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Abstract: Accurate analysis and prediction of low-temperature energy consumption in pure
electric vehicles can provide a reliable reference for energy optimization strategies, thereby
alleviating range anxiety. Here, we propose a data-driven energy consumption analysis
and prediction approach for real-world electric vehicles in cold conditions. Specifically,
the dataset was divided into multiple kinematic segments by the fixed-step intercept
method, and principal component analysis was applied on segment parameters, showing
the average speed and acceleration time had the greatest impact on energy consumption at
−7 ◦C. Then, a Bayesian optimized XGBoost model, with the two factors above as input, was
constructed to predict the cumulative driving and total energy consumption. This method
was validated with two different types of pure electric vehicles under different dynamic
driving cycles. The results demonstrated that the model could predict low-temperature
energy consumption accurately, with all mean relative errors less than 3%.

Keywords: electric vehicle; low temperature; energy consumption prediction; machine
learning; Bayesian optimization

1. Introduction
As the global energy crisis and environmental issues intensify, the automotive industry

is actively transitioning toward more sustainable and environment-friendly solutions. Pure
electric vehicles (EVs) have attracted significant attention and promotion in the market as
a new type of emission-free, high-efficiency transportation option [1,2]. While EVs offer
notable energy saving and emissions reductions, their performance in cold climates is
severely impacted by increased energy consumption and reduced range performance at
low temperatures [3]. This surge in energy consumption in cold regions may force the
power system to rely on fossil energy peaking, indirectly undermining the carbon-reducing
benefits of electrification. In addition, range anxiety due to low temperatures may slow
down the electrification process in cold regions, exacerbating the spatial imbalance in
global transportation emission reduction targets. To avoid such problems and enhance the
applications of EVs in cold areas, it is of great importance to analyze and predict the energy
consumption (EC) of EVs at low temperatures, achieving optimal energy management to
reduce unnecessary energy consumption.

Up to now, some studies have been carried out to analyze the potential effects of
various factors on the EC of EVs. For example, Wang et al. studied the EC characteristics of
EVs at a high speed levels through a power analyzer and chassis dynamometer, studying
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on the DC power consumption of vehicles under the latest Chinese Light-Duty vehicle Test
Cycle [4]. Based on real-road driving data of EVs, Zhao et al. analyzed the influence of
driving status on the EC from the perspective of speed and acceleration in a comprehensive
way [5]. Chen et al. established a simulation model of vehicle energy flow to analyze the EC
characteristics of each vehicle component, as well as the energy-flow decomposition under
different driving cycles and different temperatures, suggesting that energy management
optimization for pure electric vehicles should pay more attention to the mechanical trans-
mission, air conditioning system, and controlling strategy of the electric driving system [6].
Zhao et al. further researched the influence of driving style on the EC of EVs under an
integrated driving cycle according to the direction of energy flow under a constant driving
speed [7]. Yang et al. tried to analyze the influence of different seasonal temperatures
and different driving habits on EV EC from one-year real-road driving data [8]. Iora and
Triboli established an EC estimation model based on the driving data of a Nissan Leaf
electric vehicle and evaluated the influence of ambient temperature on the vehicle EC [9].
Xie et al. analyzed the influence of different environmental and control parameters on the
total EC with the help of an EV simulation model in single-pedal mode and found that
the main factors influencing energy consumption and driving range were average vehicle
speed, running time, and the frequency distribution of the braking process [10]. Berzi et al.
adopted intelligent management of onboard loads to smooth the EV EC due to auxiliary
systems, especially for the HVAC (heating, ventilation, and air conditioning) system [11].
EC-relative factors such as vehicle speed, acceleration, ambient temperature, etc. have been
used as inputs to various EC prediction models, and how to fully utilize them to enhance
the accuracy of these models has also become a major concern for the automotive industry
in recent years.

To reduce prediction errors, scholars have made great efforts to propose some effective
solutions that achieve satisfying performance in particular conditions. Wang et al. estab-
lished a model to predict the total EC based on real-road collected EV data, combining the
multiple linear regression and RBF neural network methods. The results showed that the
prediction accuracy of the combined model was significantly higher than that of a single
multiple regression model [12]. Cao et al. realized an accurate EC prediction by mining
driving behavior information through a big-data model with large sampling intervals,
which consisted of various trajectory data from drivers [13]. Zhong et al. proposed a deep
learning method to predict the trip EC of EVs, fusing the state information of the vehicle
itself and traffic network features to train the deep neural network [14]. Sarrafan et al.
improved the estimation model for EV EC by integrating environmental conditions and
driving efficiency. The prediction error between the estimated and measured values was
less than 0.5% [15]. Miri et al. used MATLAB/Simulink to establish a BMW i3 vehicle
model that contained the powertrain, battery system, driver system, regenerative braking,
and auxiliary devices to estimate the EC; the model’s prediction error was around 2–6% [16].
Wang et al. also built a model based on a certain EV type for EC prediction, including the
road load, power system, regenerative braking, auxiliary system, and battery system. Its
maximum prediction error was only 5% [17].

However, few of the aforementioned studies have paid enough attention to the pre-
diction of low-temperature energy consumption (EC), which is quite difficult because of
the interference of ambient temperature and the air-conditioning system. Furthermore, the
procedures by which these studies have selected EC-relative factors have been relatively
complicated. To bridge the aforementioned research gaps, we propose a Bayesian opti-
mized XGBoost model based on easily selected but effective factors to accurately predict
the low-temperature driving and total EC of EVs. The main contributions of our study can
be summarized as:
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(1) Selecting highly relevant factors in a rather brief way. Average speed and acceleration
time were selected by principal component analysis and presented major impacts
on the EC of EVs at −7 ◦C, leading to regular changes in EC while they were in-
creasing. Factors changed when the environment became much cooler, but they were
still efficient.

(2) Establishing a prediction model to realize an accurate EC prediction at low temper-
atures. High accuracy was witnessed in the prediction of driving EC, and accuracy
decreased only slightly when predicting the total EC.

(3) Validating the method with dynamic driving cycles. Real-world vehicle data were col-
lected under effective driving cycles that included various working conditions. Thus,
low-temperature EC could be analyzed and predicted on a much more reliable basis.

2. Experimental
In this study, two pure electric vehicles were selected as test vehicles, as shown in

Figure 1a,b. Here, car W stands for the white vehicle, and car B stands for the black one.
During the test, the brake recovery function was turned on, and the ECO mode was selected
as the driving mode. Specifically, the top two pictures of Figure 1a show the real experi-
mental scenario, and the bottom one shows a schematic of each component in the test: the
vehicle, environment chamber, auxiliary screen, head-on fan, chassis dynamometer, power
analyzer, etc. The environment chamber could simulate the temperature, humidity, and
sunshine under various climatic conditions. It provided a low-temperature environment
of −7 ◦C for car W and another one of 15 ◦C for car B. In practice, this temperature range
was wide enough to evaluate the EC and driving range of the EVs under cold climate
conditions. The auxiliary screen was loaded with dynamic cycles to assist the driver in
driving in accordance with the test requirements. The head-on fan adjusted the wind speed
to follow changes in velocity, providing realistic cooling for the vehicle motor. The chassis
dynamometer simulated the actual driving resistance on the road and recorded the vehicle
speed during the test. The power analyzer collected relevant electrical parameters of the test
vehicle; its type and sampling frequency were HIOKI PW3390 (HIOKI, Shanghai, China)
and 1 Hz, respectively, as shown in the bottom half of Figure 1a. This power analyzer
could achieve a high-level power accuracy of ±0.04% rdg and ±0.05% f.s. It maintained
stable amplitude and phase accuracy at high frequency and acquired up to 8 channels of
data synchronously. Electrical parameters collected included current and voltage of the
12 V battery, drive motor, PTC, DCDC, etc.; a sample of data acquisition is presented in
Figure 1c.

The main procedure of the test is shown in Figure 1d. The vehicle first coasted to deter-
mine the loading coefficient of the chassis dynamometer resistance, and the environment
resistance coefficient was set as 1.1 times larger than that in the normal temperature. After
the discharge and recharge stage, the vehicle was put in the cold environment for a long
time, and the test then began. During the test, the necessary data were collected.

In particular, the auxiliary screen loaded the newest cycle in China for car W, which
was proposed in the China national standard GB/T 18386.1-2021 “Test Methods for En-
ergy Consumption and Driving Range of Electric Vehicles Part 1: Light Duty Vehicles”
(CLTC-P) [18], as shown in Figure 2a. For car B, the auxiliary screen loaded a common
interurban cycle shown in Figure 2b.
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Figure 1. (a) The experimental platform for proposed low-temperature test, (b) the vehicle technical
information, (c) the sample data from the power analyzer, and (d) the procedure of the test.
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Figure 2. (a) The CLTC-P driving cycle and (b) the common interurban cycle.

Besides these, a pretest for car W, in which the vehicle ran only 3 CLTC-P cycles to
collect more data on the warm-up process, was carried out before the formal test. In the
formal test, car W ran 23 CLTC-P cycles, and car B ran 23 interurban cycles, until their
batteries are almost completely depleted.

3. Analysis of EC at Low Temperatures
The total EC is greatly affected by particular road environments, and its deterioration

intensifies greatly at low temperatures [19], which makes prediction thereof less accurate.
This study first analyzed the effects of different characteristic parameters on the low-
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temperature EC of EVs and selected valuable ones in a rather brief way. To avoid repeated
descriptions, the following content focuses mainly on car W.

3.1. Analysis of Low-Temperature Energy Flow

The battery power is consumed mainly by the drive motor, PTC (positive temperature
coefficient heaters), and DCDC (DC–DC converter) when in cold conditions. The drive
motor overcomes the driving resistance to keep the vehicle moving in accordance with
the will of the driver, the PTC provides enough heat in the low-temperature environment
to avoid extreme coldness, and the DCDC converts the original DC voltage into a larger
or smaller one, during which energy is continually consumed. As for the recharge of
battery power, besides long-time charging, the battery power recovers mainly by the
recycled energy from the regenerative braking system. Thus, EV battery energy flow in
cold environments is:

Eb + Er = Emotor + Eptc + EDCDC (1)

where Eb is the output power of the power battery, kW·h; Er is the input power of braking
recovery, kW·h; Emotor is the power consumed by the drive motor, kW·h; Eptc is the power
consumed by the PTC, kW·h; and EDCDC is the power consumed by the DCDC, kW·h.

3.2. Kinematic Segments Division

Dynamic driving cycles can not only provide a reference for the power system design
of traditional fuel vehicles to achieve the effects of fuel saving and emission reduction but
optimize the power and energy storage systems for EVs to reduce the EC and increase
driving mileage through a reasonable distribution of energy flow. These cycles are mainly
speed–time curves containing many kinematic segments.

To analyze the EC of EVs, this study adopted the fixed-step interception method [20]
to divide the data into a number of short kinematic segments with a fixed time interval
of 60 s (50 s for car B); 780 kinematic segments were obtained in total after this process
(644 segments from car B). According to the literature [21], 15 characteristic parameters
were selected to describe each kinematic segment, as shown in Table 1, which also presents
some samples of segment characteristic parameters. It is obvious that there were significant
differences in characteristic parameters between different kinematic segments.

Table 1. Characteristic parameters of kinematic segments and some samples from car W.

Number Symbol Name Unit 1 2 3 4 5 . . . 779 780

1 Vm Average speed km·h−1 21.21 8.29 18.73 17.39 3.38 . . . 100.57 33.39
2 Vmax Maximum speed km·h−1 33.62 23.62 27.37 29.63 18.21 . . . 114.22 76.48
3 Vs Standard deviation of speed km·h−1 11.91 8.68 5.3 6.23 4.52 . . . 11.49 26.89
4 Am Average acceleration m·s−2 1.37 1.25 0.57 1.02 1.29 . . . 1.31 2.73
5 Dm Average deceleration m·s−2 3.28 2.47 1.37 3.26 2.9 . . . 2.78 3.97
6 Amax Maximum acceleration m·s−2 −0.73 −1.62 −0.83 −0.84 −1.44 . . . −1.5 −2.39
7 Dmax Maximum deceleration m·s−2 −1.5 −3.58 −1.29 −3.03 −3.18 . . . −5.07 −6.97
8 Ti Idle time s 29 20 28 32 10 . . . 30 9
9 Ta Acceleration time s 21 16 30 26 20 . . . 29 40
10 Td Deceleration time s 9 23 0 0 29 . . . 0 10
11 Tc Uniform speed time s 1 1 2 2 1 . . . 1 1
12 Pi Ratio of idle time 0.48 0.33 0.47 0.53 0.17 . . . 0.5 0.15
13 Pa Ratio of acceleration time 0.35 0.27 0.5 0.44 0.33 . . . 0.48 0.66
14 Pd Ratio of deceleration time 0.15 0.38 0 0 0.48 . . . 0 0.17
15 Pc Ratio of uniform speed time 0.02 0.02 0.03 0.03 0.02 . . . 0.02 0.02

3.3. Principal Component Analysis

The high dimensionality of the characteristic parameters and the large correlation
between them would interfere with the analyzing and calculating processes. Therefore, the
15 characteristic parameters needed to be subjected to principal component analysis, which
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is a commonly used dimensionality-reduction technique to convert high-dimensional vari-
ables into low-dimensional variables. According to the principles of principal component
analysis [22], the number of principal components is determined based on the cumulative
contribution rate, which should be greater than 85% (86.61% for car W, as shown in Table 2;
86.01% for car B).

Table 2. Cumulative contribution rates of principal components.

Principal
Component Variance Percentage of

Variance/%
Cumulative

Contribution Rate/%

1 5.21 34.70 34.70
2 3.51 23.38 58.08
3 2.41 16.07 74.15
4 1.87 12.46 86.61
5 0.92 6.16 92.77
6 0.54 3.62 96.39
7 0.35 2.34 98.73
8 0.11 0.75 99.48
9 0.06 0.41 99.89

10 0.02 0.11 100.00

The key characteristic parameters were determined according to the principal com-
ponent loading matrix in Figure 3a. The first principal component represents average
speed and maximum speed; the second principal component represents acceleration time
and the ratio of acceleration time; the third principal component represents the standard
deviation of speed and average acceleration; the fourth principal component represents
uniform speed time and the ratio of uniform speed time. To simplify the model inputs, the
average speed and acceleration time were selected as the final parameters for each segment
in our study. As for car B, average speed and deceleration time were selected according to
Figure 3b.
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3.4. Analysis of Segment EC

In this paper, total EC means the total energy consumption of the vehicle, including
all the consumption of components in the vehicle, and the driving EC refers only to
consumption from the drive motor itself. Because of the test arrangement, only the total EC
data of car B were collected.

According to the results of the principal component analysis above, this study analyzed
the effect of average speed and acceleration time on the segment EC. Figure 4a shows the
variation of the segment total EC with average speed, the scatters fitted with a quadratic
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term. It can be seen that there was a trend of EC decreasing and then increasing with
increasing average speed. When the average speed was in the interval of 0–20 km·h−1, the
distribution of the EC is much higher and more dispersed, with the average EC achieving
646.57 Wh·(km)−1. As the average speed increased and reached the economic interval
of 20–60 km·h−1, the EC reached its lowest level, only 204.83 Wh·(km)−1. On average,
the EC was 3.16 times larger at low-speed intervals than in the medium-speed intervals.
This phenomenon was due mainly to the increased time of drive motor operation in the
low-efficiency zone and the greater EC from the low-temperature air-conditioning system
at the initial stages.
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Figure 4. Each blue point represents a segment, and the red curves are quadratic fits to the energy
consumption of all segments. (a) The energy consumption curve with the average speed and (b) the
energy consumption curve with acceleration time.

Figure 4b shows the variation of EC with acceleration time, the scatters also fitted
with a quadratic term. It is obvious that the EC trend was similar to that with average
speed. The reasons are as follows: when the acceleration time is short, the road traffic is
congested, thus being equal to the condition of low average speed; when the acceleration
time is appropriately extended, the vehicle operates for more time in the economic zone
with the lowest EC; as the acceleration time is extended again and the vehicle reaches a
high speed, the EC increases cause the motor to leave the optimal working point, and the
air resistance increases significantly, which forces the motor to run under a high load.

Similarly, Figure 5 shows the variation of EC with average speed and acceleration
time. The trends in Figure 5 were slightly different from those in Figure 4, mainly because
of the different cycle and the cooler temperature.
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Figure 5. Each blue point represents a segment, and the red curves are quadratic fits to the energy
consumption of all segments. (a) The energy consumption curve with the average speed and (b) the
energy consumption curve with deceleration time.
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The average speed and acceleration time were selected as the inputs for K-means
clustering. This algorithm is a commonly used data analysis method that divides the
datapoints into K clusters by constantly updating the mass centers and redistributing the
data through an iterative optimization algorithm, finally finding a solution that minimizes
the objective function [23]. The expectation of clustering is to make the total sum of squared
errors from each sample point to its nearest clustering center as small as possible. The
spatial distance from the sample point to its clustering center is:

d(x, Ci) =

√√√√ m

∑
j=1

(
xj − Cij

)2 (2)

where x is the dataset; Ci is the i-th clustering center; m is the data dimension; and xj, Cij

are the j-th parameters of x, Ci.
The sum of squared error S for the dataset is calculated as:

S =
k

∑
i=1

∑
x∈Ci

|d(x, Ci)|2 (3)

where k is the number of clustering categories. The smaller the sum of squared error, the
better the clustering results.

The number of clustering categories k is determined according to the elbow method.
The point where the steep declining trend in the sum of squared error begins to slow down
is called the “elbow inflection point”, and there is no longer a significant decrease in the
sum of squared error with increasing numbers of clustering categories after this point (here,
k was selected as 4, as shown in Figure 6).
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Figure 6. Curve of the elbow method.

After the K-means clustering, the kinematic segments were divided into four different
classes. Figure 7 shows the distribution of segment total EC in these four conditions. For
red points under working condition 1, its segment EC was more unstable and had a large
degree of dispersion, which was due mainly to the low speed and inefficient running
motor, and its average EC (750.09 Wh·(km)−1) was 3.92 times higher than that of yellow
points under working condition 3 (191.45 Wh·(km)−1). With increasing average speed
and acceleration time, the EC of different conditions tended to stabilize, like the trend in
Figure 4.
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4. Prediction of EC at Low Temperature
4.1. Model Introduction

After the preselection of sufficient characteristic parameters, the first two principal
components with the highest interpretability were identified through the PCA loading
matrix. Each principal component mainly reflected a key characteristic parameter (key
factor). Finally, the two key factors were used as the input features to predict the segment
EC (for car W, these were segment average speed and segment acceleration time; for car B,
they were segment average speed and segment deceleration time).

This study established the XGBoost model to predict the driving and total EC of
kinematic segments. XGBoost is a powerful machine learning algorithm that is used mainly
for prediction and classification through parametric regression [24]. Compared with the
random forest method, XGBoost has better accuracy and speed on medium-sized datasets
(sample size 103~106) and avoids the overfitting phenomenon, which is prone to occur in
neural networks such as LSTM by L1 and L2 regularization. With lower deployment and
computation costs, it can achieve a good balance between accuracy and efficiency.

The objective function of XGBoost consists of two parts: the loss function and the
regularization term. The former measures the model prediction error, and the latter controls
the model complexity as well as preventing overfitting. The exact form of the objective
function depends on the problem being researched. For regression prediction, the loss
function is usually the mean square error:

L = 1/2 ∑ (yi − yi)
2 (4)

where L is the objective function, yi is the true target value, and ȳi is the predicted value.
The regularization term includes L1 regularization and L2 regularization:

R = λ ∗ ∑ w2 (5)

where R is the regularization term, λ is the regularization parameter and controls the
regularization intensity, and w is the weight parameter.

However, the single XGBoost model is susceptible to falling into local optimal solutions
because of improper initial selection of hyperparameters. The improved Bayesian optimized
XGBoost model can avoid such problems, and it has high efficiency and robustness while
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predicting; it can find the near-optimal hyperparameter configuration with a small number
of objective function evaluations [25]. Therefore, it was selected as the EC prediction model
in this study. Here, the search space of Bayesian optimization was: max_depth in (3, 7),
learning rate in (0.01, 0.3), n_estimators in (50, 500), gamma in (0, 1), min_child_weight in
(1, 10). The iterations were set as 30.

All kinematic segments under four different conditions were divided into a training
set and a test set. Then, the training set was used to train the XGBoost model, the optimal
hyperparameter configurations of which were obtained by Bayesian optimization. The test
set was used to evaluate the prediction effects, with the mean squared error, root mean
squared error (RMSE), mean absolute error, and R2 as evaluating indices.

4.2. Analysis of Prediction Results

Figure 8 shows the results of EC prediction. In Figure 8a, the predicted driving EC
was in high agreement with the real values, but in Figure 8b,c, the predicted total EC was
not as close to the real values the predicted driving EC was.
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Figure 8. (a) Prediction results of the driving energy consumption of car W, (b) prediction results of
the total energy consumption of car W, and (c) prediction results of total energy consumption of car B.

Table 3 presents the evaluation indices of the prediction results of both driving and
total EC. It can be seen that the R2 of all kinds of the EC was greater than 0.9, which
indicates that the prediction results were all satisfying. However, the mean absolute error
of the total EC was significantly higher than that of the driving EC. This was because the
total EC in low-temperature environments was affected not only by the drive motor but
by the EC of the PTC and DCDC, which reduced the prediction accuracy. However, with
enough similar-traffic-environment segments in the interurban cycle, the accuracy of total
EC prediction decreased in car B, meaning the model would improve with more valid data.

Table 3. Evaluation indices of prediction results.

Vehicle Energy
Consumption RMSE/Wh R2 Mean

Absolute Error/Wh
Mean

Relative Error/%

Car W Driving 9.86 0.9874 5.02 0.25
Car W Total 24.20 0.9069 17.56 2.38
Car B Total 28.08 0.9092 13.65 1.47

Based on the prediction results of driving and total EC of all kinematic segments, the
cumulative EC of the whole test process was further analyzed. As shown in Figure 9a,
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predicted values of cumulative driving EC were always close to real values, but as shown
in Figure 9b,c the predicted values of cumulative total EC were slightly smaller than the
real values and had a larger deviation in the middle stage of the test.
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Figure 9. (a) Prediction results of the cumulative driving energy consumption of car W, (b) the
cumulative total energy consumption of car W, and (c) the cumulative total energy consumption of
car B; (d) an enlarged part of the cumulative total energy consumption prediction for car W.

Figure 10 shows the absolute and relative errors of prediction results. It indicates
that when the energy demand stabilized, the total EC prediction could also reach a high
accuracy easily. Meanwhile, the absolute errors of both driving and total EC had the same
trend: increasing first and then decreasing. They increased at the initial stage because the
vehicle is still cold while starting. At this time, the driving resistance is unstable, and the
energy demand for warming the passenger compartment at low temperatures is urgent,
resulting in an increase in the absolute error. With the stabilization of the power output
from the drive and transmission systems, the temperature of the passenger compartment
also rises more stably. Thus, the absolute error starts to decrease because of the constant
energy demand. The relative errors also showed a trend of being larger at the beginning
and gradually smaller with time. This was because there were fewer kinematic segments
predicted at the beginning, and the real cumulative EC in the denominator was smaller.
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Figure 10. (a) Absolute error of cumulative driving energy consumption prediction from car W,
(b) relative error of cumulative driving energy consumption prediction from car W, (c) absolute error
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of cumulative total energy consumption prediction from car W, (d) relative error of cumulative total
energy consumption prediction from car W, (e) absolute error of cumulative total energy consumption
prediction from car B, and (f) relative error of cumulative total energy consumption prediction from
car B.

5. Conclusions
This study proposes a data-driven method, aiming at selecting the most valuable

factors impacting EV energy consumption at low temperatures and accurately predicting
the EC under cold and dynamic driving conditions. The main conclusions are summarized
as follows:

(1) Average speed and acceleration time were found to have notable impacts on EV
energy consumption at −7 ◦C, and the segment energy consumption showed a trend
of decreasing and then increasing with increasing average speed or acceleration time.
This factor-selecting method was still valid under changes in cycle and temperature.

(2) High attention should be paid to the significantly consumed energy at low speed
levels, and the optimization of EV energy flow under such conditions should be
considered as a necessity in the stage of vehicle designing.

(3) Driving energy consumption at low temperatures was stable enough to achieve a high
accuracy of prediction, while for the total energy consumption under such conditions,
it was not easy to get satisfying results. However, with enough traffic data, the
proposed Bayesian optimized XGBoost model based on these two factors could also
show reliable prediction performance, with the mean relative error reaching 1.47%, as
shown in the results for car B.

(4) The method proposed in this paper is applicable to various types of electric vehicles,
such as cars or trucks. It can also be used to study and predict the trend of energy
consumption of electric vehicles at other temperatures (for example, high-temperature
environments), which has a wide range of application scenarios.

In this study, only two representative low temperatures were selected as test conditions,
so the stability of energy consumption prediction at more temperatures will be investigated
in our future work, which will also include more, different vehicle data. In addition,
whether the method can realize a satisfying result with fast response, high accuracy, and
low computing power consumption in a real-time prediction process will also be explored
in our subsequent study.
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