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Abstract: There is a paradigm shift to hybrid (AC/DC) networks that integrate both AC
and DC to meet growing energy demands, mitigate global warming, and interconnect
distributed energy sources (DERs). However, the unique characteristics of AC/DC faults,
the mutual interaction of hybrid lines, the harmonic components of converters/inverters,
multiple directions of energy flow, and varying current levels have challenged the existing
protection algorithms. Therefore, this paper presents a data-driven coordination AC/DC
fault protection algorithm. The algorithm utilizes faulty voltage and current signals to
retrieve the precise time-domain characteristics of AC, DC, and intersystem (IS) faults to
develop the algorithm. The proposed algorithm consists of four stages: stage 1 includes
the detection of faults, stage 2 identifies the fault as either AC or DC, stage 3 classifies the
respective AC and DC faults, and stage 4 locates the AC/DC fault precisely. The hybrid test
system is developed in a MATLAB/Simulink environment, and the data-driven algorithm
is trained and tested in Python. The extensive simulation results for multiple fault cases,
either AC or DC, and the comparisons of various performance indicators confirm the
effectiveness of the developed algorithm, which performs efficiently under a noisy and
extended hybrid AC/DC network. Compared to other schemes, the proposed coordination
protection approach can enhance the speed and accuracy of hybrid AC/DC networks.

Keywords: fault protection; AC/DC protection coordination; data-driven approach;
intelligent fault protection; ensemble learning protection

1. Introduction

AC transmission lines transmit huge amounts of energy to end-users from centralized
sources with maximum limits. However, the capacity of existing AC lines will be depleted
to satisfy rising energy demands [1]. The AC transmission network extension is now
restricted due to environmental concerns, regulatory rules, and right-of-way limitations [2].
Decentralized distributed energy resources (RERs) are being deployed in power systems to
meet emerging energy requirements and mitigate environmental concerns [3]. Moreover,
compared to the commonly used high-voltage AC (HVAC) systems, high-voltage DC
(HVDC) and hybrid AC/DC networks have garnered more consideration due to their effec-
tive land management, right-of-way minimization, high performance, and reliability [4,5].
Hybrid transmission allows for bulk power transmission [6], providing a continuous energy
supply, and a green environment [7]. Consequently, it can be established on existing AC
lines on the same tower with new DC lines added to run in parallel with the AC lines [8,9].
These are alternative options for satisfying rising energy demands by increasing capacity
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and reducing transmission losses over long distances [10]. This uninterrupted energy
supply, with high transmission capacity, makes the parallel hybrid AC/DC transmission
system more reliable and secure, being able to overcome the existing challenges [11]. How-
ever, this integration has further increased the complexity and vulnerability of network
control by introducing harmonics, different AC/DC fault natures, and multi-directional
energy sources. Therefore, hybrid AC/DC network protection is becoming more suscep-
tible to transient disturbances and faults [12]. A scheme was presented in [13] to protect
AC lines using composite mode power difference. Similarly, another scheme is used to
overcome the AC protection challenge using composite mode inductance for different fault
zones [14]. Another scheme in [15] employed a protection solution for AC lines using the
unique boundary condition of the negative sequence strategy at the fault location. These
schemes have protection solutions for the AC side but cannot simultaneously apply to
hybrid AC/DC faults.

Prompt identification and classification of transient events and both AC/DC faults are
required to protect the transmission network [16]. The scheme used in [17] provides solu-
tions for emerging cascading faults due to the interaction of hybrid lines. The simulation
results demonstrated that initiating the fault from the AC inverter side leads to communi-
cation failure and DC system blockage. Integrated control schemes were presented in [18]
to avoid the blackouts caused by cascading failures in hybrid transmission. Intersystem
(IS) faults can originate due to short circuits of AC and DC lines in AC/DC transmis-
sion lines [19]. Several techniques were presented in [20] to overcome mutual interaction
challenges and provide secure IS fault handling by using the protection coordination of
AC/DC and full-bridge multilevel converters. A control strategy of bidirectional converters
for transient response was proposed in [21] to overcome the faults in the hybrid system.
A novel scheme in [22] used a transfer matrix to detect, locate, and identify hybrid line
faults. However, the scheme has used samples from both ends of the line so it may cause
communication failures. An algorithm of directional elements to overcome commutation
failures in hybrid transmission lines was presented in [23]. This technique can face data
mismatch errors during data collection. A full-bridge control mechanism to control the
hybrid transmission line fault was proposed in [24]. Compared to the half-bridge control,
the proposed scheme has solved the protection issues of both AC/DC sides. The challenges
with control schemes are high computation, increased complexity, and cost.

Currently, machine learning methods have received much interest in detecting and
diagnosing transmission line issues [25]. These technique’s main benefits include fast
detection, low complexity, and high accuracy for AC/DC faults in hybrid lines. Hence,
they can prevent failure promptly and advance the dependability and robustness of the
utilized systems. The support vector machine (SVM) algorithm [26] has been utilized to
improve the safety of AC/DC faults. This technique uses a discrete Fourier transform
for feature extraction to detect AC and HVDC faults. Another scheme was presented for
the recognition and categorization of AC and DC fault lines using the k-nearest neighbor
algorithm [27]. The technique used the discrete wavelet transform for the data and feature
attributes to detect fault abnormality. In [28], a fault protection scheme using traveling
waves was proposed. The scheme utilized the discrete wavelet transformation to detect the
transient events of selected parameters with the SVM for fault identification. A reinforce-
ment learning-based protection scheme for hybrid microgrids to optimize energy storage
systems was presented in [29].

The existing literature mostly deals with the protection of HVDC networks using
artificial neural networks (ANNs) with the discrete wavelet transform (DWT) to extract
relevant features. DWT is used to derive important features and minimize noise and
abnormal events. Feature selection to ensure the nature and timing of the faults plays a
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main role in the ANN algorithms. Ant colony optimization has been employed in [30] to
ensure optimal accuracy in fault protection by selecting only the optimized features. A
robust ANN-based protection scheme for multi-terminal HVDC systems utilizes Bayesian
optimization (BO) to fine-tune the parameters of the DWT. This method leverages multi-
resolution analysis and Parseval’s theorem to enhance parameter tuning, thereby improving
the efficiency of internal DC fault detection [31]. Deep learning (DL) has been used for
fault detection in DC networks. A transfer learning approach using adversarial DL was
used to identify short-circuit faults, where transient line currents serve as input features for
classification. This technique demonstrates a fast fault protection time of approximately
1 ms, making it highly effective for real-time applications [32]. A method based on the
pi-line model has been proposed to determine fault locations within AC/DC microgrids.
By analyzing voltage and current data at the point of common coupling and generator
terminals, this approach accurately identifies fault location [33]. A single-phase ground fault
detection strategy utilizes the whale optimization algorithm to optimize the parameters of
least squares SVM, improving classification accuracy [34]. In microgrid protection, a hybrid
approach combining the DWT with neural networks has been developed, leveraging the
strengths of both techniques to enhance system reliability [35].

A unified mathematical-driven scheme [36] with the ability to coordinate the AC
and DC relay impedances can detect both AC and DC faults. This algorithm has ensured
the simultaneous detection of AC and DC faults as a single relay in a microgrid. The
performance of the proposed algorithm can be varied during transient events owing to the
impedance-based relays. Currently, no study deals with simultaneous hybrid transmission
network AC/DC faults.

The existing schemes mostly deal with either HVDC or HVAC faults separately. The
conventional schemes cannot protect the hybrid networks due to bidirectional power flow
and complex control algorithms. Existing intelligent algorithms rely on signal processing
schemes that require threshold criteria, time computation and neglect the coordination
of relays to simultaneously detect both AC and DC faults in hybrid networks. Therefore,
intelligent coordination techniques are needed to quickly and precisely detect, locate, and
classify AC/DC faults.

1.1. Research Gap

To address these limitations, there is an urgent demand for protection algorithms that
ensure the coordinated operation of AC and DC protection relays while promptly detecting
both AC and DC faults in hybrid networks. The existing techniques, while effective, often
rely on computationally expensive feature extraction methods such as the DWT and deep
learning models, which increase processing time and complexity. A key research gap lies in
developing a coordination-based data-driven algorithm that leverages a simple yet effective
time domain to achieve fast, reliable, and computationally efficient fault detection and
classification. The proposed technique avoids complex signal processing while ensuring
real-time applicability, making it suitable for hybrid AC/DC networks.

1.2. Contribution and Paper Organization

This paper proposes a communication-less data-driven coordination technique for
hybrid transmission networks. The scheme uses time-domain features to identify the
hybrid line fault (AC, DC, IS) scenarios. The data cases collected are then used to train the
proposed algorithm. Hybrid network modeling and feature extraction were performed
in MATLAB 2022a/Simulink, while Python (3.7.16) was used for the development of the
algorithm and training/testing of the data.

The main contributions of this study are as follows:
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e A communication-less data-driven coordination algorithm for the hybrid AC/DC
transmission line is proposed to avoid time delays.

e  The proposed algorithm simultaneously detects, locates, and classifies all the existing
fault scenarios (AC, DC, and IS) to ensure the stability and reliability of the system
compared to existing methods where parallel hybrid network protection cases are not
thoroughly studied.

e  The proposed algorithm is independent of any threshold requirement. Fault detection,
identification, classification, and location steps are comprehensively investigated using
noisy data and an extended test system to assess performance.

o  The developed hybrid (AC/DC) network system operates in parallel to overcome the
existing energy demands and enhance capacity without extending new AC lines.

e  Finally, to confirm the efficacy, a thorough comparison with the state-of-the-art tech-
niques is conducted using various performance indicators such as accuracy, precision,
recall, and F1 score.

The remainder of this paper is organized as follows. Section 2 presents the mathemat-
ical modeling and fault characteristics analysis. Section 3 provides theoretical details of
ensemble learners and thoroughly describes the proposed protection scheme. Section 4
briefly describes the hybrid AC/DC network and feature extraction details. Section 5
presents the simulation results and discussions, and Section 6 concludes the paper.

2. Mathematical Modeling and Fault Characteristics Analysis

The fault characteristics of AC and DC in VSC-based HVDC networks are analyzed
thoroughly using resistive-inductive—capacitive (RLC) circuitry to develop protection
algorithms [37].

2.1. DC Fault Analysis

DC faults generally considered in the literature are pole-to-ground (PG) and pole-to-
pole (PP). The DC fault is highly intense owing to the cable’s capacitor discharge and line
impedance. The VSC has three stages during a fault [38], which are shown in Figure 1
as follows.

2.1.1. Discharge of Capacitors

The current is discharged from the capacitor during a fault in the first stage and it
results in a fast-rising current due to the charged capacitor and low impedance of the cable,
as shown in Figure 1a.

2.1.2. Freewheeling Diodes

In the later stage after discharging the capacitor, the voltage drops to zero, acting in
reverse, pushing the freewheeling diodes (D) to start the conducting path, as shown in
Figure 1b, where D is the diode of the converter leg.

2.1.3. Grid Feed

In Figure 1c, the AC feed stage, the current from the V4 is introduced as 4 along
with capacitor i and inductor current iy.
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Figure 1. DC fault scenarios in VSC: (a) discharge of capacitor stage, (b) freewheeling diodes stage,
(c) and AC feed stage.

The VSC fault current i(t) used for the given networks to detect the abnormality is
derived as follows:

__vc(0)

l(t) = L(pz — pl) [e_Plt _ e—qu + 11(0)) [fple—l”lt _ pze—l’zt] 1)

(P2 — 11

Here, p; and p; are the poles and are determined by the following:

pLp2 = a1/ (@) — wp? (2)

where wy = % and ¢ = % ; the values may be real or complex. The fault (if) and diode
currents (ip) of the VSC are derived using (3):

if = I'oe~ (B and iy = %f 3)

where I is the start value of the fault.

2.2. AC Fault Details

The fault behavior of AC faults is studied using a resistive-inductive (RL)-equivalent
circuit, as shown in Figure 2 [39]. The switch initiates a fault and short circuits the load
with low impedance, resulting in a high current level from the source. The fault current has
an impedance calculated from the circuit using (R + jXp).

) | Load I

Figure 2. Circuit for fault current.

The AC fault current is studied when the switch is closed in Figure 2.

di
V.=Ri+ L= 4
s=Rit+ Lo 4)
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The fault currents are the combination of two components, as shown in (5), and can be
determined by

) V. (L)Y (4
zaczf(l—e (T)), ige = Ipe (r), (5)
The total sum of the AC fault current, including AC and DC being offset, is given as

. . . V. Ve\ _
ltotal = lac T 1dc = fs + (IO - Rs>e (

S

). 6)

These fault current characteristics are used to identify AC/DC faults and time-domain
features are retrieved to detect the abnormality using data-driven approaches.

3. Theoretical Details of Data-Driven Algorithm
3.1. Ensemble Learners

Machine learning-based intelligent fault detection and protection approaches have
enhanced power system protection. Researchers have presented numerous ensemble
learning-based approaches to detect faults in AC protection in recent years using bulk
data [40]. The advantages of using ensemble methods are quite remarkable. The predicted
accuracy is greater, bias and variance may be decreased, and most of the time, the model
is not under/overfitted. It is more reliable, has less noise, and works fine with linear and
non-linear types of data. However, there remains a gap in applying such data-driven
schemes to hybrid protection to ensure safety and overcome growing energy demands. To
overcome this, we employed two models to precisely detect, identify, locate, and accurately
classify the faults in a hybrid AC/DC system. The working principles of the utilized models
are discussed below.

3.1.1. Random Forest (RF)

Ensemble models are effective for reducing the overfitting in the decision tree. Being
an ensemble model, RF uses a bunch of trees to overcome this issue. RF is an ensemble-
based model that uses multiple decision trees. During the process of classification, each
tree has an output, and the final classification is based on the majority output decision of
the trees. Owing to its high accuracy and generalization performance, an emerging RF
ensemble algorithm was investigated for fault protection [41]. Figure 3 shows the flow chart
of the working principle of random forest. It reviews the working methodology and how it
attains the final output decision based on the voting of multiple trees. The pseudo-code
of the RF algorithm is given in Table 1. The scheme considers random samples from the
dataset and randomly develops the decision trees. After voting on the decision trees, the
tree with the most votes is selected.

Training Dataset
C D: 1 ) ( D: 2 ) CDT*.N)
v i T

Output 1 Output 2 Output N

v v v

Random Forest Decision
Voting

Final Decision

Figure 3. Flowchart of RF algorithm.



Energies 2025, 18, 1416 7 of 21

Table 1. RF algorithm [42].

RF Algorithm for Classification

1: Forb=1toB:
A.  From the training data, create a bootstrap of sample z* of size N.
B. Recursively repeat the following procedures for each terminal node of the tree until the minimal node size 7,,;,

is attained, to generate an RF tree Tj, from the bootstrapped data.

e  From the p variables, choose m variables at random.
o  Choose the best variable/split-point from the m options.
e Divide the node into two daughter nodes.

2: The ensemble of trees should be output as {Tb}lB .

To build a predictive model at a new point x,

Classification: Let C;(x) be the bh RF tree’s class prediction.
Then, CB,¢(x) =Majority vote {C;(x) }1B.
End

3.1.2. Gradient Boosting (GB)

Friedman introduced GB, which is an ensemble learning model for classification and
regression. It can produce an effective model consisting of weak learners, such as decision
trees. The core idea of GB is to optimize an objective arbitrary loss function to create and
generalize the ensemble model in multiple stages [43]. The working principle of GB is
described in Figure 4. It depicts how it improves the final output using multiple stages
and how data are randomly split across subtrees to minimize the error of the loss function.
After several steps, the loss function is minimized. Finally, the improved model is obtained.

| Data | [ Trees | [ Trees | [Final Model|

29:'? Samples/ :'F' ':D Model
F?FE_D‘Residuals:P_?% Improved

Figure 4. Detailed schematics of GB.

The advantage of using GB is the optimization of the loss function through iterative
steps. The algorithm steps are presented in Table 2.

Table 2. GB algorithm [43].

Friedman’s GB Algorithm

Inputs:

e  Dataset (x,y)ili1

. Iteration level M

e  Selection of loss-function ¢(y, f)

e Model base-learner selection h(x, &)

Algorithm:
1 Initialization with a constant f
2 Fort=1toMdo
3. Calculate negative gradient g¢(x)
4 Adjust base-learner function h(x, @)
5 Adjust gradient-descent step size p; :

pr = argming Y1 ¢ [yi, Froa(xi) + ph(x;, 9t)]
6. Function estimation updates:

fi < fio1+peh(x,6;)
7. End for
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4. Proposed Data-Driven Coordination Protection Technique

The proposed technique employs the retrieved voltage and current signals. Accord-
ingly, the most sensitive time-domain features are extracted to detect abnormality during
faults. The features are selected to ensure all possible fault scenarios in a hybrid trans-
mission line and train the algorithm to assess performance using testing data. The model
operates in four stages: (1) detection of a fault, the algorithm is trained on the fault, and
no-fault data. The first stage ensures the detection of faults successfully from the transient
events, (2) identification of either an AC or DC fault, after fault detection, the fault is
identified whether on AC or DC line, (3) classification of the respective fault, after identifi-
cation of the respective faults is classified either AC or DC and (4) fault location estimation.
Finally, the algorithm locates the fault on the line. An overview of the proposed data-driven
protection algorithm for a hybrid transmission network is shown in Figure 5.

,,,,,,,,,,,,,,,,,,,,,,,,,,

Feature Extraction

—A

=

|
|
|
! x10*Auto_Correlation Function
|
|
|

v

,,,,,,,,,,,,,,,,,,,,, o !
| | ! 2 |
| Input Paramgters P < ot — ! Splitting Data into Training and Testing
3 T cu"emS'g"_aIA i ! 02 025 03 035 04 i Datasets
T e Time [s] !
rg 0 cl | i THD_Voltage i + -
| G 100 b T = | o
19 02 03 oal | 08 A Al Training Datasets @
i Time [s] o1 a g-g N = -B | =
i Voltage Signal 5_’} = 0.2 ) ==C ! %
=2 — | | ()i 1 - 1 [ T i
=~ Al o i S
e 0‘1”1’“"?— -8 || 02 03 04 05 ll -
| S ““‘TWM b Time [s] 3 RF-based I a
i 2 2 i ! THD_Current ! | Classifier | @
} 0.2 0.3 0.4 } } 1 —_—A } .
! Time [s] L5 ; ﬁ — -8 ;: Fault Detection I{—]
********************* z 05[] j‘ el | |
- il Fault :
e NS L1
Y I
| Fault Identification :
I
| I
| |
| Gradient Boosting Gradient Boosting |
e e e e oe— —e———e— —— —— e e e e e e e e e e c— — — — — J
___________________ -TT- T -"—-—-—"—-——-—=—————n"
| . e |l . e . |
| Multi-classification | Multi-classification |
I
v v v v Y v |
| | | Neg_ Pos_ Pole-to- Inter |
| SLG LL LLG LLLG | | Pole_G Pole_G Pole System |
e __ _ - —_
Tl y o e ¥ y
I
| Fault Location Estimation Fault Location Estimation |

Figure 5. Flowchart of proposed fault detection and classification scheme.

5. Details of Hybrid Network and Feature Extraction
5.1. Hybrid AC/DC Network

The test system for the proposed protection algorithm was designed in a MAT-
LAB/Simulink environment, as shown in Figure 6. The single-line diagram of the system
includes hybrid AC/DC parallel lines on the same tower. The hybrid transmission network
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Utility G1,
12%350 MV A/
13.8kV

B1

consists of two parallel lines, a 765-kV AC line, and a 230-kV DC line, both of which are
200 km long and transfer 3000 MW of power from a generating source of 12 350-MVA
generators to a source with a 20-GVA short-circuit level. A 13.8 kV /765 kV Wye-Delta trans-
former connects the system to the AC transmission line, while a 765 kV /230 kV Wye-Delta
transformer connects it to the DC lines. The parameter lines of the models are distributed.
The lines are meant to be transposed, with positive and zero-sequence components for
the R, L, and C/km parameters. A forced commutated voltage source converter (VSC)
connector is utilized in the DC line to transmit power. Three-level neutral-point clamped
VSCs with near-insulated-gate bipolar transistor diodes are used in the rectifier and inverter.
The proposed hybrid transmission line is shown in Figure 6, and the details are given in
Appendix A.

PCC CB3 765230 kV DC Line CB4 B2

13.8/765 kV
X=0.16 p.u

— Rectifi Inverter 230/765 kV
X =0.15 p.u Rectilier 200 km |

l - —
5 3-E—acme | DC/AC
| o 2 D%% p— G2, 20,000 MV A/

DC F2 765KV equivalent

\ X

it

| ; E I

Load2 AC Line Load3
200 Mvar 200 km 200 Mvar

Figure 6. Proposed hybrid test system.

5.1.1. Fault Analysis

Fault analysis is performed to assess the nature of faults in the given hybrid system.
The analysis of individual and corresponding faults highlights the associated challenges.
The fault analysis results and challenges of the respective faults presented in the AC/DC
and IS details are shown in Figures 7 and 8. Therefore, a robust protection mechanism is
needed to resolve the issues of AC/DC faults in transmission systems.

AC voltage at PCC during LLLG fault 00 AC current at PCC during LLLG fault
—_—A
1 B
s— 100
= o5 [IHH i | c z
S z
g ° g o
S-05 3
A -100
0 01 02 03 04 05 0 01 02 03 04 05
Time [s] Time [s]
(a) (b)
DC Voltage during LLLG AC fault DC Curent during LLLG AC fault
2 T T T T = 0.2 = Positive Pole
- Negative Pole
s 1 s 04
g | | Positive Pole g, 0
S 0 Negative Pole S
>° W g o1
-1
-0.2
-2
0 01 02 03 04 05 0 04 02 03 04 05
Time [s] Time [s]
(c) (d)

Figure 7. Fault scenarios: (a) the voltage of AC, (b) the current of AC, (c) the voltage of DC, and
(d) the current of DC during an LLLG fault in the AC line of the hybrid test system.
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AC voltage during intersystem fault AC current during intersystem fault
A 100 H __ _2
= < 50 T T c
= - 2 | y
= ol AR
s 3 50 i
-100
0 0.1 0.2 0.3 0.4 0.5 0 01 02 03 04 05
Time [s] Time [s]
(a) (b)
%10° DC voltage during intersystem fault DC current during intersystem fault
Positive pole Positive pole
Negative pole 10000 Negative pole
2 ’ z gative p
s et 2 5000
E) £
g S ofd —
3 o m
3 -5000 T T
- a1 02 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Time [s] Time [s]

Figure 8. Fault scenarios: (a) the voltage of AC, (b) the current of AC, (c) the voltage of DC, and
(d) the current of DC during an intersystem fault in the hybrid test system.

5.1.2. Fault Data Generation

To verify the efficacy of the proposed scheme, the hybrid test system is extensively in-
vestigated, as shown in Figure 6. Details regarding the collected data for faults (AC, DC, and
intersystem) and no-fault scenarios in the designed model are presented in Tables 3 and 4.

Table 3. Parameters of unfaulty conditions.

Parameter Details Counts
Abrupt load changes 10
Capacitor switching at PCC 20

Table 4. Parameters of simulated faulty conditions.

Parameter Details Fault Events Counts
AC: LG, LL, LLG, LLLG
Fault types DC: Pos. PG, Neg. PG, PP 8
Intersystem: DC to AC
Fault resistance () 0.1to90 10
Fault inception angle (°) 0, 45, 90, 270 4
Different locations (km) 25to 175 7

The no-fault scenarios are created by changing the abrupt loads and using capacitor
switching to create transient events. These transient events are not considered faulty,
so we can assess the proposed algorithm’s ability to differentiate between the fault and
transient events. The eight types of faults are: four types of AC faults (LG, LL, LLG, LLLG),
three types of DC faults (Pos. PG, Neg. PG, PP), and an intersystem fault (DC pole to
AC line).

5.1.3. Details of Feature Extraction and Behaviors of Selected Features

The existing schemes utilize signal processing techniques that need high computation
and specific thresholds to detect the faults. To overcome this gap, the proposed approach
considers sensitive and feasible time-domain features of hybrid fault scenarios to ensure
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fault anomaly detection. Accurate and reliable detection of abnormalities requires the
careful selection of feature parameters [44]. Hence, time-domain features can provide faster
and more accurate protection while reducing complexity. The fault data are collected by
variations in fault resistance, fault type, fault inception angle, and location. Conversely,
the no-fault scenarios are achieved via abrupt load fluctuations and capacitor switching.
After relevant features are extracted, the proposed algorithms are trained for AC, DC, and
intersystem faults. Fault duration varies across intervals of 0.2 to 0.25 s. The details of
the utilized features are shown in Table 5. Figure 9 provides an overview of the retrieved
time-domain features. The standard deviation of selected features is used for data collection
to ensure accurate and reliable detection of abnormalities. Feature extraction allows the
models to execute their functions, and the sensitive features are selected to ensure a transient
nature and irregularity during disturbance. This approach has significantly contributed
to the performance of the developed algorithm and promptly detects faults and avoids
network blackouts.

Table 5. Feature details of simulated faults.

Equation Feature Detail
where 1y represents the autocorrelation function, x;
. SMK (x ) () represents the original dataset, x;  represents the shifted
k= YV F(x—x))? dataset, and the sample denoted by M and x/ represents
the mean data point
N V2 . -
Vims = Z":% The RMS value of current and voltage gives the variation
Lo N L2 in any distortion during abnormal action
rms =\ T N
THD. — VBV A VR THDy represents the overall harmonic distortion of the
v — V12 ; voltages; THD; represents the harmonic distortion of the
THD; = ¥2—4——= Iz“ﬁf“"'““ current I
The transient energy of the time-series voltage and
N current is computed using this formula, where Ert is the
Er = E ‘x(n)z‘ transient energy, x(n) is the signal at index n, and N is
the total number of samples
n=1
CoT T T T T T 1
| Input Parameters |
' |
Current Signal | — — — — — — — — — — [T T T/ 7/ 0 7 e e e
: = 100 I\N} e A : | Feature Extraction T}
1B o pmtidredmsny — - > ‘
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Figure 9. Feature extraction for the proposed scheme.

5.1.4. Fault Types and Behaviors of Selected Features

The behaviors of the retrieved voltages and currents are used to identify the distinct
features of faults. When faults occur, the defective-phase voltage drops while the current
rises in the given fault duration. Accordingly, the selected features of the faulty phase
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vary compared with those of the healthy phases; therefore, according to these variations,
it is easy to identify the faults. Owing to space limitations, only a few feature results are
shown below. We investigated three types (AC, DC, and intersystem) of faults in the given
test system. The voltage and current data retrieved from the given faults are shown in
Figure 10a,b, and the extracted features (autocorrelation and THD) of the voltage and
current are shown in Figure 10c—e, indicating the abnormality during the fault periods
of 0.2 to 0.25 s. The faults due to the mutual interaction of AC and DC lines are called
intersystem faults. The considered scenario of the fault is from the DC line to the AC
line. The voltage, current, and extracted features during intersystem faults are shown in
Figure 11. Signal distortion due to the nonlinear characteristics of the converters, complex
control systems, and mutual interaction of the AC and DC lines are observed.
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Figure 10. AC fault scenarios: (a) AC voltage, (b) AC current, (c) ACF of current, (d) THDv, and
(e) THDi during LLLG faults.
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Figure 11. Intersystem fault scenarios: (a) AC current, (b) ACF of current, (c) THDv, and (d) THDi
during intersystem fault.
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6. Simulation Results and Discussion

To assess and compare the outcomes of the proposed data-driven algorithm, the
following evaluation measures were used: accuracy (A), precision (P), and recall (R). These
are the performance metrics used extensively in the field to evaluate and compare models.
These are defined as follows:

TP + TN

Al = 7
Uy = TP+ TN + FP + FN @
. . TP
Precision = TP + FP (8)
TP
Recall = TP+ EN 9)

Here, TP = true positive, TN = true negative, FP = false positive, and FN = false nega-
tive. Additionally, the confusion matrix was used to assess the algorithm’s performance.

Fault location estimation is performed by using the regression GB model. The general
function used to assess the performance of the regression model to optimize the location
estimation error is calculated by using the mean square error (MSE), mean absolute error
(MAE), and R2?, as follows:

E;’1:1(Dactuul - Dest)2

MSE = . (10)

MAE = Z:zn:l|l_-_)acl;11ml - Dest| (11)
2

R2—1— n x (MSE) 12

2
Z?:] (Dactuul - Dest)
The parameters for the MSE are D, ,,; and Dest, which are the actual and estimated
fault distances, and 7 is the number of data samples for the model.

6.1. Performance Validation
6.1.1. Performance Analysis of Fault Detection and Identification Stage

The detection stage first determines the faulty and non-faulty cases to overcome
the challenges of hybrid transmission faults. The RF model is used to detect faulty and
unfaulty cases. The dataset is divided; 70% of the data is used to train the classifier and the
remaining data (30%) tests model performance. The criteria for data division into training
and testing sets are found in the existing literature. The dataset contains 200 no-fault
cases and 880 fault cases. The fault and no-fault case scenarios are obtained, as shown in
Tables 3 and 4. The tuning parameters used for this classifier are n_estimator, max-depth,
and random_state. The feature details are given in Table 5. The performance of the model
is presented in Table 6 using a confusion matrix. From the table, it can be seen that all
60 no-fault cases are classified correctly, and only 1 of the 264 fault cases is misclassified.
The overall accuracy of the model is 99.69%, which is significantly higher than that of
other classifiers, which strongly confirms the scheme’s ability to detect faults accurately.
The performance comparison with the DT and SVM in Figure 12a further strengthens the
application of the model for fault detection.

After the detection of the fault, the next stage is to identify whether the fault is AC
or DC. For this purpose, fault identification is performed using the RF on 440 AC and
440 DC cases (880). To ensure high performance, the dataset is divided into 70% training
data and 30% testing data. The confusion matrix of the identification of faults is presented
in Table 7, where all AC faults are classified accurately, and only one of the DC faults is
misclassified. The accuracy of the AC and DC fault identification stage is 99.62%. The
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Percentage

overall performance of the proposed scheme is compared to other classifiers (DT and SVM)
in terms of accuracy, precision, and recall, as shown in Figure 12b. The proposed algorithm
outperforms other schemes in all three metrics.

Table 6. Confusion matrix for faulty and unfaulty cases.

Fault Type NF F
NF 60 0
F 1 263
Overall Accuracy (%) 99.69

100 o 100
[eT]
8
95 S 95
o
90 £ 90
Accuracy Precision Recall Accuracy Precision Recall
EDT ®KSVM M Proposed Scheme EDT ®SVM MProposed Scheme

(a) (b)

Figure 12. Performance comparison of the proposed detection and identification stages for
(a) faulty /unfaulty scenarios and (b) AC/DC faults.

Table 7. Confusion matrix for AC and DC cases.

Fault Type AC DC
AC 132 0
DC 1 131
Overall Accuracy (%) 99.62

6.1.2. Performance Analysis of AC and DC Fault Classification Stages

The proposed multi-fault scenarios considered are AC, DC, and intersystem faults.
In this study, intersystem faults are considered DC faults to simplify the classification.
After identification (AC or DC), the proposed algorithm utilizes ensemble learning-based
GB to categorize the respective line faults. The algorithm designed for AC classification
considers four types of faults: SLG, LL, LLG, and LLLG. The parameters used for GB are
n-estimators, max-depth, and random-state. The performance of AC categorization using
the confusion matrix is described in Table 8. During the classification, all the faults of LL
and LLLG are classified correctly, whereas SLG has 1 and LLG has 2 faults misclassified.
Hence, the overall accuracy is 97.72%. In the same way, for DC fault categorization, the
scheme examines four faults: positive-pole-ground (Pos. PG), negative-pole-ground (Neg.
PG), pole—pole (PP), and intersystem (IS, DC pole to AC line). The confusion matrix is
presented in Table 9. The overall accuracy is 94.69%. The results indicate that five faults
from Pos. PG and two from Neg. PG are misclassified, while PP and IS faults are correctly
classified. A performance comparison of the multi-classification of the proposed algorithms
based on accuracy, precision, and recall is presented in Figure 13. As seen, the proposed
algorithm has higher accuracy compared to other classifiers. Hence, it is proven that the
proposed algorithm offers an advantage over the alternatives in terms of classification.
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Table 8. Confusion matrix for AC multi-classification.

Fault Type SLG LL LLG LLLG
SLG 32 0 1 0
LL 0 33 0 0
LLG 0 1 31 1
LLLG 0 0 0 33
Overall
Accuracy (%) 97.72

Table 9. Confusion matrix for DC multi-classification.

Fault Type Pos_PG Neg PG PP IS
Pos_G 28 4 1 0
Neg G 2 31 0 0

PP 0 0 33 0
IS 0 0 0 33
Overall
Accuracy (%) 94.69
105
gJD
8 95
c
3
o 85
c
75
Accuracy Precision Recall
EDT [€SVM H®Proposed Scheme
(a)
100
o 95
&
2 90
3
nq_‘—) 85
80
75

Accuracy Precision Recall

ODT [SVM M Proposed Scheme

(b)

Figure 13. Performance comparison of the proposed multi-classification scheme for (a) AC multi-
classification and (b) DC multi-classification.

6.1.3. Performance Analysis of Fault Location Estimation Stage

After fault detection and classification of respective faults, identifying the precise
location of the fault is essential to prevent network disturbances. The gradient boosting
(GB) regression model is used to estimate the fault location. The proposed model is trained
to minimize the error in locating the faults precisely. The results show that the estimated
location is close to the actual location of the faults. The minimum error further exempli-
fies the proposed model’s ability to estimate fault location effectively. The performance
metrics used to assess the regression models are derived in (10)—(12). The MSE for the
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GB model has an optimum error and effectively estimates the actual fault locations. The
RF regression model is compared with the proposed GB fault location estimation model
to verify the performance metrics. The proposed GB fault location estimation method
has efficiently estimated the performance metrics of the MSE (0.00659), AE (0.0613) and
R%(0.999). The DC location estimation results for the given model are shown in Figure 14.
Therefore, the proposed GB fault estimation efficiently estimates fault location in hybrid
AC/DC networks.

GB Fault Location Estimation RF Fault Location Estimation

——— Actual
——— Estimated

——— Actual
——— Estimated

-
N
o
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-
[=]
o

-
o
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®
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Actual Fault Location(km) Actual Fault Location (km)
(a) (b)

Figure 14. Performance analysis of fault location estimation models: (a) GB location estimation model
and (b) RF location estimation model.

6.2. Performance Analysis with Noise

The proposed algorithm’s immunity to noise was also investigated. To perform the
simulations, the voltage and current measurements were distorted by the addition of
noise with a 20 dB and 30 dB signal-to-noise ratio (SNR). The fault detection and binary
classification steps using the proposed scheme were performed with the inclusion of noise.
The robustness and performance of the proposed scheme have been maintained under the
influence of noise, as shown in Table 10. Due to the ensemble architecture of the classifiers,
it reliably works with noisy data. These findings strongly support employing ensemble
learning models to overcome protection challenges in hybrid transmission lines.

Table 10. Influence of noise.

Technique Methods Noise Ratio Accuracy % Precision % Recall %
No noise 99.69 100 99.62
Fault detection 30 dB 98.76 99.61 98.86
Proposed Scheme 20 dB 97.53 98.12 98.86
No noise 99.62 100 99.24
Fault classification 30 dB 99.62 100 99.24
20 dB 96.96 97.69 96.21

6.3. Performance Evaluation on Extended Test System

The robustness and applicability of the proposed algorithm in existing systems has
been thoroughly verified. Generally, existing machine learning-based protection algorithms
merely assess performance on simple test systems. In this study, the hybrid test system
shown in Figure 6 is extended to assess the proposed scheme’s performance when multiple
and complex AC and DC lines are operated. The new test system has three lines, one DC
and two AC lines, as shown in Figure 15. Voltage and current data have been derived for
AC, DC, and IS fault scenarios, as shown in Table 11. The total number of cases of AC and
DC are 640, out of which 320 are AC and 320 are DC.
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Figure 15. Extended proposed hybrid AC/DC test system.

Table 11. Parameters for simulated faulty conditions.

Parameter Details Fault Events Counts
AC: LG, LL, LLG, LLLG
Fault types DC: Pos. PG, Neg. PG, PP 8
Intersystem: DC to AC
Fault resistance () 0.1t090 10
Fault inception angle (°) 0, 45, 90, 270 4
Different locations (km) 30 to 100 2

A confusion matrix offers a better representation of the proposed model’s perfor-
mance. Therefore, the data obtained from the extended system is utilized to verify the
presented algorithm. The presented algorithm has performed well, as in the previous
un-extended system.

Table 12 shows the algorithm’s performance during the recognition of both AC/DC
faults; the accuracy is 99.47%, while in the un-extended test system, it is 99.69%. Therefore,
the presented algorithm is robust enough to apply in the extended complex network system.

Table 12. Confusion matrix for AC and DC cases.

Fault Type AC DC
AC 96 0
DC 1 95
Overall Accuracy (%) 99.47

Similarly, the algorithm’s performance is analyzed for the classification of faults in an
extended system. The confusion matrix in Table 13 is for AC faults, while Table 14 shows
the confusion matrix for DC faults. The accuracy of the proposed classification scheme for
the extended system is almost the same as that for the un-extended test system for both AC
and DC multi-classification.

Table 13. Confusion matrix for AC multi-classification.

Fault Type SLG LL LLG LLLG
SLG 24 0 0 0
LL 0 22 2 0
LLG 0 1 23 0
LLLG 0 0 0 24
Overall 96.87

Accuracy (%)
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Table 14. Confusion matrix for DC multi-classification.

Fault Type Pos_G Neg_G PP IS
Pos_G 24 4 1 0
Neg G 2 19 0 0

PP 0 0 24 0
IS 0 0 0 24
Overall
Accuracy (%) 9479

The performance of the proposed algorithm has no specific effect as the system be-
comes more complicated in terms of the extra-linked transmission line. Therefore, the pro-
posed algorithm can be applied to multi-terminal lines and for complex network protection.

Table 15 presents a comparison of the proposed scheme with existing schemes. The
results indicate the importance of fault protection (AC, DC, and IS) in parallel AC/DC trans-
mission networks utilizing the proposed data-driven algorithm. It has an advantage over
others in terms of cost, complexity, and accuracy, and includes all faults of hybrid networks.

Table 15. Comparison with existing schemes.

Protection Method Network Configuration Complexity/Cost Fault Studies Accuracy/Time

[14] Pilot Series High/Normal IF and EF NR/NR
[18] Control Parallel Normal/Normal Cascading NR/500 ms
[20] Distance Series High/High IS NR/80 ms
[22] Pilot AC Series High/High AC NR/0.025 s
[25] ANN MG High/High AC NR/0.00058 s
[27] KNN Series Normal/Moderate AC, DC 100%

Proposed Scheme Parallel Simple/Less AC,DC, IS AC = 99.69%

T DC = 99.62%

NR: not reported; IS: intersystem; IF: internal fault; EF: external fault; MG: microgrid.

6.4. Discussion and Future Directions

Hybrid transmission is an emerging field for power systems as it offers a solution
to rising energy demands and environmental challenges. Traditional protection methods
only address a specific type of fault, such as AC, DC, or IS. This paper has proposed an
algorithm to timely remove the transient events and detect, identify, locate, and classify
all faults that may occur in parallel hybrid transmission. The algorithm proceeds with
retrieving sensitive time-domain features during fault and no-fault events. The retrieved
features are selected based on performance evolution to identify the core features of AC,
DC, and IS faults. The data are divided for training and testing to evaluate performance.
To assess performance further, noise of 20 dB and 30 dB was added to the data, and the
system was also extended. The purpose of this study is to employ Al-based techniques
for the safety of emerging hybrid systems. The fast and robust data-driven algorithm can
ensure stability and reliability and timely detect fault events and islanding scenarios. In
addition, future research will further evaluate the presented algorithm utilizing real-world
data and hardware scenarios.

7. Conclusions

In this paper, we developed a data-driven coordination algorithm for the recognition,
categorization, and location of faults in the hybrid AC/DC transmission system. The
fault characteristics were analyzed using formulated fault current and voltage equations
and retrieved data using derived features. The data-driven coordination algorithm was
developed using training data and verified using unseen datasets considering various case
studies created in MATLAB. The proposed algorithm has detected, classified, and traced the
position of line faults. The algorithm was trained with 70% of the dataset and tested with
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unseen test data (30%), allowing us to assess its performance. The algorithm’s effectiveness
was assessed using performance metrics and compared with existing algorithms. The
proposed algorithm has detected faults with 99.69% accuracy and recognized faults with
99.62% accuracy. The proposed algorithm was further verified using noisy data and an
extended test system. The algorithm has shown good performance in the coordination
of AC/DC faults without any communication channel and threshold criteria. Hence, the
proposed algorithm can be utilized to ensure the stability and reliability of hybrid protection
lines. In the future, a thorough study of hybrid networks and real-time implementation
of the proposed algorithm will be conducted to ensure the algorithm’s applicability to
real-world scenarios.

Author Contributions: Conceptualization, A.M. and A.H.; methodology, A.M.; software, A.M.;
validation, A.M., S.J.U.H. and Z.H.; formal analysis, A.M.; investigation, S.J.U.H.; resources, H.-Y.K,;
data curation, Z.H.; writing—original draft preparation, A.M.; writing—review and editing, H.-Y.K,;
visualization, S.J.U.H.; supervision, A.H.; project administration, H.-Y.K; funding acquisition, A.M.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Korea Institute of Energy Technology Evaluation and
Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea
(No. 20225500000110).

Data Availability Statement: The data presented in this study is available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A
Table A1l. Test system specifications.
Equipment Parameters Ratings
Nominal power 4200 MVA
. Voltage 13.8 kV
Generation End Load 200 MW
Frequency 60 Hz
X/R ratio 10
Receiving End Short-circuit level 20 GVA
Voltage 765 kV
Transformer Voltage rating 13.8kV /765 kV
R1 (Q)/km) 0.01165
RO (Q/km) 0.2676
. . L1 (mH/km) 0.8679
AC Transmission Line L0 (mH/km) 3.008
C1 (nF/km) 13.41
CO0 (nF/km) 8.57
R (Q)/km) 0.015
DC Transmission Line L (mH/km) 0.792
C (nF/km) 144
Converters/Inverters Neutral clamped VSC IGBT/Diodes
Yg-D transformer 765 kV /230 kV
AC Side Station AC filter 40 Mvar
Converter reactor 0.15p.u
DC capacitors 7.00 x 107°
DC filters 1.20 x 107°

DC Side Station R = 0.0251 ohm

Smoothing reactors (RL) L-8x10-3H
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