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Abstract: The increasing adoption of photovoltaic (PV) systems has introduced challenges
for grid stability due to the intermittent nature of PV power generation. Accurate forecast-
ing and data quality are critical for effective integration into power grids. However, PV
power records often contain missing data due to system downtime, posing difficulties for
pattern recognition and model accuracy. To address this, we propose a GAN-based data
imputation method tailored for PV power generation. Unlike traditional GANs used in
image generation, our method ensures smooth transitions with existing data by utilizing
a data-guided GAN framework with quasi-convex properties. To stabilize training, we
introduce a gradient penalty mechanism and a single-batch multi-iteration strategy. Our
contributions include analyzing the necessity of data imputation, designing a novel condi-
tional GAN-based network for PV data generation, and validating the generated data using
frequency domain analysis, t-NSE, and prediction performance. This approach significantly
enhances data continuity and reliability in PV forecasting tasks.

Keywords: data imputation; deep learning; GAN; PV output prediction; data processing

1. Introduction
The rapid increase in energy demand and growing concerns about climate change have

driven the adoption of renewable energy sources, particularly photovoltaic (PV) systems.
Over the past decades, PV technology has become more affordable due to significant cost
reductions and supportive global policies, enabling its integration into energy markets [1].
However, the intermittent and variable nature of PV power generation poses challenges for
grid stability, reliability, and efficiency [2]. Accurate PV power generation forecasting is
essential to address these challenges, as it optimizes grid operations, minimizes balancing
costs, and supports energy trading [3]. Moreover, accurate forecasts enhance the integration
of PV systems with storage solutions, electric vehicles, and smart grid technologies [4].

Existing PV forecasting methods, including physical modeling, traditional machine
learning, and deep learning approaches, focus heavily on model design [5–8]. However,
these methods are inherently data-driven, and their performance is heavily influenced by
data quality. PV power generation records often contain missing data due to system down-
time caused by equipment failures, aging, maintenance, or reduced energy demand [9].
These data gaps increase the difficulty of identifying patterns or can mislead models into
generating incorrect predictions, especially for short-term prediction [1].
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Currently, missing PV power generation data are often excluded from training datasets,
which can result in problems such as spectral leakage and phase discontinuity in time-
domain signals. A more desirable approach is to use interpolation methods [9]. For se-
quences with the point-type missing data, linear interpolation and cubic spline interpolation
generally perform well under sunny conditions. However, these methods struggle to adapt
to abrupt weather changes [10]. Moreover, when the PV output power data are subjected
to the block-type missing, the accuracy of interpolation methods declines significantly [11].
For sequences with consecutive missing data points, data imputation remains a highly
challenging problem.

Although there are many of approaches with different levels of sophistication for
imputation tasks, they are usually failed to fill PV power data due to time series observed
in every field has unique characteristics [1].

To address these issues, we propose a GAN-based data imputation method specifically
designed for PV power generation. Unlike forecasting tasks, the data imputation task lacks
ground truth, requiring a different training strategy for the network.

Traditional GANs are primarily used for image generation, where the input is typically
random noise. In our task, however, the generated data must maintain smoothness with
neighboring known data points. This requires an infinite-label conditional GAN framework.
GAN training is already recognized as a challenging problem, and the requirement for
infinite labels further increases the difficulty.

To overcome these challenges, we leverage the fact that PV power generation data
are predominantly positive. We designed a data-guided GAN network with a structure
that exhibits quasi-convex properties. By introducing a gradient penalty mechanism and
employing a single-batch multi-iteration strategy, we stabilized the model training process.

Traditional GAN [12] uses the Jensen–Shannon (JS) divergence to measure the dif-
ference between real and generated data distributions, but suffers from mode collapse
and training instability. Wasserstein GAN (WGAN) [13] replaces JS divergence with Earth
Mover’s distance, providing a smoother and more meaningful loss function. However, it
requires weight clipping to enforce the Lipschitz constraint, which can lead to optimization
issues. WGAN-GP [14] improves WGAN by replacing weight clipping with a gradient
penalty, resulting in more stable training, better convergence, and superior sample quality
compared to both GAN and WGAN. For these reasons, we adopt WGAN-GP for the PV
data imputation network.

Our main contributions include:

(1) Proposing the Concept of Data Imputation

Using discrete cosine transform, we analyzed the effects of interruptions in time-
domain signals and demonstrated the necessity of imputing PV power generation data.

(2) Designing a PV Data Imputation Network

Based on the conditional GAN framework, we constructed a data-guided network
structure with quasi-convex properties to address the challenges of imputing PV genera-
tion data.

(3) Validating the Generated Data

We evaluated the effectiveness of the generated data using three approaches: frequency
domain analysis, t-NSE analysis, and comparative prediction performance.

The remainder of this paper is organized as follows: Section 2 provides an overview
of the related methods. Data continuity analysis is presented in Section 3. The proposed
method is described in Section 4. In Section 5, the experiments are conducted and the
results are discussed. Finally, the conclusion is provided in Section 6.
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2. Related Work
Existing studies on PV power generation have primarily focused on the design of

forecasting models, with limited attention given to data imputation. However, various
studies have been conducted on data imputation in the wider fields. These methods can
be roughly divided into three categories: (1) interpolation-based methods, (2) classical
machine learning methods, and (3) deep learning-based methods.

2.1. Interpolation-Based Methods

Interpolation-based methods are the basic and plain approaches that estimate miss-
ing values based on mathematical functions using neighboring data points. Due to high
computational speed, Interpolation-based methods have been applied in the wide fields.
These methods include linear interpolation, spline interpolation and nearest neighbor
interpolation [15]. For example, Brooks et al. [16] use linear interpolation, Autoregressive
Integrated Moving Average (ARIMA) methodology and decompositions to replace missing
values in global horizontal solar irradiance series. Layanun et al. [17] propose use of a
linear interpolation approach based on the mean of solar irradiance values under different
weather types. Benitez et al. [18] expanded the column mean imputation method for solar
PV output forecasting.

Only two data points are required to construct new data points or estimate the missing
data [15]. Demirhan and Renwick [1] compared the accuracy of 36 classical imputation
methods for solar irradiance series and found that linear and Stineman interpolations, and
Kalman filtering with structural model and smoothing are accurate for minutely and hourly
series. However, the estimation quality is reduced when the period of continuous missing
data increases.

2.2. Classical Machine Learning Methods

Machine learning-based methods excel in capturing complex, non-linear relationships
and leveraging large datasets to improve imputation accuracy. They usually outperform
the interpolation-based methods [19]. As a result, machine learning-based methods have
been the mainstream choice for handling missing data.

2.2.1. Regression-Based Methods

Regression-based methods utilize statistical models to predict missing values based on
relationships within the available data. Due to their simplicity, interpretability, and effective-
ness in leveraging relationships within the data, regression-based imputation methods have
garnered significant attention. For instance, Miguel et al. [20] utilized regression trees to
impute indoor condition data effectively. Similarly, Jain Vinith et al. [21] employed polyno-
mial regression to enhance the performance of PV power prediction by addressing missing
data challenges. Chen et al. [22] proposed a low-rank autoregressive tensor completion
method, which incorporated temporal variation as a regularization term, demonstrating its
capability to handle spatiotemporal data gaps effectively. Jain et al. [21] also explored poly-
nomial regression for estimating missing values. Additionally, Turrado et al. [23] proposed
multivariate adaptive regression splines as a generalized approach to estimating missing
values across classification and regression tasks.

Despite their merits, regression-based imputation methods have limitations. They
often assume a linear or predefined relationship between variables, which may not hold
in complex or nonlinear scenarios. Additionally, their performance relies significantly on
the quality and representativeness of the observed data. When data are sparse, highly
dynamic, or exhibits non-linear dependencies, these methods may fail to accurately capture
underlying patterns, leading to suboptimal imputations.
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2.2.2. Other Machine Learning Methods

Beyond regression-based approaches, various other classical machine learning meth-
ods have been widely applied to data imputation. These methods often demonstrate
higher flexibility and robustness when dealing with missing data, especially in cases where
relationships between variables are highly non-linear.

For example, Tatiane Costa et al. [24] suggested that Random Forest (RF) model
notably excels in harnessing solar data. Stekhoven and Bühlmann [25] developed a RF-
based method capable of imputing mixed data types, while Kim et al. [26] introduced
K-Nearest Neighbors for adaptive imputation, which estimates missing values based on
historical data patterns.

Unlike interpolation-based and regression-based methods, non-regression-based ma-
chine learning models can learn patterns from the entire dataset, making them more
effective for handling missing data in complex and non-linear environments. However,
they struggle with long-range correlations and large missing gaps.

2.3. Deep Learning-Based Methods
2.3.1. Supervised Learning Methods

Supervised learning methods have been widely applied to impute missing values.
Silva-Ramirez et al. [27] employed a Multi-Layer Perceptron (MLP), training it on complete
data to impute missing measurements in partially filled samples. For PV power generation
data, Liu et al. [28] employed a Super-Resolution Perception Convolutional Neural Network
(SRPCNN) to reconstruct high-frequency data from low-frequency industrial sensor inputs,
effectively recovering incomplete PV generation data. Similarly, Ma et al. [29] utilized
a hybrid LSTM model for imputing building energy data through model transfer, and
Lei et al. [10] demonstrated that LSTM outperforms traditional models such as relevance
vector machines (RVM) in filling accuracy. De-Paz-Centeno et al. [30] further explored
encoder-decoder architectures for imputing PV production data.

However, these supervised learning methods generally assume that the missing data
shares the same distribution or features as the observed data. While this assumption holds
for isolated missing points or short sequences, it may not be valid for long-term missing
data sequences, which limits their applicability in such scenarios.

2.3.2. Semi-Supervised Learning Methods

Semi-supervised learning methods, particularly those using GAN-based architectures,
have recently gained traction for data imputation. Xu et al. [31] presented an autoencoder
model for RNA sequencing data imputation. Xueqian Fu et al. [32] proposed a GAN-
based framework for PV data imputation, but the generator in this architecture lacked a
noise input. The absence of noise can lead to mode collapse, a common problem in GANs
where the generator produces limited or repetitive outputs. The noise input in GANs
represents a latent space, which the generator maps to realistic data outputs. Without noise,
the generator struggles to explore the full data distribution, resulting in less diverse and
lower-quality imputations.

To address this, SolarGAN [33] introduced a GAN with inputs including real samples
and random noise. However, its discriminator was designed to differentiate between real
data with missing values and imputed data without missing values. This setup risks using
the presence of missing values as a superficial criterion for distinguishing real from fake
data, thereby diminishing the focus on the intrinsic characteristics of real PV data.

Hwang and Suh [11] presented a clustering and classification-based generative adver-
sarial imputation network (CC-GAIN), which excels in pattern classification and feature
extraction. CM-GAN [34], on the other hand, introduced node embedding modules into
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the GAN framework, enabling cross-site generation of PV power data. This approach
represents a promising direction for improving data imputation by capturing inter-site
correlations and enhancing data robustness. However, the generator of CM-GAN produces
single-value outputs, making it difficult for the discriminator to effectively distinguish real
from fake samples. Consequently, the discriminator’s function may degrade into a simple
threshold-based classification.

Overall, deep learning-based methods offer significant advantages in missing data
imputation, particularly in complex and high-dimensional datasets, but challenges related
to generalizability, training stability, and long-term sequence handling remain key areas of
ongoing research.

3. Data Continuity Analysis
We conducted a comprehensive survey of photovoltaic power generation records

from various power plants. These records exhibit interruptions of varying durations. Due
to space limitations, we present data spanning one year from the DKA Solar Centre and
a power plant located in western China, as illustrated in Figure 1. The interruptions
primarily occurred because the photovoltaic systems were periodically shut down for
equipment maintenance or replacement necessitated by component aging. Additionally, the
PV systems were often forcibly shut down during periods of insufficient electricity demand.
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Figure 1. Intermittent power generation records of photovoltaic power plants: (a) power plant located
in Alice Springs, Australia; (b) power plant located in western China.

To analyze the characteristics of PV generation data, we conducted a Discrete Cosine
Transform (DCT) analysis. For comparison, missing values in the solar power output data
were filled with 0 (minimum) and 200 (near-maximum). Figure 2a presents the DCT results
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for 2023 PV generation data from the DKA Solar Centre, while Figure 2b,c show the top
five low-frequency components after filling with 0 and 200, respectively. From them, it is
apparent that the amplitudes of different frequency components vary depending on the
filled value, which highlights that different imputation methods can alter data patterns,
potentially distorting PV predictions and leading to errors.

To address this, we aim to impute missing data effectively. While linear or spline
interpolation is an option, missing records often appear as continuous gaps, complicating
interpolation. Zero-padding, a common imputation strategy [35,36], preserves signal length
but alters frequency amplitudes and introduces unwanted high-frequency components.
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located in Alice Springs, Australia; (b) first 5 low-frequency components after NAN filled with zero;
(c) first 5 low-frequency components after NAN filled with 200.

4. Data Imputation
A typical Generative Adversarial Network (GAN) comprises two core components: a

generator and a discriminator. The optimization goal of the Generator is not to approximate
the true data values but to generate data that are indistinguishable from real data by the
discriminator. Unlike PV forecasting, where accuracy in approaching true values is crucial,
the generator’s output in data generation only needs to capture the general characteristics
of PV sequences, rather than being close to the actual data. Fundamentally, data generation
serves to augment the dataset and mitigate spurious frequency components caused by
missing segments in sequential data.

Traditional GANs, which were initially designed for image generation, use noise as
input data for the generator. Conditional GANs were later introduced by incorporating label
information into the generator’s input. Unlike image data, PV power generation records are
time series with temporal dependencies. To address this, our proposed GAN architecture
incorporates historical data as auxiliary input to enhance the quality of generated data.
Furthermore, since PV power generation data are generally positive, with negative values
being minimal, the Generator employs a Leaky ReLU activation function instead of the
conventional Tanh function.

Considering these factors, this paper introduces a GAN-based framework for repairing
missing segments in PV power generation data. The architecture, illustrated in Figure 3,
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consists of Generator and Discriminator modules composed primarily of linear layers and
activation functions.
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4.1. Generator

Assuming the goal is to generate a vector gout consisting of k PV power generation
data points starting from time t0, and given a vector gin of m consecutive PV power values
prior to t0, the local feature extraction process for gin can be represented as:

γ1 = σ(fc2(σ(fc1(gin)))). (1)

In these expressions, σ(·) represents a non-linear activation function like the leaky
ReLU function, fci(·)(i = 1, 2, · · · ) denotes a fully connected layer.

To avoid directly truncating the input sequence to produce the output sequence, it is
essential to impose a strict condition where m < k. This constraint ensures that the generator
is forced to learn meaningful relationships and patterns from the data. By iteratively
applying this data generation process, the model can produce sequences of arbitrary length,
allowing it to effectively handle missing data over both short and long intervals.

The global feature representation of the PV power series, which incorporates random
or noise-related global patterns, can be expressed as:

γ2 = σ(fc4(σ(fc3(Noise)))). (2)

The local feature vector γ1 and the global feature vector γ2 are then concatenated to
obtain a comprehensive feature representation:

γ = concat(γ1,γ2). (3)

Finally, the generated PV power output vector gout is computed as:

gout = σ(fc6(σ(fc5(γ)))). (4)

This process integrates local temporal dependencies from gin with global character-
istics represented by noise driving, enabling the generation of gout that captures both
short-term dynamics and broader patterns in PV power generation.
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4.2. Discriminator

The discriminator’s main objective is to differentiate between real and generated data,
essentially solving a binary classification problem. It assesses the authenticity of input
data and provides feedback to enhance the generator throughout the training process. The
discriminator’s architecture typically consists of convolutional layers followed by a fully
connected layer and a sigmoid activation function for binary classification, which can be
expressed as:

xout = sigmoid(fc(σ(conv(Xin)))). (5)

In this equation, Xin, xout denote the input and output of the discriminator, respectively.
σ(·) represents a non-linear activation function, such as the leaky ReLU function, which
introduces non-linearity into the model and helps in learning complex patterns. conv(·)
denotes convolutional layers that extract temporal features from the input data. The
final sigmoid function maps the output to a range of [0, 1], providing a probabilistic
interpretation of whether the input data are real or generated.

4.3. Loss Function

The training process of a GAN involves optimizing two models simultaneously: the
generator G and the discriminator D. The generator aims to produce realistic data that the
discriminator cannot distinguish from real data, while the discriminator strives to correctly
classify real and generated data. This adversarial framework is formulated as a minimax
optimization problem, where the design of the loss function is crucial for achieving optimal
performance and ensuring the effectiveness of the GAN.

In this work, the original GAN is replaced with the Wasserstein GAN with Gradient
Penalty (WGAN-GP) approach [14] to achieve a more stable parameter training process.
The loss functions for G and D are defined as:

LG = E∼
z∼Pg

[
D
(∼

z
)]

, (6)

LD = E∼
z∼Pg

[
D
(∼

z
)]

− E
z∼Pr

[
D
(
z
)]

+ λEẑ∼Pẑ

[(∥∥∇ẑD
(
ẑ
)∥∥

2 − 1
)2], (7)

where
ẑ = εz + (1 − ε)

∼
z. (8)

In the above expressions, E represents the expectation function. z,
∼
z, and ẑ represent

real, generated, and interpolated data, while Pr, Pg, and Pẑ are the distribution of them,
respectively. λ, ε denote the regularization coefficient and a random value ranging from 0
to 1.

The discriminator, as a binary classifier, outputs 0 for generated data and 1 for real
data. The generator aims to maximize LG to deceive the discriminator, producing realistic
data, while the discriminator minimizes LD to enhance its ability to distinguish real from
generated samples.

4.4. Hyperparameter Determination

The learning rate is a crucial hyperparameter in WGAN-GP training, as it directly
affects convergence stability and model performance. In this work, the learning rate is set
to 5 × 10−5, the same as used in WGAN [13], and it effectively provides a good balance
between convergence speed and training stability.

For WGAN, the regularization penalty λ plays a crucial role in balancing the Lip-
schitz continuity with overall model stability. To determine an appropriate λ value, we
systematically explored a range of values (5, 10, 20) through a grid search. Experimental
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results indicated that λ = 10 achieved the best compromise between stable training and
high-quality data generation for our specific application.

Another critical aspect of model training is determining the optimal number of up-
dates for the generator and discriminator. In GAN training, an imbalance between these
components can lead to instability—excessive updates to one may overpower the other,
hindering effective learning.

To mitigate this issue, we conducted multiple training runs with different update
frequencies (1, 2, 5, and 10 iterations per component) while closely monitoring loss trends
for both networks. We analyzed fluctuations and potential divergence in loss values to
identify the most stable configuration. Through experimentation, we found that updating
the generator five times per batch and the discriminator twice per batch resulted in smooth
convergence and stable training dynamics.

5. Experiments
The experiments were conducted on a computer platform equipped with an NVIDIA

GeForce RTX4070 graphics card (sourced from Santa Clara, CA, USA), an Intel i9-14900HX
processor (sourced from Santa Clara, CA, USA), and 64 GB of memory (sourced from Seoul,
Republic of Korea).

5.1. Validation Test

To evaluate the validity of the proposed model, we utilized data from the DKA Solar
Centre. The experimental dataset comprises observations collected over a period of up to
one year; however, certain time periods have missing data. In the implementation, we set
the batch-wise parameter optimization with the generator and discriminator iterating 5
and 2 times per batch, respectively.

Figure 4 illustrates the variation of generator and discriminator loss over training
epochs in the GAN network. The generator loss (blue) and discriminator loss (orange)
indicate how both components learn and adapt during the adversarial training process.

It is readily seen from Figure 4 that the discriminator loss remains relatively low
and stable after the initial training phase, indicating that it effectively distinguishes real
from generated samples without overfitting. Meanwhile, the generator loss significantly
fluctuates in the initial phase but stabilizes as training progresses. This indicates that the
generator is learning to produce more realistic outputs, gradually reducing the discrepancy
between generated and real data.

Overall, both the generator and discriminator losses stabilize over time, implying that
the adversarial training process has reached an equilibrium. This indicates that neither
the generator nor the discriminator dominates the other, a critical factor in successful
GAN training.

Figure 5 presents the generated data and its corresponding frequency components
obtained through the discrete cosine transform (DCT). Compared to simple imputation
methods such as zero-padding, our method produces data with noticeably different am-
plitude distributions across various frequency components. Zero-padding and similar
techniques often introduce distortions, such as artificially amplifying or suppressing certain
frequency components, which can disrupt the original data structure.

In contrast, our method better preserves the natural frequency characteristics of the
data. If the imputed data exhibits significantly higher low-frequency amplitudes, it may
indicate the introduction of artificial trends or over-smoothing, while a decrease could
suggest the loss of important long-term patterns. This highlights the limitations of simple
imputation techniques and underscores the effectiveness of our approach in maintaining
the integrity of the original data.
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To intuitively assess data generation quality, we use t-SNE (t-Distributed Stochastic
Neighbor Embedding) for visualization. t-SNE performs nonlinear dimensionality reduc-
tion by preserving pairwise similarities between data points, mapping high-dimensional
data into a lower-dimensional space while maintaining relative distances. This technique is
valuable for understanding data structure and distribution.
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In our study, t-SNE compares real and generated data to evaluate how well the
generator learns the real data distribution. If the two datasets are well separated, it suggests
poor generation quality, whereas significant overlap indicates effective learning and high-
quality synthetic data.

Figure 6 shows that the generated data substantially overlaps with the real data in the
two-dimensional plane. This suggests that the generator successfully captures the structural
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and distributive characteristics of the original dataset. The alignment confirms the model’s
effectiveness and highlights its potential for reliable data synthesis.
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5.2. Effectiveness Test

To assess the proposed imputation method, we compared the photovoltaic (PV) output
forecasting results before and after data imputation. In the experiment, two datasets were
employed: one from the DKA Solar Centre and the other from a power plant located in
western China. The experimental data span a period of up to one year, although certain
time periods exhibit missing records.

The data were collected at 5 min intervals and subsequently divided into two subsets:
80% of the dataset was allocated for training purposes, while the remaining 20% was
reserved for testing. This split was designed to ensure a robust and reliable evaluation
of the model’s performance in handling missing data and improving the subsequent
forecasting accuracy.

5.2.1. Evaluation Metrics

Various metrics are used to evaluate PV forecasts, with different studies selecting
various combinations depending on their objectives [37]. However, some metrics may not
effectively reflect forecasting performance. For example, the Mean Absolute Percentage
Error (MAPE) becomes undefined when the actual value is zero while the predicted value
is non-zero, causing the metric to approach infinity.

Similar to references [38,39], three evaluation metrics were chosen in this experiment to
compare the prediction performance. Assuming y and ŷ represent the actual and predicted
values, respectively, these metrics are detailed as follows:

(1) Mean Absolute Error (MAE)

MAE calculates the average of the absolute differences between predicted and actual
values, providing an intuitive measure of prediction error [40]. A lower MAE indicates a
better performance. MAE can be calculated by

MAE =
1
n∑n

i=1|ŷi − yi|. (9)

(2) Root Mean Squared Error (RMSE)
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RMSE measures the standard deviation of prediction errors, penalizing larger errors
more heavily. It’s expressed in the same units as the target variable, aiding interpretabil-
ity [41]. RMSE can be calculated by

RMSE =

√
1
n∑n

i=1 (ŷi − yi)
2. (10)

(3) R-squared (R2)

R-squared evaluates how much of the variance in the dependent variable is explained
by the independent variable, ranging from 0 to 1, with 1 indicating a perfect perfor-
mance [42]. R2 is formulated by

R2 = 1 − ∑(ŷi−yi)
2

∑(yi − y)2 . (11)

5.2.2. Experimental Results

In the experiments, we selected six commonly used time-series forecasting models
to evaluate the impact of data imputation on PV output predictions: Long Short-Term
Memory (LSTM) [43], Bidirectional LSTM (BiLSTM) [44], Stacked LSTM (SLSTM) [45], a
hybrid model combining Convolutional Neural Network and LSTM (CNN_LSTM) [46],
Gated Recurrent Units (GRUs) [47], and Bidirectional GRU (BiGRU) [44]. These models
were chosen for their proven effectiveness in handling sequential data and their widespread
use in time-series prediction tasks.

For a fair comparison, all algorithms in the experiment were configured with a batch
size of 64 and were trained for 50 epochs. In the implementation of all models, the Adam
optimizer was employed due to its robust performance across various types of neural
architectures. The learning rate was uniformly set to 0.001, balancing the need for rapid
convergence with the risk of overshooting minimal loss values.

The performance comparison on the missing and filled data from the DKA Solar
Centre is presented in Table 1. The one on the data from China is presented in Table 2. In
the tables, the letters ‘F’ stands for ‘filled data’.

Tables 1 and 2 demonstrate that the model trained on data with filled data exhibits
significantly improved performance in terms of MAE, RMSE, and R2. Additionally, the
testing datasets include varying lengths of missing data, ranging from 1 to 1797 points. The
results indicate that the model maintains robust performance even for extended periods of
missing data.

Table 1. Performance comparison between missing and filled data from the DKA Solar Centre.

MAE RMSE R2

LSTM 0.186196247 0.389140511 0.984074517
LSTM_F 0.184734812 0.387618016 0.985344046
BiLSTM 0.190740165 0.376485922 0.984697024

BiLSTM_F 0.189486873 0.373610254 0.985937555
SLSTM 0.17901024 0.411963163 0.982579983

SLSTM_F 0.177306056 0.410760062 0.982265822
CNN_LSTM 0.175097703 0.401689078 0.983706477

CNN_LSTM_F 0.174056652 0.40113345 0.984127151
GRU 0.183788996 0.398229391 0.984124486

GRU_F 0.184477308 0.397778235 0.984984212
BiGRU 0.191201229 0.412379908 0.982185075

BiGRU_F 0.191340529 0.410100013 0.983502992
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Table 2. Performance comparison between missing and filled data from China.

MAE RMSE R2

LSTM 0.186821839 0.387610254 0.98446909
LSTM_F 0.185143555 0.387304998 0.984418894
BiLSTM 0.191263683 0.376392603 0.984692799

BiLSTM_F 0.190849318 0.374420885 0.98653103
SLSTM 0.179179386 0.412062082 0.982844343

SLSTM_F 0.178519265 0.409987307 0.983222614
CNN_LSTM 0.175921877 0.401576963 0.982665936

CNN_LSTM_F 0.173947251 0.399999232 0.983597441
GRU 0.185331267 0.398246292 0.982768998

GRU_F 0.184967549 0.397475245 0.984630677
BiGRU 0.191617142 0.411262155 0.982123923

BiGRU_F 0.191232847 0.410126485 0.982937645

WGAN-GP, as a deep generative model, naturally requires more computational re-
sources than traditional regression or interpolation methods due to its iterative adversarial
training process. In contrast, methods such as linear regression and spline interpolation rely
on direct mathematical formulations, resulting in significantly lower computational costs.

Specifically, the simplest linear interpolation requires only basic addition and shift
operations. On a 2.20 GHz CPU, these operations take approximately 1 × 10−9 s to process.
In comparison, our method requires 20 min to train on 81,522 samples for 50 epochs, but
once trained, it only takes 3 × 10−6 s to generate a single missing data point. Overall, the
training and inference times remain within a reasonable range for practical applications.

6. Conclusions
This paper addresses the critical challenge of missing data in photovoltaic (PV) power

generation records, which significantly impacts forecasting accuracy and system reliability.
We proposed a novel Generative Adversarial Network (GAN)-based data imputation method
tailored for PV power generation. Unlike traditional GANs, our approach incorporates a data-
guided generator with quasi-convex properties, a gradient penalty mechanism, and a single-
batch multi-iteration strategy to ensure stable training and high-quality data reconstruction.

The proposed model was evaluated using datasets from the DKA Solar Centre and a
power plant in western China. Experimental results demonstrate that the generated data
successfully bridges data gaps, mitigates spectral leakage and phase discontinuity issues,
and aligns closely with the original data’s structure and distribution. The effectiveness of
the generated data were validated through frequency domain analysis, t-NSE visualization,
and prediction performance comparisons.

In terms of forecasting accuracy, our imputation-enhanced datasets outperformed raw
datasets with missing values across multiple evaluation metrics, including MAE, RMSE,
and R2. These findings highlight the significance of addressing missing data in PV power
records and the effectiveness of our GAN-based imputation method.

Future work will focus on enhancing the model’s generalizability across diverse PV
power datasets and integrating the imputed data with advanced forecasting models to
further improve prediction accuracy. Additionally, the application of the proposed method
to other renewable energy domains will be explored to broaden its utility and impact.
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