ and
determines the optimal number of clusters through the silhouette coefficient (SC) and
the Davies–Bouldin index (DBI). A typical-day selection mechanism is established
based on cluster centroid distances and cumulative fluctuation magnitudes, overcom-
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ing the limitation of traditional methods that rely solely on mean values to select
representative scenarios, making the selected typical days more suitable for wind
power fluctuation smoothing.

2. A power allocation strategy based on ICEEMDAN and IPOA-VMD is proposed.
Compared with conventional PSO and POA, IPOA demonstrated superior search
speed and optimization accuracy, enhancing the mode-matching accuracy of VMD.
By leveraging the coordinated compensation of supercapacitors and lithium batteries,
the proposed strategy reduced the occurrences of grid power fluctuation exceeding
limits to zero at both 1 min and 10 min time scales, significantly improving wind
power fluctuation smoothing and optimizing the overall performance of the HESS.

3. A HESS capacity optimization model based on typical daily data was developed. Case
study analysis showed that, compared with conventional strategies, the proposed
approach increased the wind power fluctuation qualification rate to 100% while
reducing the annualized cost of the HESS by 7.79%, providing valuable engineering
insights for HESS capacity planning.
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2. Methodology
2.1. Method for Selecting Typical Days of Wind Power Based on k-means++
2.1.1. k-means++ Clustering Algorithm

The k-means algorithm is characterized by its speed, simplicity, and ease of under-
standing, and it remains widely used. However, the initial clustering centers of this
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algorithm are chosen randomly, and different initial centers may lead to varying clustering
results, slow convergence, or even clustering errors. To address this, Arthur et al. pro-
posed the k-means++ algorithm [20], which modifies the method for selecting initial cluster
centers. The algorithm proceeds as follows:

1. Randomly select a sample point from the dataset as the initial cluster center c.
2. Calculate the shortest Euclidean distance between each sample point and the existing

cluster centers, denoted as d(x).
3. Calculate the probability of each sample being selected as the next cluster center,

d2(x)/∑x∈X d2(x), and use the roulette method to choose the next cluster center.
4. Repeat steps 2 and 3 until k cluster centers are selected.
5. For each sample in the dataset, calculate the Euclidean distance to the k cluster centers,

and assign it to the class corresponding to the closest cluster center.
6. For each class, recalculate its cluster center.
7. Repeat steps 5 and 6 until the cluster centers no longer change.

2.1.2. Selection of the Optimal Number of Clusters

Since the number of clusters in the k-means algorithm is predefined, the determination
of the cluster number k is crucial for the quality of clustering analysis [21]. Therefore, this
paper used the SC and DBI to determine the optimal number of clusters.

The SC considers both the cohesion and separation of sample data. For a sample z in
the dataset, assume that it is clustered into class C. Its SC si is defined as:

si =
bi − ai

max(ai, bi)
(1)

In the equation, ai represents the average distance between sample zi and other samples
within the same cluster, indicating the cohesion of the data within the cluster, and bi

represents the average distance between sample zi and the nearest sample from other
clusters, indicating the separation between clusters.

For a given clustering of the dataset, its SC sk is defined as:

sk =
1
n

n

∑
i=1

si (2)

where n is the number of samples in the dataset and k is the number of clusters. sk is also
referred to as the average SC.

The SC si of sample zi can be used to evaluate whether the sample fits well within its
cluster. Since si ranges from −1 to 1, if si is close to 1, it indicates that the average distance ai

within the cluster is much smaller than the minimum average distance bi between clusters,
suggesting a correct clustering for this sample. Conversely, if si is close to −1, the sample is
more suitable for the nearest other cluster.

For all k within the specified range, when the clustering SC sk reaches its maximum
value, the corresponding k is considered the optimal number of clusters.

The DBI, also known as the classification accuracy index, was proposed by David L.
Davies and Donald Bouldin as a measure for evaluating the effectiveness of clustering
algorithms [22]. The formula for calculating DBI is as follows:

DBI =
1
k

k

∑
i=1

max(
Ci + Cj

Mi,j
) (3)

where Ci and Cj are the average sum of the distances between each scene in a different
scenario cluster and its typical scene, and the distance between the typical scenes of clusters
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i and j is denoted. A smaller DBI value indicates greater separation between the clusters
and better clustering performance.

2.1.3. Rules for Selecting Typical Days

To determine the optimal number of clusters, this study comprehensively considered
the SC and DBI and applied the k-means++ clustering algorithm to wind power data.
Considering the need to smooth wind power fluctuations on typical days for subsequent
analysis, the selection of typical days was based on a balance between cluster centroid
proximity and volatility. The specific steps were as follows:

1. Compute the Euclidean distance di of each sample zi from its cluster centroid ci and
the cumulative fluctuations Bi of sample zi. Here, the fluctuations are defined as
the differences between consecutive one-minute power datapoints, and the value of
cumulative fluctuations is the sum of all fluctuations over a day.

2. Normalize the Euclidean distance di and cumulative fluctuations Bi for each sample,
introducing a weight coefficient γ (0 < γ < 1).

3. Calculate the comprehensive weight wi for each sample as wi = γdi/dmax−
(1 − γ)Bi/Bmax, where dmax and Bmax are the maximum Euclidean distance and
maximum cumulative fluctuations among all samples, respectively.

4. Select the sample with the smallest comprehensive weight wi in each cluster as the
typical day data for that cluster.

2.2. Power Distribution Strategy
2.2.1. ICEEMDAN

To address the reconstruction errors and modal aliasing issues of traditional EMD
and ensemble empirical mode decomposition (EEMD) [23], ICEEMDAN was used to
decompose the wind power. The steps were as follows:

Define P as the wind power signal to be decomposed, E(q) as the q-th order mode
component produced by EMD, N(i) as the local mean of the signal, W(i) as Gaussian white
noise, and βq as the standard deviation of white noise.

1. Add i groups of white noise W(i) to the original wind speed series, resulting in:

P(i) =P + β1E(W(i)) (4)

2. Calculate the envelope and obtain the first residual component and the first modal
component by averaging:

R1 = β1N(P(i)) (5)

IMF1 = P − R1 (6)

3. Continue adding white noise and use local mean decomposition to calculate the q-th
order residual and the q-th order modal component:

Rq = N(Rq−1 + βq−1E(W(i))) (7)

IMFq = Rq−1 − Rq (8)

4. Continue until the decomposition is completed, obtaining all the modes and residuals.

2.2.2. IPOA-VMD

VMD is a nonrecursive algorithm that first constructs a variational model, predefines
the number of modes K and the quadratic penalty factor α, and then iteratively searches
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for the optimal solution of the model, adaptively separating the signal into intrinsic modal
functions (IMFs) [24]. The decomposition process is as follows:

1. Construct the variational problem. By applying the Hilbert transform to the input signal,
the corresponding analytic signal is obtained. Multiplying it by the corresponding center
frequency shifts the spectrum to the base frequency band, and Gaussian smoothing is
used to adjust the bandwidth of the signal. The constrained variational model is:

min
{uk},{ωk}

(
K
∑

k=1

∥∥∥∥∂i

{[
δ(t) +

j
πt

]
∗ uk(t)

}
e−jωkt

∥∥∥∥2

2

)
s.t.

K
∑

k=1
uk(t) = f (t)

(9)

In the equation, * denotes the convolution operation; {uk} = {u1, u2, . . . , uk} repre-
sents all IMF components; {ωk} = {ω1, ω2, . . . , ωk} represents the center frequency of each
IMF; and δ(t) represents the unit impulse function, j =

√
−1.

2. Reconstruct the constrained problem. To solve the above problem, a quadratic penalty
term is used to penalize the violation of the constraints, transforming the constrained
problem into an unconstrained problem. The augmented Lagrange function opera-
tor λ and the penalty factor α are introduced to complete the reconstruction of the
problem, which is represented as:

L({uk}, {ωk}, λ(t)) = α
K
∑

k=1

∥∥∥∥∂i

{[
δ(t) +

j
πt

]
∗ uk(t)

}
e−jωkt

∥∥∥∥2

2

+

∥∥∥∥ f (t)−
K
∑

k=1
uk(t)

∥∥∥∥2

2
+

〈
λ(t), f (t)−

K
∑

k=1
uk(t)

〉 (10)

3. Solve the unconstrained problem. The optimal solution of the problem is searched
through a frequency-domain iterative method. Using the alternating direction method
of multipliers, the components uk(t), center frequencies ωk, and Lagrange multipliers
are iteratively updated until the stopping conditions are met. The update process and
iteration stopping expressions are shown in Equations (11) and (12).

λn+1(ω) = λn(ω) + τ[ f (ω)−
K

∑
k=1

un+1
k (ω)] (11)

K

∑
k=1

∥∥∥un+1
k (ω)− un

k (ω)
∥∥∥2

2∥∥un
k (ω)

∥∥2
2

< ε (12)

In the equation, τ is the noise tolerance parameter and ε is the convergence accuracy, where
ε > 0.

The decomposition performance of VMD depends on the number of modes K and the
penalty factor α. Appropriate values of K and α can improve the signal decomposition
performance. POA has advantages such as fast optimization speed, fewer parameters,
high convergence accuracy, ease of operation, and wide applicability [25]. However, this
algorithm tends to experience slower convergence speed and may get stuck in local optima
in the later stages of iteration.

Therefore, this paper proposes an IPOA that combines logistic chaotic mapping strat-
egy and Lévy flight to effectively avoid the shortcomings of getting stuck in local optima.
It also allows automatic adjustment of the VMD algorithm’s parameters K and α based on
different wind power signals, improving decomposition accuracy and adaptability. The
specific improvements are as follows.
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1. Logistic chaotic mapping strategy [26]

As the number of iterations of the POA increases, the diversity of the pelican population
decreases. Introducing logistic chaotic mapping to initialize the pelican population can effec-
tively improve the quality of the initial solution, thereby increasing the diversity of the pelican
population and improving the convergence speed and accuracy of the algorithm as a whole.

The formula for logistic chaotic mapping is:

Yn+1 = aYn(1−Yn) (13)

where Yn ∈ [0, 1], a ∈ [0, 4].
In the logistic chaotic mapping, when a is closer to 4, Y becomes closer to the uniform

distribution in [0, 1]. When a = 4, it exhibits a completely chaotic state, with a uniform
mapping distribution at the limit.

2. Development stage position optimization based on Lévy flight

Lévy flight is a walk that alternates between short-range searches and random longer-
distance movements, simulating the random walk process of animals searching for food in
nature [27].

The random step length formula is:

s =
µ

|v|
1
β

(14)

where s is the walk step length; β is a parameter with a value of 1.5; and µ and v are
direction vectors following a normal distribution, with standard deviations:

σµ =

[
Γ(1+β)× sin(π × β

2 )

Γ(1+ β
2 )× β × 2

] 1
β

, σv= 1 (15)

During each iteration of the algorithm, the development stage performs Lévy flight
mutation operations on individuals in the population. If the fitness of the mutated individ-
ual is better than before, the new position is retained; otherwise, the original position is
kept. The specific position update formula is:

xP2
i,j = xi,j × s+0.2 × (1− Niter

Nmax
)× (2 × rand − 1)× xi,j (16)

In the equation, xP2
i,j represents the updated value of the j-th variable for the i-th

candidate solution at the development stage; Niter denotes the current iteration number;
and Nmax denotes the maximum number of iterations.

This paper used the IPOA, with envelope entropy as the fitness function, to optimize
the modal number K and penalty factor α of VMD, with specific parameters shown in
Appendix A Table A1. The flowchart of the IPOA-VMD is shown in Figure 2.

2.2.3. Power Distribution Strategy Based on Two-Stage Decomposition

The typical daily wind power data selected in Section 2.1 was decomposed using
ICEEMDAN, yielding various IMFs. Since processing each IMF component individually
would result in unnecessary workload, they were reconstructed into low-frequency and
high-frequency components by combining the wind power grid-connected fluctuation
limits. The low-frequency component was directly connected to the grid, while the high-
frequency component was assigned as the HESS power, as shown in the following equation:
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Pwind,n = Pgrid,n + PHESS,n (17)

In the equation, Pwind,n, Pgrid,n, and PHESS,n represent the original wind power signal,
the direct grid-connected power, and the HESS power, respectively, at the n-th moment.

Energies 2025, 18, x FOR PEER REVIEW 9 of 25 
 

 

individual is better than before, the new position is retained; otherwise, the original posi-
tion is kept. The specific position update formula is: 

× × × × ×i,j i,j i,j
Nx x s x
N

P2 iter

max

= + 0.2 (1- ) (2 rand -1)  (16)

In the equation, i,jxP2  represents the updated value of the j-th variable for the i-th can-

didate solution at the development stage; Niter denotes the current iteration number; and 
Nmax denotes the maximum number of iterations. 

This paper used the IPOA, with envelope entropy as the fitness function, to optimize 
the modal number K and penalty factor α of VMD, with specific parameters shown in 
Appendix A Table A1. The flowchart of the IPOA-VMD is shown in Figure 2. 

 

Figure 2. Flowchart for IPOA-VMD. 

2.2.3. Power Distribution Strategy Based on Two-Stage Decomposition 

The typical daily wind power data selected in Section 2.1 was decomposed using 
ICEEMDAN, yielding various IMFs. Since processing each IMF component individually 
would result in unnecessary workload, they were reconstructed into low-frequency and 
high-frequency components by combining the wind power grid-connected fluctuation 
limits. The low-frequency component was directly connected to the grid, while the high-
frequency component was assigned as the HESS power, as shown in the following equa-
tion: 

n n nP P Pwind, grid, HESS,= +  (17)

In the equation, nPwind, , nPgrid , , and nPHESS,  represent the original wind power signal, the 

direct grid-connected power, and the HESS power, respectively, at the n-th moment. 
The reconstruction of IMF involves summing the components of the low-frequency 

and high-frequency bands according to the given criteria to obtain the low-frequency and 
high-frequency components. The reconstruction methods are divided into high-frequency 
reconstruction (fine to coarse, f2c) and low-frequency reconstruction (coarse to fine, c2f) 
[28]. High-frequency reconstruction generates each high-frequency reconstructed 

Figure 2. Flowchart for IPOA-VMD.

The reconstruction of IMF involves summing the components of the low-frequency
and high-frequency bands according to the given criteria to obtain the low-frequency and
high-frequency components. The reconstruction methods are divided into high-frequency
reconstruction (fine to coarse, f2c) and low-frequency reconstruction (coarse to fine, c2f) [28].
High-frequency reconstruction generates each high-frequency reconstructed component by
summing the results of EMD from top to bottom. Low-frequency reconstruction generates
each low-frequency reconstructed component by summing the results of ICEEMDAN from
bottom to top. The reconstruction method is shown in the following equation:

c2f(1) = res
c2f(2) = res + IMFq

...
c2f(q+1) = res + IMFq + . . .+IMF1

(18)

After obtaining the HESS power, IPOA-VMD was used to decompose the HESS power
into K modal components and the residual. Based on the degree of aliasing and amplitude
of the IMF components obtained from IPOA-VMD, the frequency boundary between high
and low frequencies was determined. The high and low frequency signals were then
reconstructed and sequentially allocated to the supercapacitor and lithium battery, as
shown in the following equation:

PLi =
m
∑

k=1
Pk

Psc =
K−1
∑

k=g+1
Pk+res

(19)
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In the equation, PLi and Psc represent the power allocated to the lithium battery and
the supercapacitor in the HESS, respectively; Pk denotes the k-th order IMF component
decomposed by NGO-VMD, and g is the cutoff point between high and low frequencies in
the VMD. The final power allocation flowchart based on the two-stage decomposition is
shown in Figure 3.
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composed by NGO-VMD, and g is the cutoff point between high and low frequencies in 
the VMD. The final power allocation flowchart based on the two-stage decomposition is 
shown in Figure 3. 
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2.3. HESS Capacity Optimization Configuration

Based on the grid-connected power and HESS power distribution strategy proposed in
Section 2.2, a HESS capacity optimization configuration model was established, considering
wind power fluctuations smoothing. The structure diagram of the wind-storage power
generation system is shown in Figure 4 [29].
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2.3.1. Objective Function

The objective function, consisting of lithium battery cost, supercapacitor cost, and
wind power fluctuation opportunity compensation cost, is shown in Equation (20).

minC = CLi + Csc + Ccomp (20)

In the equation, C is the annual total cost; CLi is the lithium battery storage cost;
Csc is the supercapacitor cost; and Ccomp is the wind power fluctuation opportunity
compensation cost.

CLi and Csc are given by the following equations:

CLi = Cinv
Li + Coper

Li − Cre
Li (21)

Csc = Cinv
sc + Coper

sc − Cre
sc (22)

In the equations, Cinv
Li , Coper

Li , and Cre
Li represent the investment cost, operation and

maintenance (O&M) cost, and residual value, respectively, of the lithium battery, and Cinv
sc ,

Coper
sc , and Cre

sc represent the investment cost, O&M cost, and residual value, respectively, of
the supercapacitor.

1. Investment Cost:

Cinv
Li = (cinv

Li,PPLi + cinv
Li,EELi)

r(1 + r)YLi

(1 + r)YLi−1
(23)

Cinv
sc = (cinv

sc,PPsc + cinv
sc,EEsc)

r(1 + r)Ysc

(1 + r)Ysc−1
(24)

In the equations, cinv
Li,P and cinv

Li,E are the investment cost coefficients for the power and
capacity of the lithium battery, respectively; cinv

sc,P and cinv
sc,E are the investment cost co-

efficients for the power and capacity of the supercapacitor, respectively; r is the dis-
count rate; and YLi and Ysc are the operating lifetimes of the lithium battery and
supercapacitor, respectively.

2. O&M Cost:

O&M cost was estimated based on the proportion of the investment cost [30], as shown
in the following equations:

Coper
Li = aLiCinv

Li (25)

Coper
sc = ascCinv

sc (26)

In the equations, aLi and asc represent the proportions of the O&M costs to the invest-
ment costs for the lithium battery and supercapacitor, respectively.

3. Residual Value:

Cre
Li= (cinv

Li,PPLi + cinv
Li,EELi)

bLi · r

(1 + r)YLi−1
(27)

Cre
sc= (cinv

sc,PPsc + cinv
sc,EEsc)

bsc · r

(1 + r)Ysc−1
(28)

In the equations, bLi and bsc represent the residual value rates of the lithium battery
and supercapacitor, respectively.
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4. Wind Power Fluctuation Opportunity Compensation Cost:

Because of the limitations of energy storage power and capacity, when wind power
fluctuations are large, the HESS cannot fully meet the storage power task, requiring the
dispatch of other flexibility resources in the power system, which increases operational
costs [31]. The opportunity compensation cost was used to measure the additional op-
erational costs caused by insufficient compensation, as shown in the following equation:

Ccomp =
N

∑
n=1

ccomp(Pposi,n − Pnega,n) (29)

In the equation, Ccomp is the opportunity compensation cost coefficient, and Pposi,n

and Pneg,n represent the positive and negative undercompensation at the n-th time
step, respectively.

2.3.2. Constraints

1. Power balance constraint

When the power task is a positive fluctuation, the system absorbs the fluctuating power
by charging the lithium battery and supercapacitor. When the power task is a negative
fluctuation, the system relies on discharging the lithium battery and supercapacitor to
compensate for the fluctuating power.

PHESS,n = Pch
Li,n + Pch

sc,n + Pposi,n − Pdisc
Li,n − Pdisc

sc,n − Pnega,n (30)

In the equation, PHESS, n is the total power of the HESS at the n-th time step; Pch
Li,n

and Pdisc
Li,n are the charging and discharging powers of the lithium battery at the n-th time

step, respectively; and Pch
sc,n and Pdisc

sc,n are the charging and discharging powers of the
supercapacitor at the n-th time step, respectively.

2. Charge–discharge power constraint{
|PLi,n| ≤ PLi,N

|Psc,n| ≤ Psc,N
(31)

3. Energy conservation constraint
ELi,n = ELi,n−1 + PLi,nηLi,cha , PLi,n> 0
Esc,n = Esc,n−1 + Psc,nηsc,cha , Psc,n> 0
ELi,n = ELi,n−1 + PLi,n/ηLi,disc , PLi,n ≤ 0
Esc,n = Esc,n−1 + Psc,n/ηsc,disc , Psc,n ≤ 0

(32)

In the equation, ELi,n and ELi,n−1 are the remaining capacities of the lithium battery
at the n-th and n−1-th time steps, respectively; Esc,n and Esc,n−1 are the remaining ca-
pacities of the supercapacitor at the n-th and n − 1-th time steps, respectively; ηLi,cha

and ηsc,cha are the charging efficiencies of the lithium battery and supercapacitor, respec-
tively; and ηLi,disc and ηsc,disc are the discharging efficiencies of the lithium battery and
supercapacitor, respectively.

4. SOC constraint {
SOCLi,min ≤ SOCLi,n ≤ SOCLi,max

SOCsc,min ≤ SOCsc,n ≤ SOCsc,max
(33)
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In the equation, SOCLi,min and SOCLi,max are the lower and upper bounds, respectively,
of the lithium battery’s state of charge; SOCsc,min and SOCsc,max are the lower and upper
bounds, respectively, of the supercapacitor’s SOC; and SOCLi,n and SOCsc,n are the SOC of
the lithium battery and supercapacitor at the n-th time step, respectively.

3. Discussion and Analysis of Experimental Results
3.1. Clustering to Generate Typical Days

k-means, k-means++, HC, and fuzzy C-means were applied to the actual 1 min wind
power data from a 120 MW offshore wind farm in China over the entire year. The SCs and
DBIs for different numbers of clusters are shown in Tables 2 and 3 below.

Table 2. Comparison of SCs.

Clustering Algorithm k = 3 k = 4 k = 5 k = 6 k = 7

k-means 0.5824 0.3894 0.3941 0.3892 0.3708
k-means++ 0.5800 0.6083 0.3864 0.3995 0.3904

HC 0.5858 0.5972 0.3829 0.3790 0.3892
FCM 0.4842 0.3852 0.3120 0.3147 0.2293

Table 3. Comparison of DBIs.

Clustering Algorithm k = 3 k = 4 k = 5 k = 6 k = 7

k-means 1.2126 1.4144 1.3399 1.4631 1.5443
k-means++ 1.2131 1.1435 1.3176 1.4487 1.5250

HC 1.3013 1.3178 1.3314 1.5222 1.5166
FCM 1.2948 1.4562 2.0640 1.8110 1.9965

From the above tables, it can be seen that when k = 4, the DBI value of the k-means++
was the smallest, indicating that the dispersion of the clusters was at its lowest. At the
same time, the SC was the largest, indicating that the cluster centroids were closest within
the same cluster and that the clustering effect was optimal.

The final number of clusters for k-means++ was determined to be 4, and the clustering
results are shown in Figure 5. The different colored curves in the Figure 5 indicate different
samples of daily wind power in each scenario. Scenario 1 exhibited significant intermittent
power generation characteristics, with its daily power curve maintaining short periods
of rated power output within the 24 h cycle. Scenario 2 demonstrated ideal continuous
power generation characteristics, maintaining high power output for most of the day, with
the curve shape matching the expected generation behavior under stable wind conditions.
Scenario 3 featured a bimodal distribution, maintaining high power output during the first
and last segments of the daily cycle while experiencing a significant power drop during
the midday period. Scenario 4 exhibited an asymmetric generation pattern, with the main
power peaks concentrated in the latter half of the daily cycle and intermittent short-term
power fluctuations occurring during the early morning period. With the weight coefficient
γ = 0.5, the typical-day curves for the four clusters are shown in Figure 6.
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Figure 6. Typical daily wind power curves.

3.2. Power Distribution

Taking typical day 2 as an example, ICEEMDAN was used. According to China’s
wind power grid connection standard, the 1 min grid fluctuation limit is 1/10 of the
installed capacity, which here was 12 MW. Using this as the high- and low-frequency
boundary, low-frequency reconstruction yielded the grid-connected power and HESS
power. The ICEEMDAN results and reconstruction results of each component are shown
in Figures 7 and 8, respectively.
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To verify the advantages of IPOA, IPOA, POA, and PSO were compared in optimizing
the fitness of VMD parameters, using the HESS power on typical day 2 as an example. The
iterative optimization process of the three algorithms is shown in Figure 9.
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From the above figure, it can be seen that the IPOA converged at the 11th iteration,
achieving the minimum fitness value of 7.071037, whereas the POA converged to the same
fitness value only at the 15th iteration. The PSO algorithm converged at the 10th generation,
but its minimum fitness value was 7.071306, indicating the occurrence of local convergence.
A comparison of the iterative curves showed that the IPOA outperformed the POA and
PSO in convergence speed and effectively avoided local convergence.

The optimal K value obtained after IPOA optimization was 8, and the optimal penalty
factor α value was 6214. To verify the advantages of VMD in suppressing mode mixing,
VMD and EMD were applied to decompose the HESS power on typical day 1. The
magnitude spectra of the two algorithms are shown in Figures 10 and 11.
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From Figures 10 and 11, it can be seen that the components in the magnitude spec-
trum of EMD almost completely overlapped, which was unfavorable for internal power
allocation in the HESS, while the overlapping parts of each IMF component in VMD were
minimal. Therefore, based on the degree of overlap and the amplitude of each VMD com-
ponent, imf1–imf5 were categorized as low-frequency components and assigned to lithium
batteries, while imf6–res were categorized as high-frequency components and assigned to
supercapacitors. The internal power allocation curve of the HESS is shown in Figure 12.
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3.3. Results of HESS Capacity Optimization Configuration

In this paper, the YALMIP toolbox and Gurobi solver were employed to solve the
HESS capacity optimization configuration model. The specific solver parameter settings
and model parameters are detailed in Appendix A, Tables A2 and A3, respectively.

To verify the smoothing effect of wind power, the following four schemes were designed:
Scheme 1: The MA algorithm was used to smooth wind power.
Scheme 2: EMD was used to smooth wind power.
Scheme 3: The IPOA-VMD was used to smooth wind power.
Scheme 4: ICEEMDAN was used to smooth wind power.
To avoid mode mixing and achieve accurate allocation of lithium battery power and

supercapacitor power, IPOA-VMD was used to decompose HESS power in all four schemes.
The results of the HESS configurations for the four schemes are shown in Table 4 below,
using typical day 2 as an example.

Table 4. HESS capacity configuration results for the three schemes.

Parameters Scheme 1 Scheme 2 Scheme 3 Scheme 4

Lithium battery power /MW 10.61761 7.476901 6.034713 7.361035
Lithium battery capacity/MW·h 0.5705331 1.382324 0.3252731 1.002809

Supercapacitor power/MW 5.513871 4.450731 3.938104 4.923756
Supercapacitor capacity/MW·h 0.123192 0.1467984 0.09366347 0.1449318

Investment cost/10 k CNY 606.0136 477.9401 357.9292 461.9565
O&M cost/10 k CNY 1.212027 9.558803 7.158584 9.516771

Recovery value/10 k CNY 49.07465 39.34212 29.18946 37.54483
Opportunity compensation cost/10 k CNY 123.6268 227.6628 319.11602 205.0725

Annualized total cost/10 k CNY 692.6860 682.9033 655.0143 638.7233

As shown in the table above, compared with the first three schemes, the annual
comprehensive cost reduction for Scheme 4 was 7.79%, 6.47%, and 2.49%, respectively.
From the HESS power and capacity configuration results, in the design of Scheme 1, the
HESS power configuration was too large, leading to excessively high total costs. Meanwhile,
the capacities of the lithium batteries and supercapacitors were relatively small, causing
the system to frequently charge and discharge during wind power fluctuations, which
impacted the HESS’s lifespan and reliability. Scheme 3 had a smaller power and capacity
configuration, and to compensate for the power shortfall, the system was forced to call on
high-cost external power, resulting in the opportunity compensation cost accounting for
48.72% of the total cost. At the same time, because the heavy reliance on external power
sources, when facing power fluctuations, the external backup power may not have been
able to respond in time. In Schemes 2 and 4, the power and capacity configurations of the
lithium batteries and supercapacitors were more balanced, especially in Scheme 4, where
the HESS capacity configuration achieved the optimal balance between capacity and costs.
Compared with Scheme 3, the opportunity compensation cost in Scheme 4 was reduced by
35.74%, ultimately achieving the lowest total cost.

Scheme 4 was used to configure the HESS capacity for four typical days, with results
shown in Table 5. The maximum value of the configurations for all typical days was
selected as the final HESS configuration plan.
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Table 5. HESS configuration results for four typical days.

Typical Day ELi PLi Esc Psc

1 0.3553705 3.059701 0.04220754 1.502692
2 1.002809 7.361035 0.1449318 4.923756
3 0.3836545 7.436658 0.06125014 3.171559
4 0.2594061 4.601879 0.03802841 1.835683

Final configuration results 1.002809 7.436658 0.1449318 4.923756

3.4. Analysis of Wind Power Smoothing Effect

The smoothed fluctuations are key criteria for evaluating the smoothing effects of
different schemes. The wind power fluctuations on the 1 min and 10 min scales before
and after smoothing for Schemes 1–4 are shown in Figures 13–16, respectively. In Scheme
1, because of the small HESS capacity configuration, frequent charging and discharging
occurred during the participation of the HESS in wind power smoothing, resulting in
11 instances of exceeding the limit for grid-connected power fluctuation on the 1 min
scale. Schemes 2 and 3 had optimized capacity configurations, with the numbers of limit
exceedances on the 1 min scale reduced to five and four, respectively, and one exceedance
on the 10 min scale for both. However, the smoothing effects still failed to reach the ideal
level, particularly in terms of their response to sudden fluctuations. Scheme 4 adopted
ICEEMDAN for adaptive decomposition of the original wind power and achieved accurate
distribution of HESS internal power through IPOA-VMD. It optimized both capacity and
power balance, resulting in no limit exceedances on either the 1 min or 10 min scales, fully
demonstrating the superiority of the proposed strategy.
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Figure 17 compares the output power characteristics of the original grid-connected
wind power and the four smoothing schemes. As can be seen from the figure, Scheme 1,
based on MA, did not exhibit significant fluctuation suppression, and its smoothed power
curve closely matched the original wind power curve. Although Schemes 2 and 3 improved
the power fluctuation characteristics to some extent, Scheme 2 showed power compensa-
tion overshoot during certain periods, where the smoothed power exceeded the original
fluctuation range, potentially leading to grid-connected power limit exceedance risks and
additional grid-connected power assessments. In contrast, Scheme 4 used ICEEMDAN
for adaptive decomposition of the original wind power, achieving complete extraction
of high-frequency components. It then applied the IPOA-VMD to precisely partition the
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decomposed modal components and constructed a power allocation strategy based on
the dynamic response characteristics of the HESS. It can be clearly seen in the figure that
the smoothed power curve of Scheme 4 exhibited optimal smoothing characteristics in the
time domain, without any power overshoot. This result validates the effectiveness of the
proposed method in meeting the grid-connected power fluctuation standards, significantly
improving the grid connection reliability of the wind farm and grid dispatching priority.
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4. Conclusions
In response to the issue of wind power grid-connected fluctuations, this paper pro-

poses a power distribution strategy and capacity optimization method for a HESS based on
improved k-means and two-stage decomposition and validated its effectiveness through
actual wind farm operational data. The main conclusions are as follows:

1. Compared with traditional PSO and POA, the IPOA was used to optimize the modal
number K and quadratic penalty factor α for VMD, performing better in terms of
search speed and optimization accuracy. It effectively improved the modal matching
accuracy of VMD, enhancing the accuracy of internal power distribution in the HESS.

2. The two-stage decomposition power distribution strategy based on ICEEMDAN and
IPOA-VMD could effectively smooth wind power fluctuations, fully utilizing the
advantages of power-type and energy-type storage and achieving precise separation
of high-frequency and low-frequency components. Through the collaborative com-
pensation of supercapacitors and lithium batteries, the proposed strategy reduced
the number of grid-connected power fluctuation exceedances to 0 on both the 1 min
and 10 min time scales, improving the wind power fluctuation smoothing effect and
optimizing the overall performance of the HESS.

3. k-means++ was used to cluster the annual wind power data by combining SC and DBI,
and typical-day data were determined based on the overall characteristics and cumulative
fluctuation of each clustering scenario. The case study was conducted based on this, and the
results showed that the proposed strategy not only met the grid-connected power fluctuation
requirements of wind farms but reduced the overall HESS cost by 7.79% compared with
traditional strategies, providing an engineering reference value for HESS capacity planning.

4. The HESS capacity optimization model for smoothing wind power fluctuations es-
tablished in this study does not consider the impact of dynamic electricity prices and
ancillary service revenues on the economic viability of the HESS. Future research is
planned involving developing a multiobjective optimization model incorporating
demand response and ancillary services to quantify the added value of energy storage
participation in the market and further improve the full lifecycle economic analysis.
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Appendix A

Table A1. Parameters and values of the IPOA-VMD.

Parameter Npop Nmax Kb αb tau DC init tol

Value 20 70 [1, 10] [10, 10,000] 0 0 1 1 × 10−6

Table A1 Note: Npop: number of pelicans in the population, Nmax: maximum number of iterations. Kb: upper and
lower limits of VMD decomposition levels. αb: upper and lower bounds of the penalty factor. tau: dual ascent
time step (set to 0 to allow noise). DC: determines whether to preserve the DC component (0 fixes the first mode
to zero frequency). init: specifies the initial frequency distribution of modes (1 means all initial frequencies are
uniformly distributed). tol: tolerance for the convergence criterion.



Energies 2025, 18, 795 23 of 24

Table A2. Solver parameter configuration.

Category Parameter Item Configuration Value/Description

YALMIP Version 20180612
Optimization Model optimizer function

Solving Precision sdpsettings(’solver’,’gurobi+’,’verbose’,2)
Constraint Tolerance 1 × 10−6

Gurobi Version 10.0.1
MIPGap 0.01

Maximum Computation Time 3600 s
Table A2 Note: Only a subset of parameters is listed here. All other parameters for the YALMIP toolbox and
Gurobi solver used their default values.

Table A3. Parameters and values of the HESS capacity optimization model.

Parameter Name Value

Unit capacity cost of lithium batteries cinv
Li,E/[10 k CNY·(MW·h)−1] 100

Unit power cost of lithium batteries cinv
Li,P/[10 k CNY·(MW)−1] 150

Unit capacity cost of supercapacitors cinv
sc,E/[10 k CNY·(MW·h)−1] 600

Unit power cost of supercapacitors cinv
sc,P/[10 k CNY·(MW)−1] 100

SOC limit of lithium batteries [0.2, 0.8]
SOC limit of supercapacitors [0.1, 0.9]

Discount rate r 5%
Operating lifespan of lithium batteries YLi/year 5
Operating lifespan of supercapacitors Ysc/year 15

Proportion of O&M costs to investment costs for lithium batteries aLi 2%
Proportion of O&M costs to investment costs for supercapacitors asc 2%

Residual value rate of lithium batteries bLi 10%
Residual value rate of supercapacitors bsc 20%

Opportunity compensation cost coefficient ccomp/[10 k CNY·(MW·h)−1] 0.32
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