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Abstract: The variability and uncertainty caused by the increased penetrations of renewable energy
sources must be properly considered in day-ahead unit commitment, optimal power flow, and
even real-time economic dispatch problems. Besides achieving minimum cost, modern generation
schedules must satisfy a larger set of different complex constraints. These account for the generation
constraints in the presence of renewable generation, network constraints affected by the distributed
energy resources, bilateral contracts enclosing independent capacity provision, ancillary power
auctions, net-metering and feed-in-tariff prosumers, and corrective security actions in sudden load
variations or outage circumstances. In this work, a new method is presented to appropriately en-
hance the integration of distributed energy resources in low-inertia power grids. Based on optimal
unit commitment schedules derived from priority-based dynamic programming, the potential of
increasing the renewable capacity was examined, performing simulations for different scenarios. To
ameliorate the expensive requirement of computational complexity, this approach aimed at eliminat-
ing the increased exploration-exploitation efforts. On the contrary, its promising solution relies on
the evolutionary commitment of the next optimum configuration based on priority-list schemes to ac-
commodate the intermittent generation progressively. This is achieved via the collection of mappings
that transform many-valued clausal forms into satisfiability equivalent Boolean expressions.

Keywords: unit commitment; neural networks; artificial intelligence models; Boolean mapping;
global optimization

1. Introduction

Intelligent scheduling of power systems for the seamless integration of intermittent
generation, weather-dependent devices, responsive appliances, and plug-in electric ve-
hicles constitutes a crucial solution in delivering future low-carbon energy [1]. The time
mismatches between energy supply and demand form one of the biggest challenges in
global energy planning and are probably the major obstacles to the integration of renew-
able energy sources. The volatility caused by increased penetrations of renewable energy
must be properly considered in day-ahead unit commitment (UC), in order to cope with
operational issues such as insufficient ramping capabilities of thermal generating units,
inadequate spinning reserves, transmission congestion, and involuntary load interrup-
tions [2,3]. Hence, power decision makers need to devise adequate and effective flexibility
plans for their power systems so as to guarantee power balance and ensure feasible and
economical operation over different time horizons and under different generational, en-
vironmental, and technical constraints [4]. These constraints are typically captured by
means of UC models used to determine both the commitment status and power dispatch
of different generating units. However, the repeating procedure concerns a huge number
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of combinations and is infeasible to be enumerated completely, even for medium-scale
systems and short-term scheduling periods (hours, days, or a week) [5].

The UC problem has commonly been interpreted as a mixed-integer, multi-variate,
non-convex, and non-linear optimization problem, with a large number of complex con-
straints. Divided into mathematical, heuristic, meta-heuristic, and hybrid, the various
approaches broadly aimed at converging high-quality solutions with optimum exploration-
exploitation trade-offs. Mathematical optimization constitutes a more flexible approach,
allowing the constraints to easily be added. Priority-list forms the simplest method and
relies on the order of increasing operating cost to commit and de-commit the generation
units. The main advantage regards the rapid access to the optimal solution while satisfying
the system-wide constraints, whereas the unit-specific constraints deteriorate the priority,
leading to sub-optimal solutions [6]. Lagrange relaxation belongs to the dual optimiza-
tion techniques, providing probably the simplest modification of model characteristics
of large-scale power systems. It is capable of handling the unit-specific constraints sep-
arately and system-wide constraints by making use of respective Lagrange multipliers.
The comparative lower bound is iteratively obtained by the imposed relaxed problem
posing a sensitivity relating to the identical cost-coefficients treatment. Consequently, this
mechanism can only recommend near optimal solutions [7]. Branch and bound divide
the original problem into numerous sub-problems considering the upper and lower lim-
its to exclude the infeasible solutions through branching and delimiting. Therefore, the
real optimum combination may be discarded during the process, resulting in a regional
solution [8]. The state-of-the-art mathematical approach refers to the mixed-integer linear
programming method, which typically converts the complex nonlinear restriction problem
into an easily solved sequence linear programming sub-problem. The formulation in terms
of linear equation and inequality constraints cannot guarantee optimality and execution
times are drastically increased with increasing generating units [9].

Mathematical approaches constitute exact methods towards convergence and their
inherent transitions depend on the gradient information about the objective. In their effort
to extend the exploration space and converge to a global optimum solution, many heuristic
alternatives have taken place. These approaches are commonly viewed as population-based
mechanisms and, according to the process they imitate, are classified as swarm-inspired,
evolution-inspired, and physics-inspired [10]. The main advantages lie in the flexibility they
offer in allowing practical operating constraints to be integrated and the moderate compu-
tational memory and running time [11,12]. On the contrary, heuristic approaches are very
specific and problem-dependent, making decisions based on pre-calculated priority rules.
To employ more rigorous methods and generate problem-independent solutions, meta-
heuristic approaches have been proposed. This way, higher-level techniques can be applied
at the expense of large computational efforts’ requirement. In contrast to deterministic
mathematical, both heuristic and meta-heuristic methods involve randomness and use the
stochastic approach in moving from one solution to another. Thus, neither the magnitude
of their sub-optimality nor their overall problem dimensionality can be estimated [13].

To overcome the aforementioned drawbacks and avoid unacceptable solutions in
terms of both convergence time and sub-optimal costs, many researchers have turned to hy-
brid techniques. Utilizing the merits of mathematical and heuristic methods, the proposed
solutions are facing the continuous problem of finding the absolute trade-off between ex-
ploration and exploitation [14]. Specifically, to avoid local solutions that lead to premature
convergence and increase the solving accuracy at reasonable computational efforts, during
the searching process they also exploit the stochastic transition of the heuristic approach to
progressively discover an optimal generation output based on reward/penalty signals [15].
To solve the large-scale, nonlinear, mixed-integer UC problem, de-commitment heuristics of
generating units and reserve repair procedures were proposed [16]. To this end, some rep-
resentative hybrid methods are those that combine binary components to dictate whether a
state will take 0 or 1 value, by making use of an exact method to handle the system-wide
constraints and search mechanism to handle the non-continuous, unit-specific constraints.
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Such paradigms include the binary whale optimization algorithm, binary artificial sheep al-
gorithm, binary particle swarm optimization, binary gravitational search algorithm, binary
bat algorithm, binary dragonfly algorithm, and binary grey wolf algorithm [17].

Based on the presented description, there has not yet been an analytical method that
can reach a guaranteed global solution without any requirements for parameters’ tuning to
fit the model characteristics of the assessed power system. Exhaustive enumeration still
constitutes the only way to achieve a global optimum solution at the expense of dimen-
sionality burden. Identifying its ability to overcome the difficulty of non-convexity and
non-linearity of large-scale systems, we proposed a radically different approach to ensure
optimality in the least possible iterations and through a tractable procedure. Our purpose is
to offer a simple method that (1) can easily be developed without expert knowledge around
programming; (2) can automatically be adjusted on each power system layout without the
need of additional parameters setting; (3) can exploit heuristic only as a pre-process task,
providing traceable transitions until the convergence; and (4) can alleviate the dependence
of the overall problem dimensionality on the number of participating generators.

The proposed solution relies on the framework of Boolean mapping (BM) [18]: It
constitutes a collection of mappings that transform many-valued clausal forms into satis-
fiability equivalent Boolean expressions, to analyse their complexity and evaluate them
empirically on a set of benchmarks. This is an artificial intelligence tool that consists
of modelling hard combinatorial problems as instances of the propositional satisfiability
problem. The tool can be engaged with higher-level techniques to drive optimization via
consecutive encoding/decoding, preserving the observability, resilience, and reliability
in solutions. In this work, these advances were exploited to design a BM object based on
enhanced priority lists. Mapping towards a convex optimization problem, we made use
of modified neural networks to achieve the global optimum solution. Apparently, this
paradigm offers the opportunity of discovering optima of unprecedented quality, as it
ameliorates the reliance on assumptions, the functional form of which might be far from
the reality.

Note that, although there is a large amount of literature about BM, most research
works concentrate on optimizing integer variables and most implementations are restricted
in communication networks. Besides, there has not yet been a BM formulation that can
address a combinatorial optimization problem such as that of UC. We provide strong
experimental evidence regarding the efficacy and the superiority of our novel approach by
considering a real-world scenario of a power system consisting of 10 thermal generating
units and a 24-h residual power demand. In this context, we employed our proposed ap-
proach to achieve a system-wise UC schedule that ensures the global minimum production
cost, satisfying the underlying technical and operational constraints. Following, we assess
our solution to large-scale power systems consisting of up to 100 generating units and
compare the obtained results with benchmark alternative methods.

The contribution of this work is three fold: (1) exact observations can be reached
through enhanced priority mechanisms and artificial neural networks; (2) an effective
means of eliminating the need of stochastic search methods to provide a solution based
on optimal exploration-exploitation trade-offs; and (3) a solution that is intrinsically de-
signed to converge in the least possible number of function evaluations, decoupling the
computational complexity from the number of participating generating units.

The rest of the paper is organized as follows. In the following Section, we define
the UC problem along with the main constraints that must be always satisfied. Section 3
describes the BM framework, as well as the modified neural network model that it uses
for inference purposes. In Section 4, we perform an extensive experimental evaluation.
We consider optimal UC in a real-world power network and we employ our approach to
achieve a configuration that reliably minimizes the associated production cost. We saw that
our approach completely outperformed the existing alternatives by a large margin, thus
providing an extremely beneficial tool to system administrators. Finally, the conclusions
are drawn in Section 5.
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2. Unit Commitment Problem Formulation

The decision process of the UC problem possesses a non-convex, multi-variate, mixed-
integer, and extremely non-linear objective. It can be formulated so as to minimize oper-
ational costs subject to both coupling and unit-specific constraints. The UC model treats
the generation features and residual load as input data, to obtain the commitment status
and generation dispatch of the available generating units at the output. In this regard,
it provides the ability to save a lot of money on an annual basis by making use of exact
mathematical and/or (meta)heuristic mechanisms [19].

2.1. Objective Function

In most approaches, the total production cost of a power system consisting of N
thermal units is mainly represented by the cost of fuel and start-up cost during a specified
period T. Mathematically, the objective is formulated as follows:

f
(
Ut

i , Pt
i
)
=

T

∑
t=1

N

∑
i=1

[
Fi
(

Pt
i
)
+
(

1−Ut−1
i

)
SUi

]
Ut

i (1)

where Ut
i determines the on–off states of generating units, while the thermal generation

cost is expressed as Fi
(

Pt
i
)
. It depends on the production level Pt

i of each unit i and the fuel
cost coefficients ai, bi, and ci derived from the convolution of the specific fuel cost and heat
rate curve according to Equation (2) [20]. In our formulation, the respective start-up cost
SUi is treated as a warmth-independent parameter, receiving a constant value for each unit
at a given time interval t [21].

Fi
(

Pt
i
)
= ai + bi·Pt

i + ci·
(

Pt
i
)2 (2)

2.2. Constraints

The considered constraints that must be satisfied throughout the optimization process
can be classified as unit-specific, plant-wide, and system-wide. The system-wide constraints
refer to the system power balance and spinning reserve, while the unit-specific restrictions
concern the power boundaries, ramping capabilities, minimum state-change times, and
status restrictions pertaining to each individual participating generator. The plant-wide
constraint includes a limitation that impacts the available actions within a whole plant and
is known as crew constraint [22].

(1) c1: System power balance. The equality constraint that forces the total committed
production to meet the residual, net load demand Pt

netD at each time-interval. While
the distributed energy resources (DERs) hold the priority in production, the residual
load is expressed as the total demand minus the aggregated power output from DERs.

N

∑
i=1

Ut
i ·Pt

i = Pt
netD (3)

(2) c2: Spinning reserve. The inequality constraint to ensure that the power margins are
satisfied based on the maximum ramping capacity (Pt

i,max−cap) of each unit, taking
into account the ramp rate limits.

N

∑
i=1

Ut
i ·Pt

i,max−cap ≥ Pt
netD + SRt (4)

(3) c3: Generator capacity limits. The minimum and maximum rated powers that allow
the generating units to operate only within their boundaries.

Ut
i ·Pt

i,min ≤ Pt
i ≤ Ut

i ·Pt
i,max (5)
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(4) c4: Minimum up (MUi) and down (MDi) times. The minimum required duration
before a generator can change its status. The tu and td represent the time a unit has
started-up or shut-down, respectively.

∆Ui = 1 i f
t−1

∑
t=td

(
1−Ut

i
)
≥ MDi (6)

∆Ui = −1 i f
t−1

∑
t=tu

Ut
i ≥ MUi (7)

(5) c5: Ramp up/down capability. The rate of change of power output between adjacent
hours is restricted by ramp-up (RUi) and ramp-down (RDi) capability regarding each
generation unit [4].

∆Pi ≤ RUi, i f ∆Pi > 0 (8)

∆Pi ≥ −RDi, i f ∆Pi < 0 (9)

(6) c6: Unit status restrictions. Must run, must out, and run at fixed MW output constitute
the three states of exceptional generating units j.

∀t ∈ T


Ut

j = 1, if jth unit must run
Ut

j = 0, if jth unit must out

Pt
j =

{
0, if Ut

j = 0
cj, if Ut

j = 1
, if jth at fixed output

(10)

(7) c7: Plant crew constraints (Cr). The plant-wide constraint that pertains to the number
of units that can simultaneously start up (or shut down) based on the number of
available operators [23].

N

∑
i=1

Ut
i

(
1−Ut−1

i

)
+ Ut−1

i
(
1−Ut

i
)
≤ cr (11)

2.3. Solution Methodology

Denoting
(
Ut

i , Pt
i
)

by x, the problem of finding the global minimizer x∗ of the scalar
objective function f (x) over some bounded domain, typically X ⊂ RD, subject to a set of
K = 7 constraints c1, . . . , cK, can be defined as:

x∗ = argmin
x∈X

f (x) s.t. c1(x) ≤ 0, . . . , c7(x) ≤ 0 (12)

This forms a NP hard combinatorial and non-convex optimization task. In the pres-
ence of discontinuous binary and dynamic continuous constraints, the global optimum
solution can only be obtained via complete enumeration. The huge number of all possible
combinations is estimated as

(
2N − 1

)T , making severe capacity limitations to generate
them, even for day-ahead schedules and medium-scale power systems. Therefore, the
elapsed time needed to recommend the final solution through dynamic programming is
greater than the assessed optimization horizon [24].

Recognizing the ability to overcome non-convexity and non-linearity, we aimed at
developing an algorithm able to converge to a solution after global exploration but without
the need to include the stochastic approach in moving from one solution to another. Instead,
we were looking for an analytical mechanism capable of ensuring the minimum cost at the
least possible number of trials (function evaluations), providing flexibility with respect to
problem diversity and enabling automatic procedures without the need of any parameters
setting to respond. This involves mapping to a different domain in a way that reduces
dimensionality and guarantees optimality.
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Initially, we considered that x represents the binary on/off status taking the value
0 when a generator is off and 1 when the respective unit is on-line such that x ∈ {0, 1}.
By making use of Boolean expressions, we mapped the problem of the feasible binary
combinations x : X → R to a decimal, integer domain, which read as x̃ : X → N+. This
way, we achieved a dimensionality reduction in the order of N, since the required vector
to indicate a Nx1 binary combination was then converted to be expressed via an integer
value. Based on this framework, a CxT matrix could be built to represent all possible
combinations C during the time frame T. In order to develop an automated procedure able
to move towards the minimum cost, we considered the sum of the T inputs. Each value
was taken individually from the T (Cx1) vectors.

At this point, we can say that the problem (1) was transformed to:

f (x̃) =
T

∑
t=1

x̃t (13)

To guarantee optimality, we had to ensure that the lowest values of x̃ corresponded
to those combinations that undoubtedly gave the least-cost binary combination. Hence,
before proceeding with the transformation, we created an optimal rearrangement of the
generating units based on enhanced priority lists. Then, the ordinally valued states

→
x

followed a descending ranking order to ensure that the most economical combinations
resulted in smaller decimal expressions and vice versa.

To tackle the problem of non-linearity, the optimal power contribution P∗ of the
committed units was addressed at the final stage of our proposed approach via non-
linear programming with equality and inequality constraints. This way, we preserved
that the economic dispatch (ED) solution did not appear as a sub-problem to UC once
the constraints were met. A simplified diagram of the proposed solution is depicted in
Figure 1, while the constraints’ treatment at each stage is explained at the following section.
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Figure 1. Simplified diagram of the proposed BM solution.

3. Mathematical Framework and Clarifications

In this section, we provide the step-by-step procedure followed by our developed
algorithm in a mathematical fashion. The process was divided into four main stages and
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each stage dealt with different constraints so that by the end of the task they were all
met confidently. In brief, the construction of enhanced priority-list schemes preceded the
Boolean mapping process. The descending order took into account the must-run units and,
once the appropriate priority was given to the generating units, all feasible combinations
were generated considering the satisfaction of load balance and spinning reserve. Then,
the problem was transformed into the convex minimum-sum problem of (13) with the aid
of Boolean coding.

A further stage took place, employing a mechanism able to iteratively select the next
minimum candidate x̃. During this process, Boolean decoding was applied for every
recommendation and the satisfaction of state constraints, including MU, MD, and Cr,
was checked. If qualified, non-linear programming was performed, certifying whether
the imposed ramping capabilities satisfied both the system-wide constraints and optimal
power contribution was obtained at the minimum cost. Once observing the first feasible
combination of the objective (13), the model stopped being updated and the algorithm made
the final recommendation

→
x ∗, providing the algorithm’s best estimate and completing the

proposed optimization loop. Figure 2 demonstrates the comprehensive flow diagram of
our paradigm.
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Figure 2. Flow diagram of the comprehensive BM optimization paradigm.

3.1. Enhanced Priority List Schemes’ Formulation

The concept of committing thermal generation units by priority until the residual load
demand satisfaction is not new. Priority list schemes based on the incremental generation
cost present principal advantages over their mathematical alternatives. In this work, instead
of extracting the order based on conventional priority-based approaches, which rely on
single-factor reordering, we proposed an enhanced priority list that could be obtained
based on a novel model. Apart from the incremental cost of each individual generator,
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this model also accounted for the maximum power ratings, the minimum up times, and
start-up costs as follows:

F(1)
i =

d(F(Pi))

dPi

∣∣∣∣ i 6= j
Pi =

Pi,min+Pi,max
2

(14)

F(2)
i = Pi,max (15)

F(3)
i = MUi (16)

F(4)
i = SUi (17)

This technique constitutes a pre-process task, which means that it takes place only at
the beginning of the optimization. Our enhanced approach introduced the fundamental
assumption that the new configuration was determined with the descending order of the
developed list, considering the available units (or excluding the must-run units j). The
optimal priority was given based on the normalization function of Equation (18).

F∗i =
F(1)

i

min
(

F(1)
i

) +
1(

F(2)
i

min
(

F(2)
i

)
) +

1(
F(3)

i

min
(

F(3)
i

)
) +

1(
F(4)

i

min
(

F(4)
i

)
) (18)

Considering the contribution of must-run generators, a binary generator was used
to produce the feasible combinations, relying on the rearrangement so that

→
x = R

(
F∗i
)
.

Equation (19) dictates a typical example distinguishing the must-run units (j = 2) with
bold values.

→
x =



0 0 0 1 1
0 0 · · · 1 1 1

...
...

0 1 1 1 1
...

. . .
...

1 1 · · · 1 1 1


CxN

(19)

3.2. Boolean Mapping: Encoding/Decoding

BM provides numerous applications in computer-aided design. The uselessness of
this technique in practice stems from the size of the Boolean functions that can be addressed
by the transformation [25]. However, it operates as an inexpensive surrogate to guide the
transformation algorithm towards convex objectives that can be explicitly handled. The
basis of our implementation was an efficient algorithm that maps large binary vectors
(or matrices) into integers (or integer vectors). For encoding purposes, it involved base-q
expansion functions, defined as follows:

x̃ =
N−1

∑
i=0

→
x N−i·qi (20)

In our case, the binary representation referred to base-2 system (q = 2). This way, the
set DN =

{→
x N ,

→
x N−1, . . . ,

→
x 1

}
, which showed a possible combination Ct at t, could be rep-

resented by x̃t. Likewise, the set of natural numbers expressing the feasible combinations n
during the assessed time frame T was determined by T (nx1) vectors.

Lemma (Boolean satisfiability problem): For any
→
x , the value f

(→
x
)

is a lower bound
on the optimal objective function value f (x̃∗) of the original problem.
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Property (Clause bounding interpretation): The optimal solution f (x̃) constitutes a
lower bound on the value f (x̃∗) of a feasible solution such that:

f (x̃∗) = max
x̃

f (x̃) (21)

The reversible Boolean transformation (decoding process) retrieves the binary sta-
tus

→
x i from the positive integer value x̃ based on q-base deduction functions such as

Equations (22) and (23).

di =

⌈
x̃

qN−i

⌉
(22)

→
x i =

{
x̃− q·di−1, i f i = N

di+1 − q·di, elsewhere
(23)

3.3. Conceptual Convex Optimization

So far, we have mapped the highly non-linear and non-convex combinatorial problem
to a convex integer minimization task. As a result, the requested minimizer x̃∗ can now
read as:

x̃∗ = argmin
x̃∈X

f (x̃) (24)

subject to the constraints c4 and c7. The minimization problem could be explicitly solved
even with linear regression techniques. To develop an algorithm capable of moving towards
the most promising regions, that is, the next minimum valued x̃, we chose to evolve non-
linear regression mechanisms. For example, we made use of feed-forward neural networks,
modified to deal with integers with the help of an appropriate activation function [26]. The
developed model exploited a neural network with one hidden layer employed as follows:

h = φ

( Np

∑
n=1

wn x̃n + β

)
(25)

y =
T

∑
t=1

(
wtht + βy

)
(26)

The φ(.) is the selected activation function, β represents the bias operator, NP is
the population size, and h expresses the output of the hidden layer. For such a T-
dimensional optimization problem, the pattern solution is demonstrated by a 1xT array, as
defined below:

x̃ =
[

x̃1 x̃2 x̃3 · · · x̃T ]
(27)

The temporal optimal solution y at each iteration t is assumed as target data, and the
scope is to effectively reduce the error between this target outcome and the progressively
obtained pattern solutions. Thus, between the consecutive iterations k and k + 1, the
pattern population matrix (Equation (28)), weight matrix (Equation (29)), and respective
cost function (Equation (30)),

X(k) =

 x̃1
1 x̃2

1 · · · x̃T
1

...
. . .

...
x̃1

NP
x̃2

NP
· · · x̃T

NP

 (28)

W(k) =


w1

1 · · · wNP
1

...
. . .

...
w1

NP
· · · wNP

NP

 (29)
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C(k) =
T

∑
t=1

yt (30)

are updated as follows:

x̂t(k + 1) =
NP

∑
n=1

wnt(k)·x̂n(t) (31)

x̂n(k + 1) = x̂n(k) + x̂t(k + 1) (32)

ŵn(k + 1) = ŵn(k) + q·[ŵt(k)− ŵn(k)] (33)

β(k + 1) = 1− k
kmax

(34)

where n and t refer to predictors and target, respectively. Our initial target was determined
as the minimum cost value, which corresponds to the input expressed by the first row of
X (X1 = [ x̃1

1 x̃2
1 . . . x̃T

1 ]). The selected activation function combines a membership
function that enables or disables the node output given the set of inputs and a sigmoid
activation function. This way, we ensured that each selected input x̃n ∈ X̃T such that:

gt(x̃n) =

{
1 i f x̃n ∈ X̃t
0 i f x̃n /∈ X̃t

(35)

φ(.) = g(x̃n)·σ(.) (36)

3.4. Economic Dispatch Solution

The problem of finding the optimal power contribution (or global minimizer to
Equation (2), P∗), given the optimum achieved binary schedule

→
x ∗, was conducted as

a non-linear programming problem subject to the coupling constraints c1 and c2, the
boundary limits of c3, and ramping restrictions of c5.

A solver to this must guide the optimization towards the minimum cost F(P∗) of a
problem specified as:

P∗ = argmin
P∈X

F
(→

x ∗, P
)

s.t.



→
x ∗·P = PnetD

→
x ∗·Pmax−cap ≥ PnetD + SR
→
x ∗·Pmin ≤ P ≤ →x ∗·Pmax

∆P− RU ≤ 0
RD ≥ 0

(37)

4. Experimental Evaluation

Inspired from the previously described state-of-the-art advances, in this section we
perform a thorough assessment of our paradigm for addressing the UC challenge, adopting
common experimental setups. Our vision was (1) to ameliorate the need of manually
specifying any parameter’s settings to initialize or guide optimization; (2) to allow discov-
ering quality solutions to the UC problem at the minimum possible number of function
evaluations; and (3) to retain the burden of dimensionality at reasonably low levels. For
this purpose, we first provided the validation of our approach based on a 10-unit system,
certifying its performance towards global exploration. Then, we compared our solution in
terms of cost and computational complexity with benchmark alternatives in larger-scale
power systems.

4.1. Method Validation

In this study, we considered a power system consisting of 10 generating units, the
properties of which are summarized in Table 1. The input variable of power net-load
demand was defined over a daily horizon of 24 hourly intervals, as depicted in Table 2,
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while the spinning reserve required was rated at 50 MW ∀t ∈ T, which constituted a
standard practice in low-inertia power grids [27].

Table 1. Characteristics of the thermal generating units.

Unit i a
($/MW2h)

b
($/MWh) c ($/h) SU ($) Pmin

(MW)
Pmax
(MW) MU (h) MD (h) RU

(MW/h)
RD

(MW/h)

1 0.00048 16.19 1000 4500 225 682.5 8 8 405 405
2 0.00031 17.26 970 5000 225 682.5 8 8 405 405
3 0.00200 16.60 700 550 30 195 5 5 54 54
4 0.00211 16.50 680 560 30 195 5 5 54 54
5 0.00398 19.70 450 900 37.5 243 6 6 67.5 67.5
6 0.00712 22.26 370 170 30 120 3 3 54 54
7 0.00079 27.74 480 260 37.5 127.5 3 3 67.5 67.5
8 0.00413 25.92 660 30 15 82.5 1 1 27 27
9 0.00222 27.27 665 30 15 82.5 1 1 27 27

10 0.00173 27.79 670 30 15 82.5 1 1 27 27

Table 2. Net load demand (MW) for 24 h.

Hour Load Hour Load Hour Load

1 700 9 1300 17 1000

2 750 10 1400 18 1100

3 800 11 1450 19 1200

4 850 12 1500 20 1400

5 950 13 1400 21 1300

6 1000 14 1300 22 1100

7 1150 15 1200 23 900

8 1200 16 1050 24 800

Formulating the generation ranking based on the proposed enhanced priority-list
technique (Equation (18)), the rearrangement of the generators is listed in Table 3. In
the same table, a further row illustrates the new configuration needed to model the UC
problem as a BM task, whereby the prioritized units represent low-valued decimals, which,
in turn, lead to low-cost solutions.

Table 3. Enhanced priority-list scheme formulation.

Unit 1 2 3 4 5 6 7 8 9 10

Priority list 1 2 4 3 5 6 7 8 9 10
Boolean Configuration 10 9 8 7 6 5 3 4 2 1

Based on this configuration, all feasible combinations C, in terms of system adequacy
(power output and spinning reserve), were generated and the Boolean mapping procedure
was performed to produce a convex CxT-dimensional object. A segmented representative
of this example is demonstrated below (Table 4).
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Table 4. Convex object obtained from Boolean encoding.

t 2 4 6 8 10 12 14 16 18 20

C1 3 3 3 3 7 7 3 3 3 7
C2 5 7 7 7 11 11 7 7 7 11
C3 6 11 11 11 15 15 11 11 11 15

...
...

...
...

...
...

...
...

...
...

C40 55 74 93 119 159 167 125 87 93 159
C41 57 75 94 121 163 171 126 89 94 163
C42 58 77 95 122 167 175 127 90 95 167

...
...

...
...

...
...

...
...

...
...

C114 155 186 234 285 382 447 343 215 234 382
C115 157 187 235 286 383 451 347 217 235 383
C116 158 189 237 287 387 455 349 218 237 387

...
...

...
...

...
...

...
...

...
...

C799 1023 - - - - - - - - -

In this form, the modified neural network can receive the values with the aid of T
independent inputs and effectively guide the optimization towards the minimum cost, as
determined in Equation (30). The developed feed-forward neural is presented in Figure 3,
while a plausible implementation can be observed in Figure 4.
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Figure 4. Actual implementation of the proposed BM optimization loop.

According to the performed simulations, a global optimum solution was achieved,
offering a UC schedule at a minimum total production cost of $504,803.7. This was cer-
tified by the exhaustive enumeration method, which converged to the same result. The
minimum cost function obtained at the output of the modified neural equalled to 476, and
the respective UC schedule and economic dispatch are offered in Table 5 and Figure 5,
respectively. By making use of BM, the algorithm undoubtedly succeeded in suggesting the
optimum scheduling. The minimum number of committed generating units was achieved
throughout the time horizon, and the most economic dispatch was reached, satisfying
the unit-specific, plant-wide, and system-wise constraints. The complete enumeration
obtained exactly the solution via dynamic programming, at the expense of extremely time-
consuming convergence intervals. Finally, Table 6 includes the comparisons between the
proposed BM and exhaustive enumeration approach.

Table 5. Global optimum UC of the proposed BM solution (* indicates the priority ordered units,
while bold numbers show the must-run units).

Rank (i *) 1–8 9–13 14–19 20 21–24

1 1 1 1 1 1
2 1 1 1 1 1
4 0 1 0 0 0
3 0 0 0 0 0
5 0 0 0 0 0
6 0 0 0 0 0
7 0 0 0 0 0
8 0 0 0 1 0
9 0 0 0 1 0

10 0 0 0 0 0
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Table 6. Comparative results pertaining the 10-unit system.

Method Number of
Function Evaluations Elapsed Time (sec) Minimum TPC

Achieved

Proposed BM 8901 1063.2 504,803.7

Exhaustive Enumeration 1.7259 × 1072 131,400 504,803.7
TPC = Total production cost ($).

4.2. Comparative Assessment

In our realization of the BM pipeline, the exact form of the total production cost was
retrieved by means of a neural network and non-linear regression model. The postulated
model was presented with weighted observations {x̂, y} fed back to the model during the
optimization process, enabling efficient prediction of how the dependent variable y would
change when the values of the independent/optimizable variables x̃ were modified. In this
Section, a thorough experimental assessment of the proposed approach was performed,
adopting a common setup, described, for instance, in [17]. Our purpose was to assess the
BM computational complexity in large-scale power systems, which is of utmost importance
in real-world settings where scheduling decisions may need to be made within limited
time-windows.

The comparative assessment regards the power system characteristics of 10 generators
presented previously and the replicated equivalents of 20, 40, 80, and 100 units with
identical features. All simulations were performed on a computer with Intel-Core i7-4510U
CPU @2.6 GHz, 64-bit operating system (Windows 10), and 6 GB of memory. The program
was written in MATLAB (MATLAB R2018, MathWorks). To render our experimental setup
more realistically, the additional constraint of spinning reserve requirement was set to 5%
of the total load, which is a standard practice adopted by system operators [28].

Further, to obtain some comparative results, we compared our solution with some
benchmark alternatives under the same experimental scenarios. Specifically, we considered:
(1) the heuristic Genetic algorithm (GA) [29], particle swarm optimization (PSO) [30], and
simulated annealing (SA) [31]; (2) the mathematical Lagrange relaxation (LR) [32], mixed-
integer non-linear programming (MINLP) [33], and priority list (PL) [34]; and (3) the
hybrid binary whale optimization algorithm (BWOA) [17], binary successive civilized
swarm optimization (BSCSO) [35], and binary gray wolf optimization (BGWO) [30]. The
obtained results are provided in Table 7.
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Table 7. Cost ($) comparisons under different case studies.

Method 10 Units 20 Units 40 Units 80 Units 100 Units

GA 563,977 1,126,243 2,252,909 4,507,692 5,626,361

PSO 563,954 1,125,279 2,248,163 4,495,032 5,619,284

SA 565,828 1,126,254 2,250,012 4,498,076 5,617,876

LR 566,107 1,128,362 2,258,503 4,526,022 5,657,277

MINLP 567,022 1,138,513 2,257,248 4,526,022 5,646,219

PL 563,977 1,124,369 2,246,508 4,489,322 5,605,678

BWOA 563,936 1,123,560 2,223,926 4,478,412 5,599,281

BSCSO 553,423 - 2,183,232 - 5,510,962

BGWO 563,937 1,123,297 2,244,701 4,483,381 5,604,146

BM 504,804 1,009,607 2,019,215 4,038,430 5,048,037

As we observed, our proposed approach based on BM yielded the best optimal
solution, which decreased the minimum achieved TPC by a whopping $598K in the case of
a 100-unit system. This is an unprecedented improvement over the current alternatives. In
addition, it offers strong empirical evidence that the proposed Boolean mapping paradigm
brings significant merit and benefits to the design of successful UC models. Within the
three categories, PSO, PL, and BSCSO seem advantageous over their respective heuristic,
mathematical, and hybrid competitors. The mathematical PL prevailed over PSO in
medium- to large-scale systems (greater than 20 generating units), whereas the hybrid
alternatives offered lower-cost solutions in each case study.

The second key aspect that characterized the optimization process refers to the number
of attempts (function evaluations) performed by the algorithm to converge to a minimum
solution. In Figure 6, the number of function evaluations (NFE) with respect to the number
of participating units pertaining to the best approach within each category are illustrated
and compared with those required by the proposed BM.
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As can be seen, the BM mechanism provided a linear relationship between the required
evaluations while the considered methods showed an exponential increase with respect to
the participating generating units. This stems from the fact that the Boolean mapping led to
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2D decimal matrices, which were further treated as T = 24 independent inputs by the neural
network. This resulted in the dimensional decoupling from the number of available units N,
and the system complexity depended exclusively on the time intervals of the optimization
horizon (T). Moreover, the postulated decimal configuration of the feasible combinations
was addressed in the absence of any stochastic search mechanism, eliminating the need for
a required exploration-exploitation process, which constitutes an intensive task to reach the
optimum trade-off. In terms of NFE per unit rates, PL constituted the next best-fit solution
following by PSO. However, both methods provided quite higher values in terms of TPC.
Relating to the next optimum solution offered by BSCSO, this showed higher NFE per unit
rates, which increased with increasing generators in the system.

5. Conclusions

In this work, a novel approach for addressing the UC problem based on Boolean map-
ping paradigm was proposed. The main motivational forces behind our work were (1) an
effective means of eliminating the need of stochastic search methods to provide a solution
based on optimal exploration-exploitation trade-off and (2) a solution that is intrinsically
designed to converge in the least possible number of function evaluations, decoupling the
computational complexity from the number of participating generating units.

Our proposed method relies on enhanced priority-list schemes and an effective cod-
ing/decoding algorithm for enabling Boolean inference of the decimal form of the under-
lying cost function, as well as the utilization of a state-of-the-art scheme for selecting the
next function evaluation, namely, a feed-forward neural network. Following a four-stage
procedure, the imposed constraints were sequentially satisfied, decoupling the binary
complicated constraints by the discontinuous dynamical restrictions. A thorough experi-
mental evaluation of our approach was provided under standard scenarios and compared
with benchmark alternatives. As observed, the proposed solution outperformed its alter-
natives in terms of both the ultimate system’s total production costs and the number of
required function evaluations. These findings strongly collaborate our theoretical claims
that Boolean mapping can adequately overcome the non-convexity problem that aggravates
the UC task.

As for future directions for research, we indicate the inclusion of stochastic (or fuzzy)
formulations to represent the renewable generation uncertainty in the objective. More ex-
tended works may also involve multi-bus formulations introducing the real power network
constraints and the participation of storage. By increasing the formulation complexity our
novel approach might allow for even higher optimization performance.
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Nomenclature

T Scheduling horizon
N Number of generating units
f (Pi) Generating cost ($/h)
ai, bi, ci Cost coefficients of generating unit i
Ui

t Binary state variable (1 = ON, 0 = OFF)
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Pi Thermal power output (MW)
SUi Start-up cost ($)
PnetD Hourly system demand (MW)
SRt Spinning reserve (MW)
Pi,min,, Pi,max Minimum and maximum power ratings (MW)
MDi, MUi Minimum down and up times (h)
RDi, RUi Ramping down and up capabilities (MW/h)
Cr Plant crew constraint
x Optimizable variable
ci(x) Constraints
x̃ Integer variable
→
x Ranked variable
→
x ∗ Optimum recommendation value
F(1:4)

i Priority normalization factors
φ(.) Activation function
h Hidden layer output
y Target output cost function
X Population matrix
W Weight matrix
x̂t Prediction variable
NP Population size
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