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Abstract: Due to the large fluctuation of blast furnace gas (BFG) generation and its complex
production characteristics, it is difficult to accurately obtain its gas change rules. Therefore,
this paper proposes a prediction method of BFG generation based on Bayesian network.
First, the BFG generation data are divided according to the production rhythm of the hot
blast stove, and the training event set is constructed for the two dimensions of interval
generation and interval time. Then, the Bayesian network of generation and the Bayesian
network of time corresponding to the two dimensions are built. Finally, the state of each
prediction interval is inferred, and the results of the reasoning are mapped and combined to
obtain the prediction results of the BFG generation interval combination. In the experiment
part, the actual data of a large domestic iron and steel plant are used to carry out multi-group
comparison experiments, and the results show that the proposed method can effectively
improve the prediction accuracy.

Keywords: blast furnace gas; data division; event set construction; Bayesian network

1. Introduction
BFG is a by-product of the reduction reaction of iron oxide in the blast furnace [1,2],

which is an important by-product energy in the production process of iron and steel
enterprises and is widely used in the production process of sintering and hot rolling, etc. [3].
The fluctuation of BFG generation affects the status of much equipment in long-process
steelmaking. It is of great significance to establish an accurate prediction model of BFG
generation for the energy management of enterprises.

In the literature, methods for by-product gas prediction include time series analysis [4],
supervised learning [5,6], neural networks [7–9], dual-drive modeling [10,11], granular-
ity calculations [12–15] and probabilistic inference [16–18], etc. Among them, study [4]
proposes an adaptive time series model to predict each generation unit and consumption
unit of by-product gas and uses the MILP optimization model to executive short-term
decisions. Studies [5,6] have conducted parameter optimization of least squares support
vector machine models based on genetic algorithms and online hyper-parameter optimiza-
tion methods, respectively, which are suitable for real-time point prediction of generation.
Studies [7,8] propose a two-stage online prediction method and an integrated model incor-
porating quantile regression (QR-ESNE) based on echo state network (ESN), respectively,
with the former using ESN to predict the production and consumption of the BFG in the first
stage, and constructing the storage tank model based on the effectors in the second stage,
and the latter incorporating a Bootstrap strategy to construct the confidence interval and
prediction interval of the BFG. Study [9] builds a bootstrapping reservoir computational
network and uses a simultaneous parameter training method based on Bayesian linear
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regression, which is applicable to nonlinear time series such as BFG generation. Study [10]
establishes data and knowledge dual-driven soft sensors assisted by attention mechanisms.
Study [11] proposes hybrid event, mechanism, and data-driven models which combine
a priori knowledge of the blast furnace to select the best prediction model for different
events. Studies [12,13] are based on the approach of granularity computation—the former
granularizes the industrial drive semantics and adopts the fuzzy C-mean cluster analysis
method to reflect the industrial operation mode and construct the fuzzy rules for energy
flow prediction, and the latter proposes the method of constructing the prediction intervals
based on the granularity computation, which provides the guidance for predicting the
integration of scheduling. Study [14] constructs prediction intervals based on hierarchical
granularity computation and strengthens the model structure using Monte Carlo search
which improves the generalization ability of the model. Study [15] proposes an approach
based on adaptive granularization, which firstly divides the information granules based
on the production semantics of fluctuating trends in energy data, and then proposes a
synergistic conditional fuzzy clustering approach to refine the description of trend-based
features. The above studies provide many ideas for predicting BFG generation, but most of
the methods focus on the BFG generation itself and neglect the research on the equipment
related to the BFG generation. Moreover, the changes in the state of this equipment will
always affect the changes in BFG generation, so it is necessary to pay attention to their
influence on the prediction of BFG generation.

Considering the multi-equipment, multi-process coupling in the steelmaking process,
probabilistic inference methods such as Bayesian networks have been widely emphasized.
Bayesian network-based methods are capable of modeling complex dependencies and
analyzing complex systems with multivariate interactions which are widely used in long-
process steelmaking processes. Study [16] proposes the idea of real-time gas dynamic
scheduling, which models the probabilistic relationships described by Bayesian networks
and ultimately provides scheduling solutions. Study [17] proposes the Takagi-Sugeno (T-S)
fuzzy modeling method based on Bayesian block structure sparsity, and uses the variational
Bayesian method for inference and solution to achieve the dynamic prediction of iron silicon
content. Study [18] proposes a steam flow time series prediction model with a Bayesian echo
state network designed to provide decision support for steam systems. In terms of project
risk assessment, study [19] proposes a fuzzy Bayesian network based on interval V-value
fuzzy sets and improved D-S evidence theory, which employs expert judgment to classify
the data levels, aiming to provide a reliable risk assessment. Although the above studies
on the application of Bayesian networks have not directly demonstrated the applicability
to the prediction of BFG generation, their findings show its feasibility for reasoning about
coupled systems. Among them, the predictions on steam and silicon content of ferro-water
in long-process steelmaking demonstrated the adaptability of Bayesian networks to the
complex energy data of iron and steel systems [17,18]. Research on project risk assessment
has also demonstrated the feasibility of Bayesian networks for reasoning about complex
systems after event-based processing [19].

Based on the above research results, and combined with the influence of key factors
such as hot blast furnace energy consumption on blast furnace gas generation, this paper
takes the BFG generation as the research object, and proposes a Bayesian network-based
prediction method. Firstly, according to the relationship between blast furnace and its own
hot blast furnace in process, the data division of BFG generation is carried out to obtain
the level data. Then, in order to find the connection within and between data segments,
the event set is constructed from the dimensions of interval generation and interval time,
and the Bayesian networks corresponding to different dimensions are built to perform the
state inference of generation. Finally, the inference results are mapped, and the mapped
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generation prediction intervals are combined to obtain the prediction results of generation
interval combination. The results of the experimental part show that the method of this
paper can meet the practical needs of prediction.

This paper is structured as follows: Section 2 analyzes the problems involved in BFG
generation prediction; Section 3 describes the generation prediction method based on the
Bayesian network; Section 4 compares and analyzes the experimental results to validate
the effectiveness of the proposed method; and Section 5 summarizes the contents of this
paper and gives an outlook.

2. Description of the Problem
In the long-process steelmaking process, the blast furnace and the hot blast furnace are

two important devices that are closely related, and their synergistic efficiency has a direct
impact on the quality of steelmaking. The hot blast furnace provides high-temperature air
for the blast furnace to maintain a stable operation, while the hot blast furnace also needs
the stable operation of the blast furnace to maintain the hot air circulation, as shown in
Figure 1.
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At the data level, both BFG generation and its own hot blast furnace consumption
during normal operation have quasi-periodic characteristics, and there are consistent
fluctuations in time between BFG generation and its own hot blast furnace consumption
due to the relationship between the blast furnace and the hot blast furnace in long-process
steelmaking. This process relationship between blast furnace and its own hot blast furnace
is very important for the prediction of BFG generation, and many methods ignore this
relationship, whereas the Bayesian network based on the event concept can rely on its own
structure to discover this relationship and more comprehensively predict the generation.
Therefore, in this paper, based on Bayesian network theory, the knowledge extracted from
the relationship between blast furnace and hot blast furnace is evented to build a network
inference model of BFG generation.

3. Inference and Prediction Method of BFG Generation
Considering the influence of hot blast furnace consumption on BFG generation predic-

tion, this paper proposes a generation prediction method based on a Bayesian network. The
method can be divided into three stages. The first stage mainly carries out the data division
of BFG generation as well as the construction of event set of the two dimensions of interval
generation and interval time. The second stage combines the previous knowledge of the
BFG generation process to construct the generation Bayesian network and time Bayesian
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network under two dimensions. The third stage relies on the network model to perform
state inference for the prediction intervals, and maps and combines the inference results to
obtain the prediction results for the generation interval combination.

3.1. Data Division and Event Set Construction
3.1.1. Data Division

Considering the difference in the fluctuation of BFG generation caused by the differ-
ence in the number of self-allocated hot blast furnaces of different blast furnaces, this section
selects the representative BFG generation and its self-allocated hot blast furnace consump-
tion data of Blast Furnace 1 and Blast Furnace 3 as the samples to be studied, and divides
the data of BFG generation according to the production rhythm of hot blast furnaces.

The hot air furnace consumption sequence has multiple segments with a certain
upward or downward trend, and this section sets up a window L = [l1, · · · , lm], m ∈ N+

with a fixed length, and detects the trend of the data within the window through the
gradual sliding of the window L in the hot air furnace consumption sequence.

Due to the small sample size of the data within each window and not meeting the
conditions of normal distribution, this paper uses the Mann–Kendall test [20] to detect
whether the data within the window contains a certain upward or downward trend, and
the formula of the Mann–Kendall test is shown in Equations (1)–(4). Equation (1) is used to
calculate the sign functions of all the different numbers within the window and the statistics
of all the sign functions are obtained by Equation (2). Since all data in the window are
unique, the formula for calculating the variance of the statistic is simplified to Equation (3),
and since the statistic approximately follows a normal distribution, the standard normally
distributed statistic of Equation (4) is established.

sgn(la − lb) =


1 la − lb> 0
0 la − lb= 0
−1 la − lb< 0

(1)

Y =
m−1

∑
b=1

m

∑
a=b+1

sgn(la − lb) (2)

Var (Y) =
1

18
[m(m − 1)(2m + 5)] (3)

U =


Y−1√
Var (Y)

Y > 0

0 Y = 0
Y+1√
Var (Y)

Y < 0
(4)

where, a, b ∈ [1, m] and a ̸= b.
For the window L to be tested, two hypotheses are set: the original hypothesis H0

states that there is no certain upward or downward trend, while the alternative hypothesis
H1 states that there is a certain upward or downward trend in L. The process for testing
the trend of the window L is as follows.

Step 1: Set a fixed-length window L and slide the window step by step in the consump-
tion sequence of the hot air furnace, calculating all m(m−1)

2 symbol functions sgn(la − lb)
within the window L according to Equation (1).

Step 2: Calculate the statistic Y for window L and the variance of Y according to
Equations (2) and (3).

Step 3: Since the statistic Y approximately follows a normal distribution, the standard
normal distribution statistic U is established according to Formula (4) and |U| is calculated.
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Step 4: Set α to 0.05. If |U| ≥ U1−α/2, do not accept the original hypothesis, which
means that at the α confidence level, there is a certain upward or downward trend in
window L. The type of trend in window L is determined by the sign of U. If U > 0, it
is an upward trend, and if U < 0, it is a downward trend. If |U| < U1−α/2, accept the
original hypothesis.

Step 5: Determine whether the hot air furnace consumption sequence is all detected,
if complete, record the location of the median of all windows where a certain upward or
downward trend exists, otherwise return to Step 1.

For all windows with certain upward or downward trends, there are cases in which the
positions of the window medians are continuous in the time series, and the medians of the
data segments where these median positions are consecutive are taken as the quasi-periodic
cut-off points. For Blast Furnace 1, the data are divided into high and low levels according
to the quasi-periodic cut-off point, as shown in Figure 2. For Blast Furnace 3, according to
the quasi-periodic cut-off point, the data will be divided into high, medium and low levels,
as shown in Figure 3.
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3.1.2. Construction of Training Event Set

The level data obtained from data division will be used to determine the intervals
corresponding to each state in the training event set. Since the different ways of interval
construction will lead to the differences in the training event set and the changes in the net-
work structure, this section adopts both direct construction and overlapping construction to
identify these intervals. Direct construction uses level data segments as the corresponding
intervals, and overlap construction combines the time-ordered level data segments two by
two, and the combined data segments are used as the corresponding intervals, as shown in
Figures 2 and 3. The training event sets are constructed directly and overlapped from two
dimensions of interval generation and interval time, respectively.

Denote c as 1 or 3, representing Blast Furnace 1 and Blast Furnace 3, respectively; and
e as DC or OC, representing direct construction and overlapping construction, respectively.
Define Rc

e as the set of generation amounts for each interval arranged in chronological order
under the c blast furnace e method, and Tc

e as the set of time for each interval arranged in
chronological order under the c blast furnace e method, Rc

e =
{

Rc
e1, Rc

e2, · · · , Rc
eo, · · · , Rc

eh
}

,
Tc

e =
{

Tc
e1, Tc

e2, · · · , Tc
eo, · · · , Tc

eh
}

, o ∈ [1, h], o ∈ N+, h is the total number of intervals
under the c blast furnace e method.

The statistical units of the elements in the interval time set Tc
e of Blast Furnace 1 and

Blast Furnace 3 are all minutes, and the training event set is constructed on the basis of the
interval time, with each state in the training event set representing the time of the interval.

The distribution of the elements in the interval generation set Rc
e of Blast Furnace 1

and Blast Furnace 3 are positively skewed, which need to be transformed by normalization
to approximate the normal distribution in order to construct the training event set using
the properties of the normal distribution. The skewness and kurtosis of the distribution
of elements in the set are calculated by the Equations (5) and (6). Based on the skewness
and kurtosis of the positively skewed distribution, it was determined that the Box − cox
transformation [21] of Equation (7) was used to approximate the normal distribution.

Skewness =

1
h

h
∑

o=1
(Rc

eo − Rc
e)

3

σ3 (5)

Kurtosis =

1
h

h
∑

o=1
(Rc

eo − Rc
e)

4

σ4 − 3 (6)

Rc
eo
(λ) =

{
Rc

eo
(λ)−1
λ λ ̸= 0

ln(Rc
eo) λ = 0

(7)

where, Skewness and Kurtosis denote the skewness and kurtosis, respectively, λ is the
parameter of the Box − cox transformation, σ is the standard deviation, and Rc

e is the mean
of all the elements in the set Rc

e.
The parameter λ of the Box − cox transformation of Equation (7) was determined by

maximum likelihood estimation. According to the Lajda principle of normal distribution,
the probability that the transformed data are distributed within three standard deviations
σ is 68.27%, 95.45% and 99.73%, respectively. The interval states are set according to the
approximate proportions corresponding to the data within the three standard deviations,
then the training event sets of set Rc

e of Blast Furnace 1 and Blast Furnace 3 are constructed,
and each state in the training event set represents the median of the corresponding interval
generation in the event set.
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The constructed interval generation training event set and interval time training event
set are represented by Equation (8) and Equation (9), respectively.

R′c
e =

{
R′c

e1, R′c
e2, · · · , R′c

eo, · · · , R′c
eh
}

(8)

T′c
e =

{
T′c

e1, T′c
e2, · · · , T′c

eo, · · · , T′c
eh
}

(9)

where, R′c
eo denotes the generation state of the o − th interval in chronological order un-

der the c blast furnace e method, and T′c
eo denotes the time state of the o − th interval in

chronological order under the c blast furnace e method.

3.2. Bayesian Network Modeling

Each element in the training event set represents a kind of node’s state, and this section
utilizes the training event set in Section 3.1.2 to learn the structure of Bayesian networks.
It is necessary to set up the Bayesian network nodes reasonably in the structure learning.
Combining the training event sets R′c

e and T′c
e , determine the initial connection relationship

of the 8 nodes connected in chronological order. The training event sets R′c
e and T′c

e are
used as inputs, and the CH scoring function is utilized to traverse the parent nodes of node
Xc

i on the basis of the initial connectivity relationship, obtaining the generation network
and time network of Blast Furnace 1 and Blast Furnace 3, as shown in Figure 4. Denote
X as R or T, representing the generation network or the time network, respectively. The
formula for the CH scoring function [22] is shown in Equation (10).

P(D, S) = P(S)
n

∏
i=1

qi

∏
j=1

(ri − 1)!(
Nij + ri − 1

)
!

ri

∏
k=1

Nijk! (10)

where, S and D represent the network structure and the training event set, P(S) is the prior
probability of the network, n is the number of nodes, ri is the number of values that node
Xc

i can take, qi is the number of combinations of values taken by the parent node of node
Xc

i , Nijk is the quantity of instances where the parent nodes of node Xc
i are in a certain

combination of values and Xc
i takes a certain value, and Nij is the number of the parent

nodes of node Xc
i in a certain combination of values, Nij =

ri
∑

k=1
Nijk.
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Figure 4. Network structure of Blast Furnace 1 and Blast Furnace 3 under different dimensions. (The
left and right parts of the figure represent the two sets of networks used for inference in blast furnaces
No. 1 and No. 3, respectively, where each column in each part represents the inference process and
network structure of the generation network and the time network.).
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The learning process of the Bayesian network structure is as follows. The h − 7 group
of elements in the training event sets R′c

e and T′c
e are taken as input, with each group

containing eight elements, as shown in Figure 4. According to Equation (10), the parent
node that most enhances the CH score is added to node Xc

i until the score is no longer
improved or the maximum number of parent nodes limit is reached, and the network
structure with the highest score under the CH scoring function is obtained.

The inference effect of the network structure under the two dimensions of Blast
Furnace 1 and Blast Furnace 3 is compared to obtain the four sets of network structure used
for state inference in this paper, as shown in Figure 4. It can be seen through Figure 4 that
the differences in the network structures are attributed to the different ways of dividing the
training event sets of Blast Furnace 1 and Blast Furnace 3.

3.3. State Reasoning and Mapping and Combining Reasoning Results

The network structure learned from the above process will be used for state inference
in the prediction interval. The prediction event sets R

′′c
e =

{
R

′′c
ei−7, R

′′c
ei−6, · · · , R

′′c
ei−1

}
and

T
′′c
e =

{
T

′′c
ei−7, T

′′c
ei−6, · · · , T

′′c
ei−1

}
used for inference are constructed based on the training

event sets R′c
e and T′c

e . Each element in R
′′c
e and T

′′c
e represents the state of the corresponding

node at the time of inference. The prediction event sets R
′′c
e and T

′′c
e are input into the

Bayesian network constructed in Section 3.2 for state inference of prediction interval, and
then the inference results are mapped into prediction intervals for the generation, as shown
in Figure 5.
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The state and expectation of the next prediction interval are obtained by inference
through the expectation formula of the network conditional probability (Equation (11)).

E[ θijk

∣∣∣D, S ] =
Nijk + 1
Nij + ri

(11)

where, θijk is the network conditional probability.
Regarding the generation state and the time state obtained from inference, it is nec-

essary to treat them separately due to the different dimensions and the different way of
constructing the training event sets. For the time state obtained by inference, the cor-
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responding value of the state in set Tc
e is the time t of the prediction interval. For the

generation states obtained by inference, the range of interval generation corresponding
to the states can be found in the set Rc

e, and the median R′ corresponding to this range is
obtained. Based on the predicted interval time t, the generation data segments in set Rc

e with
the same time t and the same way of constructing the interval can be found. Assuming that
there are z such generation data segments, combining them into a generation data segment
matrix R (Equation (12)), the set of weights W for the median of the interval generation
range is calculated by Equations (13) and (14), and thus the generation prediction interval
G is obtained.

R =


R11 R12 · · · R1t

R21 R22 · · · R2t
...

...
. . .

...
Rz1 Rz2 · · · Rzt

 (12)

Wη =

z
∑

f=1
R f η

z
∑

f=1

t
∑

g=1
R f g

(13)

W = {W1, W2, · · · , Wt} (14)

G = R′W = {G1, G2, · · · , Gt} (15)

where, f ∈ [1, z], g ∈ [1, t], η ∈ [1, t] and f , g, η ∈ N+.
The steps of inputting the predicted event sets R

′′c
e and T

′′c
e into the network for state

inference and then mapping the inference results are as follows.
Step1: The set of predicted events R

′′c
e and T

′′c
e are used as inputs to reason about states

R
′′c
ei and T

′′c
ei in the next prediction interval according to Equation (11).

Step2: Based on the corresponding values of the generation inference state R
′′c
ei and the

time inference state T
′′c
ei , the median R′ of the generation range in the prediction interval

and the time t of the prediction interval are obtained.
Step3: Search for generation data segments in set Rc

e that have the same prediction
interval time t and the same interval construction to construct the generation data segment
matrix R of Equation (12).

Step4: The weight matrix W of the generation prediction interval is calculated accord-
ing to Equations (12)–(14), which in turn is combined with Equation (15) to calculate the
generation prediction interval G at time t.

Step5: Set i = i + 1, return to Step1.
All generation prediction intervals G are combined in chronological order to obtain

the prediction results of generation interval combinations, and the quality of the prediction
results will be comparatively analyzed in Section 4.

4. Experiments and Analysis
In order to verify the validity of the method proposed in this paper, 80,000 min of BFG

generation data at the same time for Blast Furnace 1 and Blast Furnace 3 are selected for
the construction of the training event set and network learning, and 1400 min of data are
selected for the validation of inference results.

Due to the different dimensions and construction methods, there are some differences
in network structure and inference results. The four groups of networks used for inference
are labeled as overlapping construction generation network (OC-R), overlapping construc-
tion time network (OC-T), direct construction generation network (DC-R) and overlapping
construction time network (OC-T). The statistical unit of the time state is minute, which
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best reflects the accuracy of network inference, so the inference results of 32 consecutive
time states (more than 600 min) of the four groups of networks of different blast furnaces
are selected to compare with the actual state, as shown in Figure 6, and the accuracy of the
inference of the 32 consecutive states is recorded with the accuracy of the inference of all
the 1400-min states in Table 1.
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Table 1. Accuracy statistics for generation state reasoning and time state reasoning.

Methods Inference Accuracy of 32
Consecutive States Average Accuracy Methods Inference Accuracy of 32

Consecutive States Average Accuracy

OC-R-1 90.625% 84.375% OC-T-1 93.75% 87.5%
DC-R-1 90.625% 87.5% DC-T-1 96.875% 90.625%
OC-R-3 87.5% 81.25% OC-T-3 90.625% 84.375%
DC-R-3 84.375% 78.125% DC-T-3 90.625% 81.25%

As can be seen from Figure 7, the deviation of the inference results for each time state
is within one minute, and the overall 32 consecutive time states’ inference error is also
within two minutes. Combined with Table 1, under the dimensions of interval generation
and interval time, the average inference accuracies of two divisions satisfy the accuracy
requirements of prediction, and the average inference accuracy decreases slowly when the
inference length increases. The comparison of the inference accuracy in Table 1 shows that
the inference accuracy of the training event set constructed directly in Blast Furnace 1 is
higher, while the inference accuracy of the training event set constructed overlappingly in
Blast Furnace 3 is higher.

The 1400-min generation prediction results under the direct construction of Blast
Furnace No. 1 and the overlapping construction method of Blast Furnace No. 3 are
selected for comparison with three improved machine learning methods, CNN-GRU, CNN-
LSTM, and Attention-CNN. The first two comparative methods are based on the CNN
network to perform the data feature extraction for the generation, and, respectively, they
are performed by the GRU network and the LSTM network to perform the long-term
prediction of generation, and the third method optimizes the process of feature extraction
through the attention mechanism and uses the CNN network for long-term prediction
of generation. The comparison methods all use the same batch size, number of training
rounds, etc., and the generation data are divided into training set, validation set, and test
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set according to the ratio of 7:2:1. The prediction results of 1400 min for the four methods
are shown in Figures 7 and 8.
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As can be seen from the randomly zoomed in detail section of Figures 7 and 8, after
a prediction length of 600 min the prediction results of this paper’s method deviate less
from the actual values as the prediction time increases, while the comparison algorithm
prediction results deviate significantly.

In order to better assess the prediction effect of this paper’s method, the mean absolute
error (MAE), root mean square error (RMSE), and mean absolute percentage error (MAPE)
are used as the evaluation indexes, and the calculation formulas of the three indexes are
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shown in Equations (16)–(18). The calculation results of the three indexes of this paper’s
method and comparison algorithm are recorded in Tables 2 and 3.

MAPE =
100%

n

n

∑
i=1

∣∣∣∣ x̂i − xi
xi

∣∣∣∣ (16)

MAE =
1
n

n

∑
i=1

|x̂i − xi| (17)

RMSE =

√
1
n

n

∑
i=1

(x̂i − xi)
2 (18)

where, n is the number of test samples, x̂i is the predicted value and xi is the actual value.

Table 2. Comparison of 1400 min predicted effect of BFG generation for Blast Furnace 1.

Methods MAE (km3/h) RMSE (km3/h) MAPE (%)

Proposed method 39.341 55.788 7.232
CNN-GRU 50.849 65.866 11.629
CNN-LSTM 56.796 70.625 13.257

Attention-CNN 84.588 96.184 23.972

Table 3. Comparison of 1400 min predicted effect of BFG generation for Blast Furnace 3.

Methods MAE (km3/h) RMSE (km3/h) MAPE (%)

Proposed method 42.001 65.043 8.438
CNN-GRU 70.745 91.63 18.997
CNN-LSTM 76.626 96.982 20.349

Attention-CNN 90.028 109.19 25.848

Combining the three indexes in Tables 2 and 3, it can be seen that the three indexes
of the prediction results of this paper’s method are smaller than those of the comparison
algorithms, showing higher prediction accuracy and smaller relative amount of error.

In order to evaluate the prediction results more comprehensively, this paper counts
the cumulative errors of the prediction results of the four methods for Blast Furnace 1 and
Blast Furnace 3 in comparison with the actual values, and the results will be shown in the
Cumulative Distribution Function (CDF) plots, as in Figures 9 and 10.
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From Figures 9 and 10, it can be seen that the error distribution of this paper’s method
is concentrated in the interval of less than 100, and the 80% error between the predicted
data and the real value is less than 40, and there is less long-tailed information, whereas
the error interval of the comparative method is larger, and the long-tailed information is
more, which demonstrates that this paper’s model has a higher stability and the overall
prediction accuracy. In addition, it can be seen through Figure 10 that the cumulative error
of this paper’s method for predicting the generation of No. 3 blast furnace is much smaller
than the results of the comparison algorithm, and combined with the prediction results of
No. 1 furnace, it can be concluded that the effectiveness of this paper’s model for predicting
the generation quasi-periods containing multi-segment hierarchical data.

5. Discussion
The prediction of the trend of BFG generation is very important for effective energy

management in steel enterprises. This paper analyzes the mechanism and data of BFG
generation and proposes a Bayesian network-based BFG generation prediction method,
which has the advantage of utilizing the relationship between the blast furnace and its
own hot blast furnace and obtaining the prediction state of BFG generation in two aspects
through the inference of the Bayesian network. The experimental part compares the
prediction results of this paper’s method with those of three comparative algorithms for
1400 min, and the results show that this paper’s method improves the prediction accuracy
while demonstrating adaptability to the blast furnace data with multiple segments of grade
data in the quasi-cycle.

The research in this paper is of some reference significance for the prediction of BFG
generation, and some related improvement work is worth focusing on. In the future, adding
nodes such as working situation in the network structure of the prediction model can refine
the description of the BFG generation process and obtain a more accurate generation state
by inference. In addition, there is still space for optimization in the division of the training
event set in this paper, and it is worthwhile to conduct more in-depth research into how
to improve the effect of network structure training by dividing the training event set,
and how to make the training event set better describe the data relationship within the
BFG generation.



Energies 2025, 18, 1182 14 of 15

Author Contributions: Conceptualization, Z.W. and D.W.; methodology, Z.W.; software, Z.W.;
validation, Z.W.; formal analysis, Z.W. and D.W.; investigation, Z.W. and D.W.; resources, D.W.;
data curation, Z.W.; writing—original draft preparation, Z.W.; writing—review and editing, D.W.;
visualization, Z.W.; supervision, D.W.; project administration, D.W.; funding acquisition, D.W. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Key Research and Development Program of China,
grant number 2020YFB1711102.

Data Availability Statement: Restrictions apply to the availability of these data. Data were obtained
from CHINA BAOWU STEEL GROUP CORPORATION LIMITED and are available from the authors
with the permission of CHINA BAOWU STEEL GROUP CORPORATION LIMITED.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
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BFG Blast furnace gas
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OC-R Overlapping construction generation network
OC-T Overlapping construction time network
DC-R Direct construction generation network
DC-T Direct construction time network
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